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The flow of viscoelastic fluids is an area in which analytical results are difficult to attain, yet can provide
invaluable information. We develop a weak-coupling expansion that allows for semi-analytical compu-
tations of viscoelastic fluid flows coupled to immersed structures. In our method, a leading-order poly-
meric stress evolves according to a Newtonian velocity field, and this stress is used to correct the
motion of bodies. We apply the method to the transient problem of a sphere settling through a viscoelas-
tic fluid using the Oldroyd-B model, and recover previous results and observed behavior. The theory pre-

Ié%‘r/zo?s]; sented here is in contrast to the retarded-motion, or low-Weissenberg-number, expansions that have
Bogeryﬂuid seen much application. One advantage of the weak-coupling method is that it offers information for

Weissenberg numbers larger than one. The expansion’s limit of validity is closely related to the diluteness

Transient velocity overshoot o2 . ‘ . . -
criterion of a Boger fluid. We extend the classical settling problem to include an oscillatory body-force,

Weak-coupling

Lagrangian method
Birefringent strand

and show how the introduction of a second time-scale modifies the body-dynamics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A sphere released from rest in a viscoelastic fluid exhibits a
transient velocity overshoot before eventually settling to terminal
velocity, as has been established through experiments using Boger
fluids [1-4]. This is an attractive benchmark problem for the inter-
action of viscoelastic fluids with structures due to the simple
geometry yet non-trivial flow and stress fields that arise. The com-
plexity of the flow and stress fields makes it a challenge for numer-
ical methods, but gives rise to clearly observable dynamic behavior
that can be compared to experiments.

Fig. 1 shows the qualitative transient behavior observed in
experiments [1,2,4]. The sphere accelerates from rest and reaches
a maximum velocity Uy, before settling to a terminal velocity U,.
The acceleration from rest to Uy, is due to inertia (of the body
and/or the fluid), which is neglected in the present study. The tran-
sient velocity overshoot, on the other-hand, is a viscoelastic phe-
nomenon that does not require inertia. It is due to the
development of an extra polymeric stress in the fluid, a macro-
scopic quantity caused by the stretching of microscopic polymers.
The extra polymeric stress is initially isotropic and uniform, imply-
ing that it does not contribute to drag. However, as time progresses
deformation leads to a non-trivial polymeric stress field, which
exerts an additional drag on the body and slows its motion. The
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time-scale of the velocity overshoot is most often reported to be
comparable to the polymeric relaxation time t,, while its relative
magnitude (U, — U;)/U; has been estimated by the viscosity ratio
Np/ns, where 7 is the viscosity of the Newtonian solvent and #,
is the polymeric viscosity [2,4]. An important dimensionless
parameter is the Weissenberg number, Wi=t,V/L, where V is a
characteristic velocity and L is a characteristic length-scale. A sec-
ond dimensionless parameter must involve the viscosity ratio, and
for this we introduce the parameter g defined by the relationship
pWi =n,[n,. When the problem is non-dimensionalized accord-
ingly (time is scaled by L/V), the qualitative behavior is a velocity
overshoot of relative magnitude (U, — U,)/U,; ~ Wi, occurring on
a dimensionless time-scale of order Wi.

Previous theoretical studies fall mainly into two categories:
asymptotic calculations that rely on a retarded-motion expansion
and numerical simulations of non-linear viscoelastic models. The
retarded-motion expansion assumes that the flow time-scale L/V
is long compared to 7, or Wi« 1. Linear rheology and the sec-
ond-order fluid model are two of the simplest results of a re-
tarded-motion expansion. More generally, the expansion of any
viscoelastic constitutive model in small Wi fits into this category.
Some important studies related to the settling sphere are as fol-
lows: Leslie and Tanner calculated the first two terms of a low-
Wi expansion to determine the steady-state drag as a function of
Wi for the Oldroyd 6-constant model [5]; King and Waters were
the first to predict the transient velocity overshoot, and they used
a linear viscoelastic model [6]; many authors have used the sec-
ond-order fluid model to study closely related problems [7-9]. In


http://dx.doi.org/10.1016/j.jnnfm.2012.07.001
mailto:nickmoore83@gmail.com
mailto:moore@cims.nyu.edu
http://cims.nyu.edu/~moore/
http://dx.doi.org/10.1016/j.jnnfm.2012.07.001
http://www.sciencedirect.com/science/journal/03770257
http://http://www.elsevier.com/locate/jnnfm

26 M.N.J. Moore, M,J. Shelley /Journal of Non-Newtonian Fluid Mechanics 183-184 (2012) 25-36

speed

--- Newtonian w inertia
------- viscoelastic w inertia
— viscoelastic no inertia

[P s e,

time

Fig. 1. Pictorial representation of the transient velocity overshoot.

a study that does not fit into either of the two categories above,
Harlen used a boundary layer approximation, the so-called bire-
fringent strand technique [10], to calculate the flow structure
and drag coefficient in steady-state for finitely extensible (FENE)
dumbbell models [11].

Recently more effort has been devoted to direct numerical sim-
ulation of non-linear viscoelastic models, including the simplest
dumbbell models such as the Oldroyd-B (OB) and Upper Convected
Maxwell (UCM) models [12,2,13], as well as the more elaborate
FENE and Phan-Thien-Tanner models [14,3,4]. In most cases, sim-
ulations of the OB and UCM models are limited to a particular
range of Wi (typically Wi less than 2 or so) due to apparent singular
behavior of the stress field [12,2,13]. In the absence of analytical
results, it is not clear whether this limitation is numerical or if it
is of a more fundamental nature, such as a criticality of the consti-
tutive equations.

As a step towards an analytical framework, we calculate solu-
tions to the OB equations that are valid in the ‘weak-coupling’ limit
of fixed Wi and § < 1. One way to approach this limit is to fix t,, V
and L, while letting #,/n, — 0. This is closely related to the dilute-
ness criterion of a Boger fluid, #,/1; < 1, and is a physically rele-
vant regime. Our semi-analytical results qualitatively match
previous experimental observations, both in the transient and stea-
dy-state. For Wi larger than 2 or so, we present new findings for the
OB model in the weak-coupling limit, including a modification of
the overshoot time-scale and a scaling law for the steady-state
drag as a function of Wi.

As a consequence of the weak-coupling expansion, an approxi-
mate polymeric stress evolves according to a leading-order Newto-
nian flow. The response of an immersed body is then determined
using both the polymeric stress and the stress induced by a veloc-
ity-field correction. While the results are not entirely analytical,
the computational component is reduced to evolving the Lagrang-
ian variables forward in time with a prescribed velocity field and
then solving a set of independent, linear ordinary differential equa-
tions (ODEs); all other calculations are simply evaluation of exact
formulae. An attractive feature of the method is that the ODEs
are independent of Wi. Other authors have also used a background
Newtonian flow to evolve a polymeric stress field, but for the pur-
pose of analyzing the stress structure formed near stagnation
points or near boundaries [15-20]. In these instances the back-
ground Newtonian flow was assumed for convenience, whereas
here it arises naturally from the expansion and additionally the
resulting polymeric stress is used to correct body-dynamics.

For sufficiently large Wi, we observe the formation of a birefrin-
gent strand, as has been previously observed in a variety of situa-
tions and has been analyzed in great depth [21,10,11,22,16,18,19].
Through analysis of the birefringent strand, we show that for any
Wi the polymeric stress stays bounded for all time and we deter-
mine its scaling with Wi. The time-boundedness of the polymeric
stress is a consequence of the quadratic flow near the sphere’s rear
stagnation point. This should be contrasted to a linear hyperbolic

flow where the polymeric stress has been found to grow un-
bounded in time [23]. We show our analysis of the birefringent
strand to be consistent with a scaling law observed in the weak-
coupling computations relating the drag and Wi. Additionally, we
extend the weak-coupling method to the problem of a sphere set-
tling with an oscillatory force and show how the introduction of a
second time-scale influences the dynamic motion of the body.

2. Weak-coupling expansion
2.1. Formulation

Consider a heavy body descending in a viscoelastic fluid. We ne-
glect both fluid and body inertia, i.e. Re < 1. The body’s motion is
characterized by its translational velocity U(t) and its angular
velocity €(t). The evolution of these quantities is coupled to the
fluid, and we take the incompressible Stokes Oldroyd-B equations
(Stokes OB) as the governing fluid-model. In the Stokes OB model,
the stress tensor is decomposed into the usual Newtonian stress
tensor 6" associated with the solvent, and an additional polymeric
stress tensor a” arising from stretching, rotation, and relaxation of
polymers in the solvent. The polymeric stress evolution is charac-
terized by an elastic modulus G and a relaxation time-scale t,. The
Newtonian stress tensor is given by 6" = —pI + n(Vu + Vu') where
pis the pressure, ¥ is the solvent viscosity, and u is the divergence-
free velocity field. The total stress tensor is ¢ = ¢ + 6.

Consider a uniform-density sphere in an infinite fluid domain
Q, with the sphere surface denoted by 9¢2. In a Newtonian fluid
of viscosity #s, a sphere of radius L descends with speed V=(2/9)
gApl?[n,, where g is the gravitational constant and Ap is the den-
sity difference between the sphere and the fluid. We take V as a
characteristic velocity for non-dimensionalization, although this
is not necessarily the velocity of the sphere in the viscoelastic med-
ium. Scaling space by L, time by L/V, and 6" by G, gives the dimen-
sionless form of the Stokes OB system,

- Vp+Au+pV-6° =0, (1)

Wi 2[u]e” + (6” — 1) =0, (2)

/ (6N + poP) - f dS = 67e;, (3)

JoQ

/ & x [(6" + o) - 1) dS = 0. 4)
oQ

Here, the upper-convected time-derivative is 2:[u]je = 9.6+

(u-V)e — (Vu -6 +6-Vu'). The Weissenberg number, Wi = t,V/L,
is the ratio of the fluid relaxation time-scale to a flow time-scale,
while g =GL/(#sV) measures the relative contribution of the poly-
meric stress to momentum balance. The product of the two is the
ratio of polymeric viscosity to solvent viscosity, fWi = Gtp/ns =11,/
15, and the fluid has total dimensionless viscosity 1 + Wi (sum of
Newtonian and polymeric viscosities). The total stress tensor is
o = 6" + fo” in this dimensionless form. Eq. (3) is the force balance
on the body with a constant external gravitational force, and Eq. (4)
is the torque balance on the body. Here, f1 is the outward surface
normal and X is a vector originating at the sphere’s center of mass.
The boundary conditions are no-slip on the surface of the body, and
if we work in the body-frame, U and € are determined by the veloc-
ity field u at infinity. Egs. (1)-(4) form an initial value problem for
U(t),Q(t), and 6”(x,t). For a uniform density sphere and the initial
condition 6”(x,0) = I, the resulting symmetry of Egs. (3) and (4) give
U(t) = U(t)e, and (t) = 0, i.e. vertical velocity and no rotation of the
body. Again, we have assumed both the fluid and body inertia are
negligible, implying that fluid and body velocities respond instanta-
neously to forces.

We consider Egs. (1)-(4) for fixed Wi and 8 < 1. Since  mea-
sures the strength of coupling between the polymeric stress and
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the momentum balance, we term this the weak-coupling limit. We
formally expand all variables in a regular perturbation series in p,
UX,t) = Uo(X, £) + f i (X, ) + O(B), (5)
P(X,t) = Po(X,t) +  p1(x,1) + O(F°), (6)
o’ (x,t) = a5 (X, t) + B 6 (x,8) + O(B), (7)
U(t) = Uo(t) + pWi Ui (£) + O(8*). 8)
The Newtonian stress tensor at order g* is given by
of = —pd + Vu, + Vul. U(t) is the dimensionless sphere velocity

in the vertical direction, and we have included the factor Wi in
Eq. (8) for convenience. At order $°, Eqgs. 1,3,4 reduce to

— Vpo + Aug =0, 9)
/ 6\ .11 dS — 67, (10)
0Q
/&xag’.ﬁdszo. (11)
JoQ

The solution is the well-known Stokes flow around a sphere under
constant body force and zero torque, giving Ug(t) = —1. The exact
formula for ug is given in Appendix A.

At order °, Eq. (2) linearly couples u, and a5,

Wi Z,[u)e? + (65 — 1) = 0. (12)
At order ', Eq. (1) gives the linear inhomogeneous Stokes equation,
-Vp; +Auy = -V - ab. (13)

Also at order f!, Eq. (3) gives the integral constraint,
/ (6) +6%) 71 dS=0, (14)
Q

while Eq. (4) is trivially satisfied by symmetry.

Given uy, we discuss how to efficiently solve Egs. (12)-(14) for
Ui(t), the first correction to the body-velocity. To orient the reader,
we give a brief description of the expected behavior of U;. Since
Uy = —1, i.e. downward motion, positive U; implies a decrease of
the sphere’s descent rate. U; =1 implies the sphere descends at
the same rate that it would in a Newtonian fluid with viscosity
1+ BWi. Thus, U; > 1 corresponds to an enhanced drag compared
to this Newtonian case, and U; < 1 corresponds to a drag reduction.
As for the transient behavior, U; taking the form 1 — e /" corre-
sponds to a velocity overshoot with time-scale Wi and exponential
saturation to steady-state. This behavior might be naively antici-
pated from linear-shear-flow rheology, and it qualitatively
matches experiments on descending spheres [2,4]. We therefore
refer to it as the ‘anticipated’ behavior of Uj;.

2.2. Method of solution

In this section, we introduce an efficient and simple solution
technique for Eq. (12). Since {uo,po} are known analytically, the di-
rect solution of Egs. (13) and (14) can be avoided, and U; can be ob-
tained by use of the reciprocal theorem. We work in a spherical
coordinate system x = (r,0, @), where r is the radius, 0 is the polar
angle from the upwards pointing vertical direction e, and ¢ is
the azimuthal angle. Taking &f(x,0) =1 implies that &} (x,t) is
independent of ¢, and thus the flow remains axisymmetric for
all time.

In the Lagrangian frame, Eq. (12) can be written as

.D
Wis (F'otF ") +F 'alF "= F 'F . (15)
Here F = 0X/0a, where X(a,t) is the Lagrangian flow map taking a
fluid tracer from initial position & to position X at time t. D/Dt is
the time-derivative in the Lagrangian frame. F is known as the

deformation gradient, or the Jacobian of the flow map X, and it
evolves according to

%F(a, t) = Vuo(X(a, t)) F(e,t). (16)
Using an integrating factor, the solution to Eq. (15) is

o} (o, t) = e"WiF(a, )} (o, O)F (a1, t) +%

t
X / ds e/WiF (o, t)F " (a,t —s) F (o, t —5) F'(a,1).
0
(17)

To evaluate this exact formula, we first evolve X(a,t) forward in
time with a fourth-order Runge-Kutta method. Since Eq. (16) is lin-
ear, F(a,t) can be evolved with a semi-implicit method, and we use
a fourth-order Adams-Moulton method for this. We then evaluate
Eq. (17) with a fourth-order Simpson’s quadrature, yielding a solu-
tion for 6% (a, t) that is fourth-order accurate in At. We emphasize
that the point-wise accuracy of the solution does not depend on a
spatial discretization parameter.

Let u” and u® be two incompressible velocity fields with associ-
ated stress tensors 6” and &®. Assuming both velocity fields decay
sufficiently fast at infinity and that V - ¢# = 0, the reciprocal theo-
rem gives

/u"‘~(V~0'B)dV— uA-o'B-ﬁdS:—/uB~a"-ﬁdS, (18)
Q

oQ oQ
Taking u® = u, — 1e,, u® =u, + Wi U,e,, and using Egs. (13) and
(14), and an integration by parts, gives

Ui (t) :ﬁ [Z Vi (x,t) : 65(x, 1) dV. (19)

We compute this integral numerically by forming a Delaunay
triangulation of the Lagrangian grid, then integrating with a sec-
ond-order accurate method based on linear-interpolation within
each triangle. We truncate the integration region at an outer radius
Rmax and use Richardson extrapolation in R, to approximate the
infinite-domain integral in Eq. (19). This completes what we call
the weak-coupling numerical method. Here, we have avoided di-
rectly solving Egs. (13) and (14) for {u4,p;}, however in principle
this could be done in a relatively straightforward fashion. The solu-
tion to the forced Stokes equation, Eq. (13), may be represented by
a distribution of Stokeslets, and Eq. (14) may be satisfied by adding
a multiple of the homogeneous solution {ug,po}.

To better understand the integrand in Eq. (19), let

d(x,t) = % Vi : 6b. (20)
Here the multiplicative factor is chosen for convenience. The rela-
tive strain energy (to leading order in p) is given by
&(t)=(1/2) [, tr (6h(x,t) —I) dV, and so we can define a strain
energy density as y(x,t) = (1/2) tr(a}(x,t) — I). Taking a time deriv-
ative in the Lagrangian frame gives Dy/Dt+ Wi 'y =(9/4)Wi ®.
Therefore, @ controls the rate at which elastic energy is stored
locally.

We supplement the numerical evaluation of Eqgs. (17) and (19)
with a few analytical results. First, on the sphere surface, Eq. (17)
can be evaluated exactly and this is given in Appendix A. This exact
solution is useful for benchmarking the numerics. Next, in the fluid
bulk we have found a formal series solution to Eqs. (17) and (19) in
the variables Wi and t/Wi, and this is given in Appendix B. Surpris-
ingly, the series is a single summation that is ordered in both Wi
and t/Wi. When truncated it provides either low-Wi or short-time
asymptotic information.
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3. Results
3.1. Steady-state, low-Wi benchmark

In steady-state and at low Weissenberg number, a sphere des-
cends at nearly the same rate as in a Newtonian fluid with viscosity
1 + g Wi, but with a slight velocity increase, or drag reduction. This
behavior has been predicted previously [5] and has been observed
experimentally, though with a much more substantial drag reduc-
tion due to the presence of device walls (see [1,3] for example). The
low-Wi asymptotic solution of Leslie and Tanner [5] can be used to
benchmark our numerical computations. Additionally, our series
solution given in Appendix B recovers the result of Leslie and Tan-
ner when truncated at order Wi2, while the successive terms allow
for a more detailed benchmark of the computations.

Let U7® = lim,. U;(t) be the steady-state velocity correction.
Fig. 2 shows 1— U} computed by the weak-coupling method,
along with the series solution in Eq. (B.11) truncated at orders
Wi2 and Wi'2. The figure shows agreement between all three as
Wi - 0, with an error less than 10™* (the dominant source of
numerical error is the spatial integration of Eq. (19)). Recall that
U; <1 corresponds to a drag reduction, and notice that the drag
reduction is very slight with a magnitude always less than
3x 1073

3.2. Steady-state results for varying Wi

For Wi not small we rely exclusively on the weak-coupling
numerical method to determine U;, and we first consider the
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Fig. 2. 1 — U7 computed by the weak-coupling method (circles) and the asymptotic
formula (B.11), retaining terms up to Wi (solid line) and Wi'? (dotted curve).
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steady-state behavior. Fig. 3a shows UT® increasing with Wi after
a notably flat departure from U7 =1 at Wi =0. Recall that an in-
crease in U implies a slow-down of the sphere, or equivalently
an enhanced drag. Fig. 3b shows the same plot on a log-log scale,
indicating a power-law scaling of roughly U7° ~ Wwi'* for large Wi.
The prediction of enhanced drag for increasing Wi is in qualitative
agreement with experiments [1-3], while the scaling law is a new
finding for the Stokes OB model, at least within the weak coupling
approximation.

Recall that U; is determined by the integration of & in Eq. (19),
and that @ represents the local storage rate of elastic energy. Stea-
dy-state distributions of @, as shown in Fig. 4, offer insight into the
behavior of UT". For low Wi, @ is concentrated near the waist of the
sphere and is nearly for-aft symmetric (see Fig. 4a). In fact, Appen-
dix B shows that in steady-state, @ = (4/9) Vg : (Vo + Vul)+
O(Wi), a formula which accounts for the for-aft symmetry. Inte-
grating this formula gives U® ~ 1 for Wi« 1, in agreement with
Fig. 3. For Wi =2, a region of large & appears above the rear stag-
nation point, where the bulk fluid is most effectively stretched
(Fig. 4b). Large Wi corresponds to long fluid-memory, meaning that
a Lagrangian tracer in the wake can be strongly influenced by its
history near the rear stagnation point. This is seen dramatically
in Fig. 4c for Wi=5, as @ becomes increasingly concentrated in
the wake and a birefringent strand emerges. The presence of the
birefringent strand accounts for the increase in Uy° seen in Fig. 3.

3.3. Dynamic results

To illustrate the dynamic behavior predicted by the weak-cou-
pling method, Fig. 5a shows U;(t/Wi) normalized by its steady-
state value UY. For low Wi, U, follows the anticipated behavior
1 — e closely. Recall this corresponds to a velocity overshoot
with time-scale Wi and magnitude Wi — behavior that is in qual-
itative agreement with experimental observations. Increasing Wi
modifies this behavior, and the transient time-scale becomes larger
than Wi (see Fig. 5a). The most dramatic changes occur for Wi = 3-
10. For Wi > 10, a change in the concavity of U, /U is visible, from
concave up at short times to concave down at longer times.
Increasing Wi beyond 20 modifies U° (as shown in Fig. 3b), but lit-
tle change is visible in the dynamic quantity U, /U7".

Much like before, the distribution of @ is helpful to understand
the behavior of U;. Fig. 6 shows the development of & for Wi = 2. In
this case, @ grows to roughly the same magnitude in the region
around the waist of the sphere (region 1) as it does in the region
aft of the rear stagnation point (region 2), allowing for a compari-
son of the dynamics in the two regions. We have observed the
development of @ in region 1 to be well described by the low-Wi

100

(b) Log-log axes

Fig. 3. The steady-state velocity correction, Uy, as Wi is varied.
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(a) Wi=0.5

(b) Wi =2

(c) Wi=5

Fig. 4. The steady-state distribution of @ for increasing Wi. The flow is from bottom to top. Note the appearance of a birefringent strand in (c) and the difference in the scale-
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Fig. 5. (a) U;(t/Wi) normalized by Uy for several values of Wi. (b) U;(t/Wi) from the weak-coupling method with Wi=5 (circles), along with the series solution (B.11)
truncated at order (t/Wi)'? (dotted curve), and the simple exponential saturation (solid curve).

approximation given in Appendix B, @&~ (4/9) Vuy:
(Vuo + Vul) (1 — e/, even for Wi not small. This observation
is consistent with the exact solution on the sphere surface,
@ =sin’6(1 — e~™), which depends only on t/Wi and not Wi
(see Appendix A). Integrating the low-Wi formula gives
U; ~1 — e "™i This, together with the observation that the low-
Wi formula always appears to be valid in region 1, suggests that
the development of @& in region 1 accounts for purely exponential
saturation of U;. This purely exponential saturation prevails for
low-Wi because @ is primarily concentrated in region 1.

Now consider region 2. Here, @ develops over a longer time-
scale, roughly t/Wi =8 for the case shown in Fig. 6. The contribu-
tion of @ in this region modifies the purely exponential saturation
of U; and accounts for the longer transient observed for Wi > 1 (see
Fig. 5a). For Wi = 5, Fig. 7 shows the emergence of the birefringent
strand, which causes further modification to the U;-transient.
Here, @ is dominantly concentrated in region 2. The development

of @ in region 1 is again described by the low-Wi formula, but is
not visible in the figure due to the change in scale.

The series solution given in Appendix B also lends insight into
the transient behavior of Uy, in particular the departure from expo-
nential-in-time saturation. Recall that the truncation of series
(B.11) provides both low-Wi and short-time information. Fig. 5b
shows U, for Wi=5 fixed, plotted against the series (B.11) trun-
cated at order (t/Wi)'%. As seen in the figure, the truncated series
captures the initial departure from exponential saturation, how-
ever loses accuracy at larger time. It is interesting to consider
how the transient time-scale becomes modified in this series solu-
tion. Inspection reveals that terms of the form (¢/Wi)e~"" enter at
order Wi", where k < n. The function (t/Wi)*e~“"!is maximized at t/
Wi =k, and so this gives rise to an integer multiple of the basic
time-scale Wi. A more complete analysis of the transient modifica-
tion could also incorporate the decay rate of the coefficients, and
this is left for future study.
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Fig. 6. Time sequence of @ with Wi =2 and t/Wi=1, 2, 4, 8, moving from left to right.
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4. Birefringent strand analysis
4.1. Boundedness of the polymeric stress

The validity of the weak-coupling expansion relies on the
assumption that ) remains bounded in time so that the higher or-
der terms in the expansion remain small. It is therefore important
to investigate the possibility of the polymeric stress becoming sin-
gular, particularly in light of previous suggestions to this possibil-
ity [24,13]. In this section we demonstrate the time-boundedness
of 6 everywhere in the fluid domain. The rear stagnation line, lo-
cated on the central-axis of the birefringent strand, requires special
care in the argument. It is not evident whether higher-order spatial
derivatives of ¢ remain bounded or not, and this is an important
topic to be considered in the future.

We first demonstrate the boundedness of a}) in the portion of the
fluid domain excluding the sphere surface and the rear stagnation
line, here called €. The main idea is that characteristics can be
evolved backwards in time to solve for the deformation gradient
and demonstrate its boundedness, and &% inherits this feature

through the exact relation given in Eq. (17). To this end, consider
a fixed Eulerian point x; € Q4, and let H(t) satisfy dH/dt=—Vu,
(X(x1, — t)) with H(0) = I. Let G(X(o.,t),t) = F(a, t), with initial condi-
tion G(x,0)=1, i.e. G is the deformation gradient in the Eulerian
frame. Then G(x;,t) = H(t)™! for all time (we have simply reversed
the time-evolution). x; €, implies that X(x;,—t)=(r,0,¢)
— (00,7, ¢) as t - oo, where Vu,y becomes diagonal and decays like
r~2. The flow becomes uniform far away from the body, implying
r(t) = O(t) as t — oo, and therefore Vo (X (%1, —t)) ~ ¢(t~2). This de-
cay rate is sufficiently fast that H(t) approaches a constant value, i.e.
H> = lim,_, . ,H(t) exists and is finite. Recalling det G = 1, implies that
det H(t) =1 for all time and thus H* is invertible. Upon inversion,
this shows that G(x1,t) remains bounded for all time. With the defor-
mation gradient bounded in time, Eq. (17) shows that 6} remains
bounded in time for any Wi, and further that lim,_..65 = O(Wi)
for Wi > 1. For points on the sphere surface, the exact solutions in
Appendix A show that F grows linearly in time whereas 6}, remains
bounded for all time. Here, lim,_.,.6% = 0(Wi?) for Wi>> 1.

This leaves the rear stagnation line, defined by 0 = 0. Here, Vu,
is diagonal implying that Eq. (16) decouples and F remains
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Fig. 8. (a) Estimate of ¢ for varying Wi from the weak-coupling method (solid line with circles) along with a power law Wi~%8 (dashed line). (b) @4y as a function of Wi from
the weak-coupling method (solid line with circles) and the asymptotic prediction 0.96Wi® from Eq. (23) (dashed line).

diagonal. Let X =(r,0,0) and « = (1,0,0). By changing the indepen-
dent variable from t to r in the evolution equation, it is possible to
solve for F exactly. The first component is

3 2
r 1+2r 1-r
Fii(r,ro) = (a) (m) (ﬂ) )

The other components are determined by Fy = Fs3 = F;]/?,
which follows from axisymmetry and that detF=F;; - Fx; - F33 = 1.
For a fixed r, we have ry —» 1 as t — oo, i.e. back towards the stagna-
tion point, which through Eq. (21) implies that F;; grows un-
bounded in time. Near the stagnation point the flow is locally
quadratic, u, ~ 3/2 (r — 1), giving ro ~1+2/3 t ! as t - co. When
inserted into Eq. (21) this implies that F;; ~C(r) t?, where
C(r)=3/4 r3 (1+2r)(1—r)? that is the deformation gradient
grows quadratically over long time. This should be contrasted with
the behavior near a linear hyperbolic point, where the deformation
gradient grows exponentially in time and leads to exponential
growth of the polymeric stress past a critical Weissenberg number
[23]. Here however, the quadratic growth rate of F implies through
Eq. (17) that 6% remains bounded for all time and gives

(21)

2 4
im0 ~ 27 (1422 = 1)

5 5 for Wi > 1,

(22)

where 171 denotes the (1,1) entry of &%. This expression has been
checked directly with our numerical computation. It can be com-
pared to a similar result for flow around a cylinder, in which the
polymeric stress has been determined to grow as Wi along the rear
stagnation line and as Wi° in a narrow region surrounding the rear
stagnation line [15,16].

The preceding argument proves that within the weak-coupling
limit of the Stokes OB model, the polymeric stress remains
bounded for all time everywhere in the fluid domain. The most
essential points of the argument are that the flow is locally qua-
dratic near the rear stagnation point and that the flow tends to a
uniform velocity far away from the body. An interesting question
not addressed here is whether these points can be applied to the
fully-coupled Stokes OB model (i.e. with 8 not assumed small) in
order to prove the boundedness of the polymeric stress more gen-
erally for the descending sphere problem. Previous results regard-
ing hyperbolic stagnation flows suggest that the growth of the
polymeric stress may even be ameliorated by retaining the
coupling [23].

4.2. UY for large Wi

Here we present some brief analysis of the birefringent strand
that shows consistency with the scaling law U ~ Wi'* observed
in Section 3.2. We use Eq. (22) along with the exact formula for
Vuy, given in Appendix A, to determine & asymptotically along
the rear stagnation line,

5 2
9(r+1)(r;l})) A+207 s for wis 1.

(23)

Bps(r) = lim |, ~

The BS stands for ‘birefringent strand’. Assume that this scaling
holds approximately within some narrow region defined by - <r
sin # < ¢ and 1 < r<E, so that the region’s width is 26 and its extent
is E, both of which may depend on Wi. @ is integrated in Eq. (19) to
determine U{", and the distribution of @ is dominated by that in the
birefringent strand for large Wi. Therefore we can consider @ only
in this narrow region to determine how U7 scales with large Wi.

Observations from the weak-coupling method show E — oo and
& — 0 as Wi — oo. Eq. (23) is integrable in r, and so to leading order
in large Wi, Uy ~ 8* [;° ®s(r)dr; the dependence on E will enter
at higher order. From the weak-coupling method, we measure
the half-width-at-half-maximum of ¢ along the birefringent
strand in order to estimate 5. We observe the scaling 6 ~ Wi %%
as shown in Fig. 8, with an error estimate of roughly 0.05 in the
exponent. Fig. 8 shows the maximum of ®g(r), denoted @4y, cOM-
puted from the weak-coupling method, which agrees with Eq. (23)
as Wi — co. Inserting the numerically determined scaling of § and
the analytically determined scaling of ®gs(r) gives U ~ Wi'*, as
was already observed in Section 3.2. An entirely analytical deriva-
tion of the scaling law seems possible and we leave that for future
study. We remind the reader that the weak-coupling limit applies
to fixed Wi and < 1, and so the smallness criterion for f may de-
pend on Wi, in particular as Wi grows large.

5. Oscillatory body-force

In this section, we consider an extension of the settling body
problem by adding an oscillatory body-force. This introduces an-
other time-scale that can potentially be played off of the two
time-scales already present, L/V and 7, Recent theoretical and
experimental studies have suggested that the speed of a swimming
organism can be substantially modified in a viscoelastic fluid [25-
28], especially when its beat-frequency is in resonance with the
fluid relaxation time [26,28]. The oscillatory force problem can
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Fig. 9. (a) U, from an oscillatory flow with A=0.4 computed by the weak-coupling method (open circles) with Wi =3 and De = 0.02, along with the Newtonian response,
f(t)UT (Wi) (dashed curve), and the quasi-steady prediction U?S(t) defined in the text (solid curve). (b) Ur with Wi = 0.25, along with the prediction for a Newtonian fluid

(dashed curve) and the quasi-steady prediction (solid curve).

be considered a toy-model for self-propulsion that removes the
complexities of shape change.

Consider an external body-force that oscillates with period 7.
Let the Deborah number by defined as the ratio of the polymeric
relaxation time to the forcing period, De = 7,/tr. The mean of the
oscillatory force is still the gravitational force on the body, and
the relative amplitude of the oscillation is A. When the oscillatory
force is inserted into the dimensionless Stokes OB equations, the
only modification is to Eq. (3), which now becomes
/ (6" + Ba”) - 1 dS — 67e,f (t), (24)

Q

where f(t) = 1 + A sin(27De t/Wi). We once again consider the weak-
coupling limit of fixed Wi and § < 1, and apply the same methodol-
ogy as before. The leading order sphere velocity is now given by
Uy = —f(t). We use the weak-coupling Lagrangian method with
background flow ug (now time-dependent) to determine the stress
field a5, and then use the reciprocal theorem to determine U;.

A few special limits are useful to gain some initial insight. For
Wi and De both small, one expects the fluid to behave essentially
as a Newtonian fluid with viscosity 1 + fWi. It is therefore expected
that U; ~ f(t) for Wi, De < 1, and we have confirmed this directly
with the weak-coupling numerical solution. The next limit to con-
sider is Wi fixed and De < 1, corresponding to a slow oscillation. In
this limit, the flow can be considered quasi-steady, allowing tran-
sients in the elastic response to be neglected. We can use the
steady-state information provided by Fig. 3, and imagine traversing
this plot by defining an effective Weissenberg number,
Wie(t) = f(t)Wi. Then the quasi-steady response is U¥ =
f(O)UT (Wieg (t)), where UT°(Wi) is taken from a steady flow (i.e.
the function depicted in Fig. 3).

Fig. 9a shows U; with Wi=3 and De =0.02, and shows good
agreement between the weak-coupling method and the quasi-
steady prediction. For comparison, the figure also shows the ‘New-
tonian’ response f(t)UT"(Wi), which would occur if the extra stress
where simply Newtonian. Notice that the valleys of U; roughly
align with the Newtonian response, but the peaks are substantially
amplified. This can be attributed to the positive curvature of
UT"(Wi) in Fig. 3. Also note the slight phase difference between
the numerical solution and both the Newtonian and quasi-steady
predictions. This is to be expected, as it corresponds to a slight
lag of the elastic response to the slowly changing flow. In Fig. 9b,
we show how the elastic response affects the actual motion of
the sphere by taking a non-vanishing g (we take pWi=0.25) and

then computing the total velocity (to first order in g), Uy = Uy + Wi
U;. Since Uy is nearly in phase with the f{t) it generally opposes Up,
and the amplified peaks in U; act to reduce the amplitude of the
valleys in Ur.

The opposite limit is an extremely fast oscillation, corresponding
to a large Deborah number. Here the elastic stress does not have
sufficient time to respond to the rapidly oscillating flow, and as a
consequence the oscillations in U; are strongly damped. Fig. 10a
shows U; compared to the Newtonian response for Wi=3 and
De = 5, and illustrates this damping. The effect this has on the total
sphere velocity is quite the opposite, since U; generally opposes
Uo. Fig. 10b shows Ur and demonstrates that the oscillations are
exaggerated as compared to a Newtonian fluid. This behavior can
be captured through a simple high-Deborah-number model, by
assuming that the elastic response is constant in time with the con-
stant determined by the steady flow response U7’ (Wi). This gives for
the total velocity U’ = —f(t) + pWiU; (Wi) (the superscript ‘HD’
stands for high Deborah). Therefore, the sphere descends with an
average velocity that it would have in a Newtonian fluid with vis-
cosity 1+ BWiUT" (Wi), but with oscillations that it would have in
a Newtonian fluid with viscosity 1. The high-Deborah-number
model is shown in Fig. 10b and it compares favorably with the
weak-coupling numerical solution.

The presence of viscoelasticity breaks the time-reversibility of
Stokes flow, and so an interesting question is how the introduction
of the oscillatory forcing changes the average velocity of the sphere
when it is in a viscoelastic fluid. To study this, we compute the
time-average of U; over a period, denoted (U; ). Fig. 11a shows
(Uy) for several fixed values of Wi as De is varied continuously.
For Wi < 3, (U;) depends weakly on De, with variations always less
than 5 %. For Wi = 4 and 5, the variations become somewhat stron-
ger and reach roughly 10 %. Note that in all cases, the largest vari-
ations occur for small De and that (U;) is essentially constant for
De > 0.5. The average total velocity is given by (Ur) = (Up) + fWi(U;.
) =—1+ BWi(U;). Thus the relative variations in (Ur) are smaller
than those in (U;) by a factor of approximately AWi. For
BWi=0.25, the variations in (Ur) are on the order of 1% for
Wi < 3, and up to 2.5 % for Wi < 5.

More notable are the differences in the amplitude of the oscilla-
tions, and this is depicted in Fig. 11b and c. As Fig. 11b shows, the
amplitude of oscillation in U; decreases with increasing De and
eventually behaves as De~! for all of the Weissenberg numbers
tested. The behavior of Ur is more complicated since it involves
the amplitude of oscillation of U; as well as the phase difference
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with Up. Fig. 11c shows that the amplitude of oscillation in Ur
monotonically increases with De, but for larger Wi the transition
becomes sharper and all curves appear to intersect at around
De = 0.14. As seen in the figure, the amplitude of oscillation in Uy
varies by up to a factor of 2.5 with De, making it a much more pro-
nounced effect than any observed variations in the average veloc-
ity. The high-Deborah model predicts the amplitude to be
enhanced by a factor of roughly Wi when compared to the New-
tonian case, and this is confirmed for all of the cases tested. Intui-
tively, these exaggerated oscillations can be attributed to the
intrinsic ‘springiness’ of the fluid - an effect that manifests in the
regime of large De.

The observation of exaggerated motion about the mean for
moderate to large Deborah numbers is in qualitative agreement
with preliminary experiments to be reported separately. The
experiments have also demonstrated little to no dependence of
the mean velocity on the frequency of oscillation, in qualitative
agreement with the findings here. This weak dependence is likely
due to the geometric symmetry of the sphere as well as the sym-
metry of the forcing oscillation, and we speculate that stronger
modifications of the mean speed might be observed if either of
these symmetries are broken. This merits further investigation.

6. Discussion

The primary result of this paper is the exploitation of the weak-
coupling limit for semi-analytical computations of viscoelastic
flows. We have applied the expansion method to the classical
problem of a sphere settling through a viscoelastic fluid, and have
recovered previously observed behavior as well as presented new
predictions for larger Wi. We have extended this classical problem
to include time-dependent forcing and shown how the body’s mo-
tion is modified, with the most notable effect being exaggerated
oscillations occurring for De order one and larger. Another result,
more specific to the settling sphere problem, is the formal series
solution which when truncated provides either a low-Wi or
short-time asymptotic series (see Appendix B). This generalizes
the low-Wi result of Leslie and Tanner for the Oldroyd-B model [5].

The advantages of the weak-coupling formulation are substan-
tial, in both computational efficiency and stability, and we expect
these advantages to transfer to other viscoelastic-fluid/structure
problems. A natural application is many-bodied problems which
may be made more computationally feasible by use of the weak-
coupling formulation. We point out that many applications neces-
sitate a spectrum of relaxation times to accurately model realistic
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fluids, and this is a trivial extension of the results presented here.
The only modification is that a set of polymeric stress fields
evolve with the background flow, each of which contributes to
the corrected body motion. Additionally, it is often advantageous
to use more complex constitutive models, such as the FENE-type
models, and the weak-coupling methodology can be applied to
these models as long as there is no diffusion of the polymeric
stress.

Several questions remain unanswered, even for the classical
problem of a settling sphere. While we have determined the evolu-
tion of 6% along the rear stagnation stream-line, a more complete
treatment would determine the strand-width scaling, say through
an analysis of higher spatial derivatives. We comment that our
measurements of the strand width, along with the asymptotic scal-
ing 6% ~ Wi', gives an estimate of V¥ that grows as Wi*® within
the strand. This rapid growth-rate may account for apparent singu-
lar behavior seen in many numerical simulations. Another interest-
ing question is whether a retarded or a negative wake occurs
behind the sphere within the weak-coupling limit for various con-
stitutive models (see [29,30] for example), and what effect this has
on the body’s motion. This would require the computation of the
return flow u;, which is not a completely trivial numerical
problem.

A promising future extension of this work is applying the weak-
coupling expansion to the direct calculation of FENE kinetic models
through the Smoluchowski equation. Often a closure approxima-
tion is used to reduce a kinetic model to a macroscopic model,
for example in the FENE-P and FENE-CR models, but it is difficult
to assess the effects of such approximations from a rigorous per-
spective and a direct computation of the true kinetic model is often
desirable (see for example [31-33]) . Consider a probability distri-
bution of the polymer configuration ¥(X,R,t), where X is the cen-
ter of mass of a polymer and R is the end-to-end vector. The
distribution ¥, along with a given, non-linear spring force law
F (R), together determine the macroscopic polymeric stress
through a Kirkwood formula (see for example [34]). The evolution
of ¥ is governed by the Smoluchowski equation

W +u-Vx? + Vg (RP) =0, (25)

where R = DR/Dt depends functionally on Vu, F(R), and . Just as
the weak-coupling expansion removes the X-dependence in the
Oldroyd-B partial differential equations, thereby reducing the sys-
tem to a set of independent ODEs, here it removes the X-depen-
dence in the Smoluchowski equation and reduces it to a set of
independent PDEs in R and t. This is still a demanding computa-
tional problem, as a three-dimensional PDE must be evolved at
every Lagrangian point, however removing the spatial-coupling
makes it more amenable to parallel computation as compared to
a formulation that is fully coupled.
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Appendix A. Exact solutions for Stokes flow past a sphere and
the polymeric stress on the sphere-surface

The solution to Egs. (9)-(11) is well-known Stokes flow past a
sphere (see for example [35] pp. 121). Here we use a stream-func-
tion y in spherical coordinates. The components of u, are denoted
by u, and u,.

v =L sin? 0(2r?

7\ —3r+rh), (A1)
_ 1 . 71 a1 -3
u = maglp =5 cosO(2 —3r—" +17°), (A.2)
_ - -3
Uy = rsme o = sm 0(4-3r1 —r3). (A3)

The non-vanishing components of Vg in spherical coordinates are

Ly = duy = % cosO(r2 —r ), (A4)
Ly = dyup = f% sin0(r=2 +r4), (A.5)
Liy = r Y (8o, — 1) = % sinf(r=2 —r), (A.6)
Loy = 1" (Qolty + Uy) = —% cosO(r? —r*), (A7)
Lss = 17" (u; + g cot0) = —% cosO(r2 —r ). (A.8)

Note that the basis vectors e, e,, e, associated with a given Lagrang-
ian point X(a,t) depend on time. When using the above equations in
the weak-coupling Lagrangian method, we transform to a fixed ba-
sis to avoid introducing new terms into Eq. (16).

On the sphere-surface all entries of Vug vanish except for Lyq -
= 0;U,. Solving Eq. (16) gives Fi; = F), =F33=1,F;; =0and F,; = -3/
2 tsing. Let the components of 6§ be denoted by . Evaluation of
Eq. (17) gives

011 = 1, (Ag)
O12 = —%Wisin@ (1 —e /Wy, (A.10)
0y =1 +§Wi2 sin® 6 (1 — (1 + t/Wi) e /"), (A11)
033 =1. (A12)

On the sphere surface, Eq. (20) gives @ = sin6 (1 — e~/

Appendix B. Series solution for the polymeric stress and the
velocity correction

Here we find formal series solutions to Egs. (17) and (19). Let-
ting # = t/Wi, Eq. (12) in the Eulerian frame is
965 + 65 =1 — Wi(u - V)o} + Wi(Vuee) + ahVul). (B.1)

This equation is analytic in the variables n and Wi. We expand in Wi,

ZWI (X

Consider the steady-state stress tensor X°(X) = lim,_..X.(X,#).
This gives the iterative relationship

b (X, 17, Wi) = (B.2)

X = —(Ug - V)IX + VLY + XX Vul, (B.3)
Xy =L (B.4)
The time dependence can be determined in closed form as
(X, t/Wi) = fu(t/Wi) Z(X), (B.5)
n-1 kK
. Wi t/Wi
fut/Wi)=1-¢ f/W’Z(/T). (B.6)

k=0
We leave the analysis of the radius of convergence of series (B.2) for
future work.

Now consider & defined in Eq. (20), and let

Pu(X, 1) = Vuo

(X, 1) (B.7)

This implies
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OX, 1, Wi) = S W B, (X, 1), (B8)
n=0

As before, let @) = lim,_..@,;(X,#). Since the flow is incompress-
ible, the trace of Vug, vanishes and therefore @, vanishes. At first or-
der, Eq. (B.3) shows that £* = Vup + Vul, and therefore &7 is a

(normalized) dissipation rate, @ = (4/9) Vug : (Vp + V).
Inserting the time-dependence gives

4 .
@ =g Vil : (Vg + Vug) (1 — e /™) (B.9)

Beginning at second order, terms of the form —(u, - V)X enter in
Eq. (B.3) and so analytic expressions become less convenient, how-
ever useful symmetry arguments can be made.

If n is even, the diagonal components of X, are for-aft symmet-
ric (i.e. symmetric with respect to 0 about 0 = 7t/2) and the off-diag-
onally components are for-aft antisymmetric. If n is odd, then the
diagonal is for-aft antisymmetric and the off-diagonal is for-aft
symmetric. This can be shown through induction on n in Eq.
(B.3). Additionally, Vug is for-aft antisymmetric on its diagonal
and symmetric on its off-diagonal. When the contraction is taken
in Eq. (B.7), @, is for-aft symmetric when n is odd and antisymmet-
ric when n is even. From Eq. (19), U; is related to & by the
integration

3 o0 K
Uy :71/1 r2 dr /0 sin6 do &(r,0). (B.10)
By the for-aft symmetry properties, the integral of &, vanishes
when n is even. Therefore, U; can be expressed as a summation of
the odd terms only

U] = ZWizn aont1 f2n+l (t/Wl)7 (Bll)
n=0
a :% / 2 dr / sind do & (r,0). (B.12)
J1 0

The n — 1 derivatives of f,, vanish at zero, and therefore f,(t/
Wi) > f+1(t/Wi) for t/Wi < 1. Thus the truncation of series (B.11),
in addition to providing a low-Wi asymptotic series, provides a
short-time asymptotic series. We note that linear short-time
asymptotics can be computed for the full non-linearly coupled
Stokes OB system, Eqgs. (1)-(4), without appealing to the weak-cou-
pling limit. This gives U =1 — gt + O(t?), which is in agreement with
the small ¢ linearization of series (B.11).

In order to evaluate the series (B.11), we compute X, iteratively
through Eq. (B.3) with the aide of a symbolic program, and then
evaluate Eqgs. (B.7) and (B.12). The first few coefficients are

a; =1, (B.13)
a; ~—1.03 x 1072, (B.14)
as ~ 139 x 1072, (B.15)
a; ~ —7.48 x 1072, (B.16)
a9~ 5.84x 107, (B.17)
a;; ~ —6.16 x 1072, (B.18)
a3 ~ 820 x 1073, (B.19)

The coefficient as agrees with that found by Leslie and Tanner, who
determined the first two corrections in a steady-state, low-Wi
expansion for the more general Oldroyd 6-constant model [5]. For
the special case of Oldroyd-B, the advantages of the present calcu-
lation are that it can be taken out to arbitrary order and it provides
dynamic information.

Inspection of the first few coefficients a,, suggests that the series
is alternating and that the coefficients do not decay rapidly, if at all.
This suggests the possibility of a finite radius of convergence and

singular behavior at a critical Weisssenberg number (and possibly
a critical time). In Secton 4.1 we showed that 6} is bounded in time
for any Wi, however it is possible that higher spatial derivatives be-
come singular. We leave this analysis for future-work, and simply
note here that we have seen no indications of singular behavior
arising from the weak-coupling numerical method.
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