Homework 10

- 1. a. Suppose that a polynomial of degree 200 has 100 real and simple roots in the interval [-10, 10], separated one from another by a distance of at least 4×10^{-3} . Describe a simple and reliable procedure to find all the real roots to double precision (no actual programming is required).
 - **b.** Write down the analytic expression for the n Chebyshev nodes in the interval [1, 2]
 - c. Find out an integer that is the minimum number of Chebyshev nodes required for interpolating the Natural Logarithm ln(x) in the interval [2, 4] to precision 10^{-12} .
- 2. Write a Matlab script of no more than 10 lines to calculate the Newton-Cotes quadrature weights $w_j, j = 1, 2, ..., n, n + 1$; go to the end of this handout for more details about w_j . For uniformity, we require that the script starts with the four lines n=2; h=1/n; nodes=(0:h:1)'; f=eye(n+1); where the j-th column of the matrix f are needed for the Lagrange interpolation in order to find the Lagrange Basis functions $L_{n,j}$; see bottom for more details.
 - **a.** Provide the script.
 - **b.** Print off w (to 16 digits) for n = 1 (trapezoidal rule), n = 2 (Simpson's rule), n = 7 (call it border-line rule), n = 8 (call it misery's rule) and n = 20 (call it the Devil's rule)
 - c. For each rule, print out the Lebesgue constant = norm(h*w,1)

Hint: Make use of the three Matlab functions polyval, polyint, and polyfit in the order polyval(polyint(polyfit(···))).

- 3. Use the Matlab function fzero to write a code solving the nonlinear equation for α the order of convergence (Do not provide the code).
 - **a.** Show the nonlinear equation $f(\alpha) = 0$ used in your implementation for finding α (this function f is not unique, so just give your version)
 - **b.** Apply the trapezoidal and Simpson composite quadrature rules to

$$\pi = \int_0^1 \frac{4}{1+x^2} \, dx \tag{1}$$

to compute the approximate value for π (see Problem 8.1, page 387).

c. Check the order of convergence of the trapezoidal and Simpson rules with $h_1=1/100$, $h_2=1/76\ h_3=1/135$.

Appendix – Lagrange Interpolation. The *j*-th Lagrange Basis function associated with the n+1 distinct nodes $\{x_k, k=0,1,\ldots,n\}$ is defined by the formula

$$L_{n,j}(x) = \prod_{k \neq j} \frac{x - x_k}{x_j - x_k} \tag{2}$$

for $j=0,1,\ldots,n$. The interpolating polynomial $P_n(x)$ to a function f(x) at the nodes $\{x_j\}$ is given by the formula

$$P_n(x) = \sum_{j=0}^{n} f(x_j) L_{n,j}(x)$$
(3)

In the associated quadrature with nodes $\{x_j\}$

$$\int_{a}^{b} f(x)dx \sim \int_{a}^{b} P_{n}(x)dx = \sum_{j=0}^{n} w_{j} f(x_{j}), \tag{4}$$

the weights are obviously given by

$$w_j = \int_a^b L_{n,j}(x)dx \tag{5}$$

In the special case of Newton-Cotes, $a=x_0,\ b=x_n,$ and $\{x_j\}$ are equispaced. Moreover, the weights w_j are traditionally defined as

$$w_j = \frac{1}{h} \int_a^b L_{n,j}(x) dx \tag{6}$$

and consequently, the quadrature assumes the form

$$\int_{a}^{b} f(x)dx \sim h \sum_{j=0}^{n} w_{j} f(x_{j})$$

$$\tag{7}$$