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ii PREFACE

This book grew out of a one semester first course in Scientific Computing
for graduate students at New York University. It covers the basics that anyone
doing scientific computing needs to know. In my view, these are: some math-
ematics, the most basic algorithms, a bit about the workings of a computer,
and an idea how to build and use software for scientific computing applications.
Students who have taken Scientific Computing are prepared for more specialized
classes such as Computational Fluid Dynamics or Computational Statistics.

My original goal was to write a book that could be covered in an intensive
one semester class, but the present book is a little bigger than that. I made
many painful choices of material to leave out. Topics such as finite element
analysis, constrained optimization, algorithms for finding eigenvalues, etc. are
barely mentioned. In each case, I found myself unable to say enough about
the topic to be helpful without crowding out other topics that I think everyone
doing scientific computing should be familiar with.

The book requires a facility with the mathematics that is common to most
quantitative modeling: multivariate calculus, linear algebra, basics of differential
equations, and elementary probability. There is some review material here and
suggestions for reference books, but nothing that would substitute for classes in
the background material.

The student also will need to know or learn C or C++, and Matlab. In teach-
ing this class I routinely have some students who learn programming as they go.
The web site http://www.math.nyu.edu/faculty/goodman/ScientificComputing/
has materials to help the beginner get started with C/C++ or Matlab. It is
possible to do the programming in Fortran, but students are discouraged from
using a programming language, such as Java, Basic, or Matlab, not designed for
efficient large scale scientific computing.

The book does not ask the student to use a specific programming environ-
ment. Most students use a personal computer (laptop) running Linux, OSX,
or Windows. Many use the gnu C/C++ compiler while others use commercial
compilers from, say, Borland or Microsoft. I discourage using Microsoft compil-
ers because they are incompatible with the IEEE floating point standard. Most
students use the student edition of Matlab, which runs fine on any of the plat-
forms they are likely to use. There are shareware visualization tools that could
be used in place of Matlab, including gnuplot. I discourage students from using
Excel for graphics because it is designed for commercial rather than scientific
visualization.

Many of my views on scientific computing were formed during my association
with the remarkable group of faculty and graduate students at Serra House,
the numerical analysis group of the Computer Science Department of Stanford
University, in the early 1980’s. I mention in particularly Marsha Berger, Petter
Björstad, Bill Coughran, Gene Golub, Bill Gropp, Eric Grosse, Bob Higdon,
Randy LeVeque, Steve Nash, Joe Oliger, Michael Overton, Robert Schreiber,
Nick Trefethen, and Margaret Wright. Colleagues at the Courant Institute who
have influenced this book include Leslie Greengard, Gene Isaacson, Peter Lax,
Charlie Peskin, Luis Reyna, Mike Shelley, and Olof Widlund. I also acknowledge
the lovely book Numerical Methods by Germund Dahlquist and Åke Björk. From
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an organizational standpoint, this book has more in common with Numerical
Methods and Software by Forsythe and Moler.
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2 CHAPTER 1. INTRODUCTION

Most problem solving in science and engineering uses scientific computing.
A scientist might devise a system of differential equations to model a physical
system then use a computer to calculate their solutions. An engineer might
develop a formula to predict cost as a function of several variables then use a
computer to find the combination of variables that minimizes cost. A scientist
or engineer not only needs to know the principles that allow him or her to model
systems of interest, but also the computational methods needed to find out what
the models predict.

Scientific computing is interesting and challenging partly because it is mul-
tidisciplinary. Direct physical reasoning may lead to a computational method
that “works”, in the sense that it produces something like the right answer if
you wait long enough. But each discipline offers ways to make computations
dramatically better. A well engineered computer code can be more robust, more
likely to find an approximation to the answer in challenging cases. Mathemati-
cal analysis can quantify sources of error and find ways to reduce them. Clever
algorithms may be faster than a naive ”implementation” of a formula. The
performance of a piece of software refers to the amount of real time it takes
to execute a given sequence of computations. This often depends on details of
the software and hardware that the programmer should be aware of. There are
some tricks and habits of scientific programming that make it easier to avoid
and detect mistakes – principles of software engineering specifically for scientific
computing.

Modern software tools have a big impact on scientific computing practice.
Interactive window based debuggers make basic programming much easier than
it used to be. Specialized systems such as Matlab make certain computations,
particularly those involving linear algebra and basic data manipulation, quick
and convenient. Advanced scientific visualization systems make it possible to
understand, check, and present the results of a computation. Performance tools
help the developer find “bottlenecks” in a large code and suggest ways to im-
prove them.

This book weaves together all these aspects of scientific computing. Most
of the text is mathematics and algorithms, but each chapter has a Software
section that discusses some of the “softer” aspects of scientific computing. The
computational exercises ask the student not only to understand the mathematics
and algorithms, but to construct small pieces of high quality scientific software.
They nurture programming habits that are as important to overall success of
scientific computing projects as basic mathematics.

This book gives only the briefest introduction to most parts of computational
technique. Please do not think the things left out are not important. For
example, anyone solving ordinary differential equations must know the stability
theory of Dalhquist and others, which can be found in any serious book on
numerical solution of ordinary differential equations. There are many variants
of the FFT that are faster than the simple one in Chapter 7, more sophisticated
kinds of spline interpolation, etc. The same applies to things like software
engineering and scientific visualization.
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4 CHAPTER 2. SOURCES OF ERROR

In scientific computing, we never expect to get the exact answer. Inexactness
is practically the definition of scientific computing. Getting the exact answer,
generally with integers or rational numbers, is symbolic computing, an interesting
but distinct subject. Suppose we are trying to compute the number A. The
computer will produce an approximation, which we call Â. This Â may agree
with A to 16 decimal places, but the identity A = Â (almost) never is true in
the mathematical sense, if only because the computer does not have an exact
representation for A. For example, if we need to find x that satisfies the equation
x2 − 175 = 0, we might get 13 or 13.22876, depending on the computational
method, but

√
175 cannot be represented exactly as a floating point number.

Four primary sources of error are: (i) roundoff error, (ii) truncation error,
(iii) termination of iterations, and (iv) statistical error in Monte Carlo. We
will estimate the sizes of these errors, either a priori from what we know in
advance about the solution, or a posteriori from the computed (approximate)
solutions themselves. Software development requires distinguishing these errors
from those caused by outright bugs. In fact, the bug may not be that a formula
is wrong in a mathematical sense, but that an approximation is not accurate
enough. This chapter discuss floating point computer arithmetic and the IEEE
floating point standard. The others are treated later.

Scientific computing is shaped by the fact that nothing is exact. A mathe-
matical formula that would give the exact answer with exact inputs might not
be robust enough to give an approximate answer with (inevitably) approximate
inputs. Individual errors that were small at the source might combine and grow
in the steps of a long computation. Such a method is unstable. A problem is
ill conditioned if any computational method for it is unstable. Stability theory,
which is modeling and analysis of error growth, is an important part of scientific
computing.

2.1 Relative error, absolute error, and cancella-
tion

The absolute error in approximating A by Â is e = Â − A. The relative error,
which is ε = e/A, is usually more meaningful. These definitions may be restated
as

Â = A+ e (absolute error) , Â = A · (1 + ε) (relative error). (2.1)

For example, the absolute error in approximating A =
√

175 by Â = 13 is e =
13.22876 · · · − 13 ≈ .23. The corresponding relative error is e/A ≈ .23/13.2 ≈
.017 < 2%. Saying that the error is less than 2% is probably more informative
than saying that the error is less than .25 = 1/4.

Relative error is a dimensionless measure of error. In practical situations,
the desired A probably has units, such as seconds, meters, etc. If A is a length
measured in meters, knowing e ≈ .23 does not tell you whether e is large or
small. If the correct length is half a meter, then .23 is a large error. If the
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correct length in meters is 13.22876 · · ·, then Â is off by less than 2%. If we
switch to centimeters the error becomes 22.9. This may seem larger, but it still
is less than 2% of the exact length, 1, 322.876 · · · (in centimeters).

We often describe the accuracy of an approximation or measurement by
saying how many decimal digits are correct. For example, Avogadro’s number
(the number of molecules in one mole) with two digits of accuracy is N0 ≈
6.0 × 1023. We write 6.0 instead of just 6 to indicate that we believe the 0 is
correct, that the true Avogadro’s number is closer to 6×1023 than to 6.1×1023

or 5.9× 1023. With three digits the number is N0 ≈ 6.02× 1023. In an absolute
sense, the difference between N0 ≈ 6 × 1023 and N0 ≈ 6.02 × 1023 is 2 × 1021

molecules per mole, which may seem like a lot, but the relative error is about a
third of one percent.

While relative error is more useful than absolute error, it also is more prob-
lematic. Relative error can grow through cancellation. For example, suppose
we know A = B − C and we have evaluated B and C to three decimal digits
of accuracy. If the first two digits of B and C agree, then they cancel in the
subtraction, leaving only one correct digit in A. If, say, B ≈ B̂ = 2.38 × 105

and C ≈ Ĉ = 2.33×105, then A ≈ Â = 5×103. This Â is probably off by more
than 10% even though B̂ and Ĉ had relative error less than 1%. Catastrophic
cancellation is losing many digits in one subtraction. More subtle and more
common is an accumulation of less dramatic cancellations over a series of steps.

2.2 Computer arithmetic

Error from inexact computer floating point arithmetic is called roundoff error.
Roundoff error occurs in most floating point operations. Some computations in-
volve no other approximations. For example, solving systems of linear equations
using Gaussian elimination would give the exact answer in exact arithmetic (all
computations performed exactly). Even these computations can be unstable
and give wrong answers. Being exactly right in exact arithmetic does not imply
being approximately right in floating point arithmetic.

Floating point arithmetic on modern computers is governed by the IEEE
floating point standard. Following the standard, a floating point operation nor-
mally has relative error less than the machine precision, but of the same order
of magnitude. The machine precision is εmach ≈ 6 · 10−8 for single precision
(data type float in C), and εmach = 2−53 ≈ 10−16 for double precision (data
type double in C). Let A = B© C, with © standing for one of the arithmetic
operations: addition (A = B+C), subtraction, multiplication, or division. With
the same B and C, the computer will produce Â with relative error (2.1) that
normally satisfies |ε| ≤ εmach.

2.2.1 Introducing the standard

The IEEE floating point standard is a set of conventions for computer repre-
sentation and processing of floating point numbers. Modern computers follow
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these standards for the most part. The standard has four main goals:

1. To make floating point arithmetic as accurate as possible.

2. To produce sensible outcomes in exceptional situations.

3. To standardize floating point operations across computers.

4. To give the programmer control over exception handling.

The standard specifies exactly how numbers are represented in hardware.
The most basic unit of information that a computer stores is a bit, a variable
whose value may be either 0 or 1. Bits are organized into 32 bit or 64 bit words,
or bit strings. The number of 32 bit words is1 232 = 22 · 230 ≈ 4 × (103)3 = 4
billion. A typical computer should take well under a minute to list all of them.
A computer running at 1GHz in theory can perform one billion operations per
second, though that may not be achieved in practice. The number of 64 bit
words is about 1.6 · 1019, which is too many to be listed in a year. A 32 bit
floating point number is called single precision and has data type float in
C/++. A 64 bit floating point number is called double precision and has data
type double.

C/C++ also has data types int (for 32 bits) and longint (for 64 bits) that
represent integers. Integer, or fixed point arithmetic, is very simple. With 32
bit integers, the 232 ≈ 4 · 109 distinct words represent that many consecutive
integers, filling the range from about −2 · 109 to about 2 · 109. Addition, sub-
traction, and multiplication are done exactly whenever the answer is within this
range. The result is unpredictable when the answer is out of range (overflow).
Results of integer division are rounded down to the nearest integer below the
answer.

2.2.2 Representation of numbers, arithmetic operations

For scientific computing, integer arithmetic has two drawbacks. One is that
there is no representation for numbers that are not integers. Also important
is the small range of values. The number of dollars in the US national debt,
several trillion (1012), cannot be represented as a 32 bit integer but is easy to
approximate in 32 bit floating point.

The standard assigns a real number value to each single precision or double
precision bit string. On a calculator display, the expression:

−.2491E− 5

means −2.491 · 10−6. This expression consists of a sign bit, s = −, a mantissa,
m = 2491 and an exponent, e = −5. The expression s.mEe corresponds to the
number s · .m ·10e. Scientists like to put the first digit of the mantissa on the left
of the decimal point (−2.491 ·10−6) while calculators put the whole thing on the

1We use the approximation 210 = 1024 ≈ 103.
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right (−.2491 · 10−5). In base 2 (binary) arithmetic, the scientists’ convention
saves a bit, see below.

When the standard interprets a 32 bit word, the first bit is the sign bit, s = ±.
The next 8 bits form the exponent2, e, and the remaining 23 bits determine the
form the fraction, f . There are two possible signs, 28 = 256 possible values of
e (ranging from 0 to 255), and 223 ≈ 8 million possible fractions. Normally a
floating point number has the value

A = ±2e−127 · (1.f)2 , (2.2)

where f is base 2 and the notation (1.f)2 means that the expression 1.f is inter-
preted in base 2. Note that the mantissa is 1.f rather than just the fractional
part, f . Any number (except 0) can be normalized so that its base 2 mantissa
has the form 1.f . There is no need to store the “1.” explicitly, which saves one
bit.

For example, the number 2.752 · 103 = 2572 can be written

2752 = 211 + 29 + 27 + 26

= 211 ·
(
1 + 2−2 + 2−4 + 2−5

)
= 211 · (1 + (.01)2 + (.0001)2 + (.00001)2)
= 211 · (1.01011)2 .

Altogether, we have, using 11 = (1011)2,

2752 = +(1.01011)(1011)2
2 .

Thus, we have sign s = +. The exponent is e − 127 = 11 so that e = 138 =
(10001010)2. The fraction is f = (01011000000000000000000)2. The entire 32
bit string corresponding to 2.752 · 103 then is:

1︸︷︷︸
s

10001010︸ ︷︷ ︸
e

01011000000000000000000︸ ︷︷ ︸
f

.

For arithmetic operations, the standard mandates the rule: the exact answer,
correctly rounded. For example, suppose x, y, and z are computer variables of
type float, and the computer executes the statement x = y / z;. Let B and C
be the numbers that correspond to the 32 bit strings y and z using the standard
(2.2). A number that can be represented exactly in form (2.2) using 32 bits is a
(32 bit) floating point number. Clearly B and C are floating point numbers, but
the exact quotient, A = B/C, probably is not. Correct rounding means finding
the floating point number Â closest3 to A. The computer is supposed to set the
bit string x equal to the bit string representing Â. For exceptions to this rule,
see below.

2This a slight misnomer; the actual exponent is e− 127 (in single precision) exponent.
3Ties can happen. The accuracy of IEEE floating point arithmetic does not depend on

how ties are resolved.
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The exact answer correctly rounded rule implies that the only error in float-
ing point arithmetic comes from rounding the exact answer, A, to the nearest
floating point number, Â. This rounding error is determined by the distance
between floating point numbers. The greatest rounding is when A is half way
between neighboring floating point numbers, B− and B+. For a floating point
number of the form B− = (1.f−)2 · 2p, the next larger floating point number
is usually B+ = (1.f+)2 · 2p, where we get f+ from f− by adding the smallest
possible fraction, which is 2−23 for 23 bit single precision fractions. The relative
size of the gap between B− and B+ is, after some algebra,

γ =
B+ −B−

B−
=

(1.f+)2 − (1.f−)2

(1.f−)2
=

2−23

(1.f−)2
.

The largest γ is given by the smallest denominator, which is (1.0 · · · 0)2 = 1,
which gives γmax = 2−23. The largest rounding error is half the gap size, which
gives the single precision machine precision εmach = 2−24 stated above.

The 64 bit double precision floating point format allocates one bit for the
sign, 11 bits for the exponent, and the remaining 52 bits for the fraction. There-
fore its floating point precision is given by εmach = 2−53. Double precision arith-
metic gives roughly 16 decimal digits of accuracy instead of 7 for single preci-
sion. There are 211 possible exponents in double precision, ranging from 1023
to −1022. The largest double precision number is of the order of 21023 ≈ 10307.
The largest single precision number is about 2126 ≈ 1038. Not only is dou-
ble precision arithmetic more accurate than single precision, but the range of
numbers is far greater.

2.2.3 Exceptions

The extreme exponents, e = 0 and e = 255 in single precision (e = 0 and
e = 211−1 = 2047 in double), are not interpreted using (2.2). Instead, they have
carefully engineered interpretations that make the IEEE standard distinctive.
Numbers with e = 0 are denormalized and have the value

A = ±0.f · 2−126 (single precision), A = ±0.f · 2−1022 (double).

This feature is called gradual underflow. Underflow is the situation in which
the result of an operation is not zero but is closer to zero than any normalized
floating point number. In single precision, the smallest normalized positive
floating point number is A = (1.0 · · · 0)2 · 2−126. The nearest floating point
number in the positive direction is B+ = (1.0 · · · 01)2 · 2−126. The nearest
floating point number in the negative direction is the denormalized number
B− = (0.1 · · · 11)2 ·2−126. The gap between A and B+ and the gap between B−
and A both are (0.0 · · · 01)2 · 2−126 = 2−126−23 = 2−149. Without denormalized
numbers, A would have a gap of size 2−149 on the right and 2−126 (the space
between 0 and A) on the left: the left gap would be 223 ≈ 4 billion times larger
than the gap on the right. Gradual underflow also has the consequence that
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two floating point numbers are equal, x = y, if and only if subtracting one from
the other gives exactly zero.

The other extreme case, e = 255 in single precision, has two subcases, inf
(for infinity) if f = 0 and NaN (for Not a Number) if f 6= 0. The C++ statement
cout << x; produces4 “inf” and “NaN” respectively. An arithmetic operation
produces inf if the exact answer is larger than the largest floating point number,
as does 1/x if x = ±0. (Actually 1/ + 0 = +inf and 1/ − 0 = -inf). Invalid
operations such as sqrt(-1.), log(-4.), produce NaN. Any operation involving
a NaN produces another NaN. It is planned that f will contain information about
how or where in the program the NaN was created but this is not standardized
yet. Operations with inf are common sense: inf + finite = inf, inf/inf =
NaN, finite/inf = 0, inf + inf = inf, inf− inf = NaN.

A floating point arithmetic operation is an exception if the result is not a
normalized floating point number. The standard mandates that a hardware flag
(a binary bit of memory in the processor) should be set (given the value 1) when
an exception occurs. There should be a separate flag for the underflow, inf, and
NaN exceptions. The programmer should be able to specify what happens when
an exception flag is set. Either the program execution continues without inter-
ruption or an exception handler procedure is called. The programmer should
be able to write procedures that interface with the exception handler to find
out what happened and take appropriate action. Only the most advanced and
determined programmer will be able to do this. The rest of us have the worst
of both: the exception handler is called, which slows the program execution but
does nothing useful.

Many features of IEEE arithmetic are illustrated in Figure 2.1. Note that
e204 gives inf in single precision but not in double precision because the range of
values is larger in double precision. We see that inf and NaN work as promised.
The main rule, “exact answer correctly rounded”, explains why adding pairs
of floating point numbers is commutative: the mathematical sums are equal so
they round to the same floating point number. This does not force addition to
be associative, which it is not. Multiplication also is commutative but not asso-
ciative. The division operator gives integer or floating point division depending
on the types of the operands. Integer arithmetic truncates the result to the next
lower integer rather than rounding it to the nearest integer.

// A program that explores floating point arithmetic in the IEEE
// floating point standard. The source code is SourcesOfError.C.

#include <iostream.h>
#include <math.h>

int main() {

4Microsoft, in keeping with its pattern of maximizing incompatibility, gives something
different.
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float xs, ys, zs, ws; // Some single precision variables.
double yd; // A double precision variable.

xs = 204.; // Take an exponential that is out of range.
ys = exp(xs);
cout << "The single precision exponential of " << xs <<

" is " << ys << endl;
yd = exp ( xs ); // In double precision, it is in range.
cout << "The double precision exponential of " << xs <<

" is " << yd << endl;

zs = xs / ys; // Divide a normal number by infinity.
cout << xs << " divided by " << ys <<

" gives " << zs << endl;

ws = ys; // Divide infinity by infinity.
zs = ws / ys;
cout << ws << " divided by " << ys << " gives " << zs << endl;

zs = sqrt( -1.) ; // sqrt(-1) should be NaN.
cout << "sqrt(-1.) is " << zs << endl;

ws = xs + zs; // Add NaN to a normal number.
cout << xs << " + " << zs << " gives " << ws << endl;

xs = sin(1.); // Some generic single precision numbers.
ys = 100. *sin(2.);
zs = 10000.*sin(3.);
float xsPys, ysPxs, xsPzs, zsPxs; // xsPzx holds xs + zs, etc.
xsPys = xs + ys;
ysPxs = ys + xs; // Try commuting pairs.
xsPzs = xs + zs;
zsPxs = zs + xs;
if ( ( xsPys == ysPxs ) && ( xsPzs == zsPxs ) )

cout << "Adding " << xs << " " << ys << " and "<< zs <<
" in pairs commutes." << endl;

else
cout << "Adding " << xs << " " << ys << " and "<< zs <<

" in pairs does not commute." << endl;

float xsPysPzs, ysPzsPxs; // Test for associativity.
xsPysPzs = ( xs + ys ) + zs;
ysPzsPxs = ( ys + zs ) + xs;
if ( xsPysPzs == ysPzsPxs )
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cout << "Adding " << xs << " " << ys << " and "<< zs <<
" is associative." << endl;

else
cout << "Adding " << xs << " " << ys << " and "<< zs <<

" is not associative." << endl;

int xi, yi; // Some integer variables.
xi = 9; // Compute the quotient using integer
yi = 10; // and floating point arithmetic.
zs = xi/yi;
ws = ( (float) xi ) / ( (float) yi ); // Convert, then divide.
cout << "Integer division of " << xi << " by " << yi <<

" gives " << zs << ". " <<
" Floating point gives " << ws << endl;

return(0);

}

Figure 2.1: A program that illustrates some of the features of arithmetic using
the IEEE floating point standard.

2.3 Truncation error

Truncation error is the error in analytical approximations such as

f ′(x) ≈ f(x+ h)− f(x)
h

. (2.3)

This is not an exact formula, but it can be a useful approximation. We often
think of truncation error as arising from truncating a Taylor series. In this case,
the Taylor series formula,

f(x+ h) = f(x) + hf ′(x) +
1
2
h2f ′′(x) + · · · ,

is truncated by neglecting all the terms after the first two on the right. This
leaves the approximation

f(x+ h) ≈ f(x) + hf ′(x) ,

which can be rearranged to give (2.3). Truncation usually is the main source of
error in numerical integration or solution of differential equations. The analysis
of truncation error using Taylor series will occupy the next two chapters.
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h .3 .01 10−5 10−8 10−10

f̂ ′ 6.84 5.48 5.4366 5.436564 5.436562
etot 1.40 4.10 · 10−2 4.08 · 10−5 −5.76 · 10−8 −1.35 · 10−6

Figure 2.2: Estimates of f ′(x) using (2.3). The error is etot, which results from
truncation and roundoff error. Roundoff error is apparent only in the last two
columns.

As an example, we take f(x) = xex, x = 1, and several h values. The
truncation error is

etr =
f(x+ h)− f(x)

h
− f ′(x) .

In Chapter 3 we will see that (in exact arithmetic) etr roughly is proportional
to h for small h. The numbers in Figure 2.3 were computed in double precision
floating point arithmetic. The total error, etot, is a combination of truncation
and roundoff error. Roundoff error is significant for the smallest h values: for
h = 10−8 the error is no longer proportional to h; by h = 10−10 the error has
increased. Such small h values are rare in a practical calculation.

2.4 Iterative Methods

Suppose we want to find A by solving an equation. Often it is impossible to
find a formula for the solution. Instead, iterative methods construct a sequence
of approximate solutions, An, for n = 1, 2, . . . . Hopefully, the approximations
converge to the right answer: An → A as n→∞. In practice, we must stop the
iteration process for some large but finite n and accept An as the approximate
answer.

For example, suppose we have a y > 0 and we want to find x with xex = y.
There is not a formula for x, but we can write a program to carry out the
iteration: x1 = 1, xn+1 = ln(y)−ln(xn). The numbers xn are iterates. The limit
x = limn→∞ xn (if it exists), is a fixed point of the iteration, i.e. x = ln(y)−ln(x),
which implies xex = y. Figure 2.4 demonstrates the convergence of the iterates
in this case with y = 10. The initial guess is x1 = 1. After 20 iterations, we
have x20 ≈ 1.74. The error is e20 ≈ 2.3 · 10−5, which might be small enough,
depending on the application.

After 67 iterations the relative error is (x67 − x)/x ≈ 2.2 · 10−16/1.75 ≈
1.2 · 10−16, which is only slightly larger than double precision machine precision
εmach ≈ 1.1 · 10−16. This shows that supposedly approximate iterative methods
can be as accurate as direct methods that would be exact in exact arithmetic.
It would be a surprising fluke for even a direct method to achieve better than
machine precision because even they are subject to roundoff error.
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n 1 3 6 10 20 67
xn 1 1.46 1.80 1.751 1.74555 1.745528
en −.745 −.277 5.5 · 10−2 5.9 · 10−3 2.3 · 10−5 2.2 · 10−16

Figure 2.3: Iterates of xn+1 = ln(y)− ln(xn) illustrating convergence to a limit
that satisfies the equation xex = y. The error is en = xn − x. Here, y = 10.

n 10 100 104 106 106 106

Â .603 .518 .511 .5004 .4996 .4991
error .103 1.8 · 10−2 1.1 · 10−2 4.4 · 10−4 −4.0 · 10−4 −8.7 · 10−4

Figure 2.4: Statistical errors in a demonstration Monte Carlo computation.

2.5 Statistical error in Monte Carlo

Monte Carlo means using random numbers as a computational tool. For ex-
ample, suppose5 A = E[X], where X is a random variable with some known
distribution. Sampling X means using the computer random number generator
to create independent random variables X1, X2, . . ., each with the distribution
of X. The simple Monte Carlo method would be to generate n such samples
and calculate the sample mean:

A ≈ Â =
1
n

n∑
k=1

Xk .

The difference between Â and A is statistical error. A theorem in probability,
the law of large numbers, implies that Â→ A as n→∞. Monte Carlo statistical
errors typically are larger than roundoff or truncation errors. This makes Monte
Carlo a method of last resort, to be used only when other methods are not
practical.

Figure 2.5 illustrates the behavior of this Monte Carlo method for the ran-
dom variable X = 3

2U
2 with U uniformly distributed in the interval [0, 1]. The

exact answer is A = E[X] = 3
2E[U2] = .5. The value n = 106 is repeated to

illustrate the fact that statistical error is random (see Chapter 9 for a clarifica-
tion of this). The errors even with a million samples are much larger than those
in the right columns of Figures 2.3 and 2.4.

2.6 Error propagation and amplification

Errors can be amplified as they propagate through a computation. For example,
suppose the divided difference (2.3) is part of a long calculation:

. .
f1 = . . . ; \\ approx of f(x)

5E[X] is the expected value of X. Chapter 9 has some review of probability.
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f2 = . . . ; \\ approx of f(x+h)
. .

fPrimeHat = ( f2 - f1 ) / h ; \\ approx of derivative

It is unlikely that f1 = f̂(x) ≈ f(x) is exact. Many factors may contribute to
the errors e1 = f1− f(x) and e2 = f2− f(x+ h). There are three contributions
to the final error in f ′:

f̂ ′ − f ′ = er + etr + epr . (2.4)

One is the roundoff error in evaluating ( f2 - f1 ) / h in floating point

f̂ ′ =
f2 − f1

h
+ er . (2.5)

The truncation error in the difference quotient approximation is

f(x+ h)− f(x)
h

− f ′ = etr . (2.6)

The propagated error comes from using inexact values of f(x+ h) and f(x):

f2 − f1

h
− f(x+ h)− f(x)

h
=
e2 − e1

h
= epr . (2.7)

If we add (2.5), (2.6), and (2.7), and simplify, we get the formula (2.4).
A stage of a long calculation creates some errors and propagates errors from

earlier stages, possibly with amplification. In this example, the difference quo-
tient evaluation introduces truncation and roundoff error. Also, e1 and e2 rep-
resent errors generated at earlier stages when f(x) and f(x+h) were evaluated.
These errors, in turn, could have several sources, including inaccurate x values
and roundoff in the code evaluating f(x). According to (2.7), the difference
quotient propagates these and amplifies them by a factor of 1/h. A typical
value h = .01 could amplify incoming errors e1 and e2 by a factor of 100.

This increase in error by a large factor in one step is an example of catas-
trophic cancellation. If the numbers f(x) and f(xh) are nearly equal, the differ-
ence can have much less relative accuracy than the numbers themselves. More
common and more subtle is gradual error growth over a long sequence of compu-
tational steps. Exercise 2.12 has an example in which the error roughly doubles
at each stage. Starting from double precision roundoff level, the error after 30
steps is negligible but the error after 60 steps is larger than the answer.

An algorithm is unstable if its error mainly comes from amplification. This
numerical instability can be hard to discover by standard debugging techniques
that look for the first place something goes wrong, particularly if there is gradual
error growth.

Mathematical stability theory in scientific computing is the search for grad-
ual error growth in computational algorithms. It focuses on propagated error
only, ignoring the original sources of error. For example, Exercise 8 involves the
backward recurrence fk−1 = fk+1−fk. In a stability analysis, we would assume
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that the subtraction is performed exactly and that the error in fk−1 is entirely
due to errors in fk and fk+1. That is, if f̂k = fk + ek is the computer approxi-
mation, then the ek satisfy the mathematical relation ek−1 = ek+1 − ek, which
is the error propagation equation. We then would use the theory of recurrence
relations to see whether the ek can grow relative to the fk as k decreases. If
this error growth is possible, it will happen in practically any computation.

2.7 Condition number and ill conditioned prob-
lems

The condition number of a computational problem measures the sensitivity of
the answer to small changes in the data. If κ is the condition number, then
we expect error at least κ · εmach, regardless of the computational algorithm. A
problem with large condition number is ill conditioned. For example, if κ > 107,
then there probably is no algorithm that gives anything like the right answer in
single precision arithmetic. Condition numbers as large as 107 or 1016 can and
do occur in practice.

The definition of κ is simplest when the answer is a single number that
depends on a single scalar variable, x: A = A(x). A change in x causes a
change in A: ∆A = A(x + ∆x) − A(x). The condition number measures the
relative change in A caused by a small relative change of x:∣∣∣∣∆AA

∣∣∣∣ ≈ κ ∣∣∣∣∆xx
∣∣∣∣ . (2.8)

Any algorithm that computes A(x) must round x to the nearest floating point
number, x̂. This creates a relative error (assuming x is within the range of
normalized floating point numbers) of |∆x/x| = |(x̂− x)/x| ∼ εmach. If the rest
of the computation were done exactly, the computed answer would be Â(x) =
A(x̂) and the relative error would be (using (2.8))∣∣∣∣∣ Â(x)−A(x)

A(x)

∣∣∣∣∣ =
∣∣∣∣A(x̂)−A(x)

A(x)

∣∣∣∣ ≈ κ ∣∣∣∣∆xx
∣∣∣∣ ∼ κεmach . (2.9)

If A is a differentiable function of x with derivative A′(x), then, for small ∆x,
∆A ≈ A′(x)∆x. With a little algebra, this gives (2.8) with

κ =
∣∣∣∣A′(x) · x

A(x)

∣∣∣∣ . (2.10)

This analysis argues that any computational algorithm for an ill conditioned
problem must be unstable. Even if A(x) is evaluated exactly, relative errors
in the input of size ε are amplified by a factor of κ. The formulas (2.9) and
(2.10) represent an absolute lower bound for the accuracy of any computational
algorithm. An ill conditioned problem is not going to be solved accurately,
period.
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The formula (2.10) gives a dimensionless κ because it measures relative sen-
sitivity. The extra factor x/A(x) removes the units of x and A. Absolute
sensitivity is is just A′(x). Note that both sides of our starting point (2.8) are
dimensionless with dimensionless κ.

As an example consider the problem of evaluating A(x) = R sin(x). The
condition number formula (2.10) gives

κ(x) =
∣∣∣∣cos(x) · x

sin(x)

∣∣∣∣ .
Note that the problem remains well conditioned (κ is not large) as x→ 0, even
though A(x) is small when x is small. For extremely small x, the calculation
could suffer from underflow. But the condition number blows up as x → π,
because small relative changes in x lead to much larger relative changes in A.
This illustrates quirk of the condition number definition: typical values of A
have the order of magnitude R and we can evaluate A with error much smaller
than this, but certain individual values of A may not be computed to high
relative precision. In most applications that would not be a problem.

There is no perfect definition of condition number for problems with more
than one input or output. Suppose at first that the single output A(x) depends
on n inputs x = (x1, . . . , xn). Of course A may have different sensitivities to
different components of x. For example, ∆x1/x1 = 1% may change A much
more than ∆x2/x2 = 1%. If we view (2.8) as saying that |∆A/A| ≈ κε for
|∆x/x| = ε, a worst case multicomponent generalization could be

κ =
1
ε

max
∣∣∣∣∆AA

∣∣∣∣ , where
∣∣∣∣∆xkxk

∣∣∣∣ ≤ ε for all k.

We seek the worst case6 ∆x. For small ε we write

∆A ≈
n∑
k=1

∂A

∂xk
∆xk ,

then maximize subject to the constraint |∆xk| ≤ ε |xk| for all k. The maxi-
mum occurs at ∆xk = ±εxk, which (with some algebra) leads to one possible
generalization of (2.10):

κ =
n∑
k=1

∣∣∣∣ ∂A∂xk · xkA
∣∣∣∣ . (2.11)

This formula is useful if the inputs are known to similar relative accuracy, which
could happen even when the xk have different orders of magnitude or different
units. Condition number for multivariate problems is discussed using matrix
norms in Section 4.3. The analogue of (2.10) is (4.29).

6As with rounding, typical errors tend to be order of the worst case error.
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2.8 Software

Each chapter of this book has a Software section. Taken together they form
a mini course in software for scientific computing. The material ranges from
simple tips to longer discussions of bigger issues. The programming exercises
illustrate the chapter’s software principles as well as the mathematical material
from earlier sections.

Scientific computing projects fail because of bad software as often as they fail
because of bad algorithms. The principles of scientific software are less precise
than the mathematics of scientific computing, but are just as important. There
is a set of principles for scientific programming that goes beyond those for general
programming (modular design, commenting, etc.). Projects are handsomely
rewarded for extra efforts and care taken to do the software “right”.

2.8.1 Floating point numbers are (almost) never equal

Because of inexact floating point arithmetic, two numbers that should be equal
in exact arithmetic often are not equal in the computer. In general, an equality
test between two variables of type float or double is a mistake. A striking
illustration of this can happen with Intel processor chips, where variables of
type double are stored on the chip in 80 bit registers but in memory with the
standard 64. Moving a variable from the register to memory loses the extra bits.
Thus, a program can execute the instruction y1 = y2; and then do not reassign
either y1 or y2, but later ( y1 == y2 ) may evaluate to false because y1 but
not y2 was copied from register to memory.

A common mistake in this regard is to use floating point comparisons to
regulate a loop. Figure 2.5 illustrates this. In exact arithmetic this would give
the desired n iterations. Because of floating point arithmetic, after the nth

iteration, the variable t may be equal to tFinal but is much more likely to
be above or below due to roundoff error. It is impossible to predict which way
the roundoff error will go. We do not know whether this code will execute the
while loop body n or n + 1 times. Figure 2.6 uses exact integer arithmetic to
guarantee n executions of the for loop body.

2.8.2 Plotting

Careful visualization is a key step in understanding any data. Pictures can be
more informative than tables of numbers. Explore and understand the data
by plotting it in various ways. There are many ways to visualize data, simple
graphs, surface plots, contour and color plots, movies, etc. We discuss only
simple graphs here. Here are some things to keep in mind.

Learn your system and your options. Find out what visualization tools
are available or easy to get on your system. Choose a package designed for
scientific visualization, such as Matlab or Gnuplot, rather than one designed for
commercial presentations such as Excel. Learn the options such as line style
(dashes, thickness, color, symbols), labeling, etc.



18 CHAPTER 2. SOURCES OF ERROR

double tStart, tFinal, t, dt;
int n;
tStart = . . . ; // Some code that determines the start
tFinal = . . . ; // and ending time and the number of
n = . . . ; // equal size steps.
dt = ( tFinal - tStart ) / n; // The size of each step.
for ( t = tStart, t < tFinal, t+= dt )

{ . . . } // Body of the loop does not assign t.

Figure 2.5: A code fragment illustrating a pitfall of using a floating point variable
to regulate a while loop.

double tStart, tFinal, t, dt;
int n, , i;
tStart = . . . ; // Some code that determines the start
tFinal = . . . ; // and ending time and the number of
n = . . . ; // equal size steps.
dt = ( tFinal - tStart ) / n; // The size of each step.
for ( i = 0, i < n, i++ )

{ t = tStart + i*dt; // In case the value of t is needed
. . . } // in the loop body.

Figure 2.6: A code fragment using an integer variable to regulate the loop of
Figure 2.5.
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Figure 2.7: Plots of the first n Fibonacci numbers, linear scale on the left, log
scale on the right

Use scripting and other forms of automation. You will become frustrated
typing several commands each time you adjust one detail of the plot. Instead,
assemble the sequence of plot commands into a script.

Frame the plot. The Matlab plot function with values in the range from
1.2 to 1.22 will use a vertical scale from 0 to 2 and plot the data as a nearly
horizontal line, unless you tell it otherwise. Figure 2.7, presents the first 70
Fibonacci numbers. The Fibonacci numbers, fi, are defined by f0 = f1 = 1,
and fi+1 = fi + fi−1, for i ≥ 1. On the linear scale, f1 through f57 sit on the
horizontal axis, indistinguishable to plotting accuracy from zero. The log plot
shows how big each of the 70 numbers is. It also makes it clear that log(fi) is
nearly proportional to i, which implies (if log(fi) ≈ a + bi, then fi ≈ cdi) that
the fi are approximately exponential. If we are interested in the linear scale
plot, we can edit out the useless left part of the graph by plotting only from
n = 55 to n = 70.

Combine curves you want to compare into a single figure. Stacks of graphs
are as frustrating as arrays of numbers. You may have to scale different curves
differently to bring out the relationship they have to each other. If the curves
are supposed to have a certain slope, include a line with that slope. If a certain
x or y value is important, draw a horizontal or vertical line to mark it in the
figure. Use a variety of line styles to distinguish the curves. Exercise 9 illustrates
some of these points.

Make plots self–documenting. Figure 2.7 illustrates mechanisms in Matlab
for doing this. The horizontal and vertical axes are labeled with values and
text. In the third plot, the simpler command plot(f(iStart:n)) would have
labeled the horizontal axis from 1 to 15 (very misleading) instead of 55 to 70.
Parameters from the run, in this case just n, are embedded in the title.

The Matlab script that made the plots of Figure 2.7 is in Figure 2.8. The
only real parameters are n, the largest i value, and whether the plot is on a
linear or log scale. Both of those are recorded in the plot. Note the convenience
and clarity of not hard wiring n = 70. It would take just a moment to make
plots up to n = 100.

2.9 Further reading

The idea for starting a book on computing with a discussion of sources of error
comes from the book Numerical Methods and Software by David Kahaner, Cleve
Moler, and Steve Nash. Another interesting version is in Scientific Computing
by Michael Heath. My colleague, Michael Overton, has written a nice short
book IEEE Floating Point Arithmetic.
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% Matlab code to generate and plot Fibonacci numbers.

clear f % If you decrease the value of n, it still works.
n = 70; % The number of Fibonacci numbers to compute.
fi = 1; % Start with f0 = f1 = 1, as usual.
fim1 = 1;
f(1) = fi; % Record f(1) = f1.
for i = 2:n

fip1 = fi + fim1; % f(i+1) = f(i) + f(i-1) is the recurrence
fim1 = fi; % relation that defines . . .
fi = fip1; % the Fibonacci numbers.
f(i) = fi; % Record f(i) for plotting.

end

plot(f)
xlabel(’i’) % The horizontal and vertical axes are
ylabel(’f’) % i and f respectively.
topTitle = sprintf(’Fibonacci up to n = %d’,n);

% Put n into the title.
title(topTitle)
text(n/10, .9*f(n), ’Linear scale’);
grid % Make it easier to read values in the plot.
set ( gcf, ’PaperPosition’, [.25 2.5 3.2 2.5]);

% Print a tiny image of the plot for the book.
print -dps FibLinear_se

Figure 2.8: Matlab code to calculate and plot Fibonacci numbers.
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2.10 Exercises

1. It is common to think of π2 = 9.87 as approximately ten. What are the
absolute and relative errors in this approximation?

2. If x and y have type double, and ( ( x - y ) >= 10 ) evaluates to
TRUE, does that mean that y is not a good approximation to x in the sense
of relative error?

3. Show that fjk = sin(x0 + (j − k)π/3) satisfies the recurrence relation

fj,k+1 = fj,k − fj+1,k . (2.12)

We view this as a formula that computes the f values on level k+ 1 from
the f values on level k. Let f̂jk for k ≥ 0 be the floating point numbers
that come from implementing fj0 = sin(x0 + jπ/3) and (2.12) (for k > 0)

in double precision floating point. If
∣∣∣f̂jk − fjk∣∣∣ ≤ ε for all j, show that∣∣∣f̂j,k+1 − fj,k+1

∣∣∣ ≤ 2ε for all j. Thus, if the level k values are very accurate,
then the level k + 1 values still are pretty good.

Write a program (C/C++ or Matlab) that computes ek = f̂0k − f0k for
1 ≤ k ≤ 60 and x0 = 1. Note that f0n, a single number on level n,
depends on f0,n−1 and f1,n−1, two numbers on level n − 1, and so on
down to n numbers on level 0. Print the ek and see whether they grow
monotonically. Plot the ek on a linear scale and see that the numbers
seem to go bad suddenly at around k = 50. Plot the ek on a log scale.
For comparison, include a straight line that would represent the error if it
were exactly to double each time.

4. What are the possible values of k after the for loop is finished?

float x = 100*rand() + 2;
int n = 20, k = 0;
float dy = x/n;
for ( float y = 0; y < x; y += dy; ) {

k++; /* body does not change x, y, or dy */ }

5. We wish to evaluate the function f(x) for x values around 10−3. We
expect f to be about 105 and f ′ to be about 1010. Is the problem too ill
conditioned for single precision? For double precision?

6. Show that in the IEEE floating point standard with any number of fraction
bits, εmach essentially is the largest floating point number, ε, so that 1 + ε
gives 1 in floating point arithmetic. Whether this is exactly equivalent to
the definition in the text depends on how ties are broken in rounding, but
the difference between the two definitions is irrelevant (show this).

7. Starting with the declarations
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float x, y, z, w;
const float oneThird = 1/ (float) 3;
const float oneHalf = 1/ (float) 2;

// const means these never are reassigned

we do lots of arithmetic on the variables x, y, z, w. In each case below,
determine whether the two arithmetic expressions result in the same float-
ing point number (down to the last bit) as long as no NaN or inf values
or denormalized numbers are produced.

(a)

( x * y ) + ( z - w )
( z - w ) + ( y * x )

(b)

( x + y ) + z
x + ( y + z )

(c)

x * oneHalf + y * oneHalf
( x + y ) * oneHalf

(d) x * oneThird + y * oneThird
( x + y ) * oneThird

8. The fibonacci numbers, fk, are defined by f0 = 1, f1 = 1, and

fk+1 = fk + fk−1 (2.13)

for any integer k > 1. A small perturbation of them, the pib numbers
(“p” instead of “f” to indicate a perturbation), pk, are defined by p0 = 1,
p1 = 1, and

pk+1 = c · pk + pk−1

for any integer k > 1, where c = 1 +
√

3/100.

(a) Plot the fn and pn in one together on a log scale plot. On the plot,
mark 1/εmach for single and double precision arithmetic. This can
be useful in answering the questions below.

(b) Rewrite (2.13) to express fk−1 in terms of fk and fk+1. Use the
computed fn and fn−1 to recompute fk for k = n − 2, n − 3, . . . , 0.
Make a plot of the difference between the original f0 = 1 and the
recomputed f̂0 as a function of n. What n values result in no accuracy
for the recomputed f0? How do the results in single and double
precision differ?



2.10. EXERCISES 23

(c) Repeat b. for the pib numbers. Comment on the striking difference
in the way precision is lost in these two cases. Which is more typical?
Extra credit: predict the order of magnitude of the error in recom-
puting p0 using what you may know about recurrence relations and
what you should know about computer arithmetic.

9. The binomial coefficients, an,k, are defined by

an,k =
(
n
k

)
=

n!
k!(n− k)!

To compute the an,k, for a given n, start with an,0 = 1 and then use the
recurrence relation an,k+1 = n−k

k+1 an,k.

(a) For a range of n values, compute the an,k this way, noting the largest
an,k and the accuracy with which an,n = 1 is computed. Do this in
single and double precision. Why is roundoff not a problem here as
it was in problem 8? Find n values for which ân,n ≈ 1 in double
precision but not in single precision. How is this possible, given that
roundoff is not a problem?

(b) Use the algorithm of part (a) to compute

E(k) =
1
2n

n∑
k=0

kan,k =
n

2
. (2.14)

Write a program without any safeguards against overflow or zero di-
vide (this time only!)7. Show (both in single and double precision)
that the computed answer has high accuracy as long as the interme-
diate results are within the range of floating point numbers. As with
(a), explain how the computer gets an accurate, small, answer when
the intermediate numbers have such a wide range of values. Why is
cancellation not a problem? Note the advantage of a wider range of
values: we can compute E(k) for much larger n in double precision.
Print E(k) as computed by (2.14) and Mn = maxk an,k. For large n,
one should be inf and the other NaN. Why?

(c) For fairly large n, plot an,k/Mn as a function of k for a range of k
chosen to illuminate the interesting “bell shaped” behavior of the an,k
near k = n/2. Combine the curves for n = 10, n = 20, and n = 50 in
a single plot. Choose the three k ranges so that the curves are close
to each other. Choose different line styles for the three curves.

7One of the purposes of the IEEE floating point standard was to allow a program with
overflow or zero divide to run and print results.



24 CHAPTER 2. SOURCES OF ERROR



Chapter 3

Local Analysis

25



26 CHAPTER 3. LOCAL ANALYSIS

Among the most common computational tasks are differentiation, interpola-
tion, and integration. The simplest methods used for these operations are finite
difference approximations for derivatives, low order polynomial interpolation,
and panel method integration. Finite difference formulas, integration rules, and
interpolation form the core of most scientific computing projects that involve
solving differential or integral equations.

The finite difference formulas (3.14) range from simple low order approxima-
tions (3.14a) – (3.14c) to not terribly complicated high order methods such as
(3.14e). Figure 3.2 illustrates that high order methods can be far more accurate
than low order ones. This can make the difference between getting useful an-
swers and not in serious large scale applications. The methods here will enable
the reader to design professional quality highly accurate methods rather than
relying on simple but often inefficient low order ones.

Many methods for these problems involve a step size, h. For each h there is
an approximation1 Â(h) ≈ A. We say Â is consistent if Â(h) → A as h → 0.
For example, we might estimate A = f ′(x) using the finite difference formula
(3.14a): Â(h) = (f(x+ h)− f(x))/h. This is consistent, as limh→0 Â(h) is the
definition of f ′(x). The accuracy of the approximation depends on f , but the
order of accuracy does not.2 The approximation is first order accurate if the
error is nearly proportional to h for small enough h. It is second order if the
error goes like h2. When h is small, h2 � h, so approximations with a higher
order of accuracy can be much more accurate.

The design of difference formulas and integration rules is based on local anal-
ysis, approximations to a function f about a base point x. These approximations
consist of the first few terms of the Taylor series expansion of f about x. The
first order approximation is

f(x+ h) ≈ f(x) + hf ′(x) . (3.1)

The second order approximation is more complicated and more accurate:

f(x+ h) ≈ f(x) + f ′(x)h+
1
2
f ′′(x)h2 . (3.2)

Figure 3.1 illustrates the first and second order approximations. Truncation
error is the difference between f(x + h) and one of these approximations. For
example, the truncation error for the first order approximation is

f(x) + f ′(x)h− f(x+ h) .

To see how Taylor series are used, substitute the approximation (3.1) into
the finite difference formula (3.14a). We find

Â(h) ≈ f ′(x) = A . (3.3)

1In the notation of Chapter 2, Â is an estimate of the desired answer, A.
2The nominal order of accuracy may be achieved if f is smooth enough, a point that is

important in many applications.
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Figure 3.1: Plot of f(x) = xe2x together with Taylor series approximations of
order zero, one, and two. The base point is x = .6 and h ranges from −.3 to
.3. The symbols at the ends of the curves illustrate convergence at fixed h as the
order increases. Also, the higher order curves make closer contact with f(x) as
h→ 0.
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The more accurate Taylor approximation (3.2) allows us to estimate the error
in (3.14a). Substituting (3.2) into (3.14a) gives

Â(h) ≈ A+A1h , A1 =
1
2
f ′′(x) . (3.4)

This asymptotic error expansion is an estimate of Â − A for a given f and
h. It shows that the error is roughly proportional to h for small h. This
understanding of truncation error leads to more sophisticated computational
strategies. Richardson extrapolation combines Â(h) and Â(2h) to create higher
order estimates with much less error. Adaptive methods take a desired accuracy,
e, and attempt (without knowing A) to find an h with

∣∣∣Â(h)−A
∣∣∣ ≤ e. Error

expansions like (3.4) are the basis of many adaptive methods.
This chapter focuses on truncation error and mostly ignores roundoff. In

most practical computations that have truncation error, including numerical
solution of differential equations or integral equations, the truncation error is
much larger than roundoff. Referring to Figure 2.3, the practical range of h
from .01 to 10−5, the computed error is roughly 4.1 · h, as (3.4) suggests is
should be. This starts to break down for the impractically small h = 10−8.
More sophisticated high order approximations reach roundoff sooner, which can
be an issue in code testing, but rarely in large scale production runs.

3.1 Taylor series and asymptotic expansions

The Taylor series expansion of a function f about the point x is

f(x+ h) =
∞∑
n=0

1
n!
f (n)(x)hn . (3.5)

The notation f (n)(x) refers to the nth derivative of f evaluated at x. The partial
sum of order p is a degree p polynomial in h:

Fp(x, h) =
p∑

n=0

1
n!
f (n)(x)hn . (3.6)

The partial sum Fp is the Taylor approximation to f(x+ h) of order p. It is a
polynomial of order p in the variable h. Increasing p makes the approximation
more complicated and more accurate. The order p = 0 partial sum is simply
F0(x, h) = f(x). The first and second order approximations are (3.1) and (3.2)
respectively.

The Taylor series sum converges if the partial sums converge to f :

lim
p→∞

Fp(x, h) = f(x+ h) .

If there is a positive h0 so that the series converges whenever |h| < h0, then f is
analytic at x. A function probably is analytic at most points if there is a formula
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for it, or it is the solution of a differential equation. Figure 3.1 plots a function
f(x) = xe2x together with the Taylor approximations of order zero, one, and
two. The symbols at the ends of the curves illustrate the convergence of this
Taylor series when h = ±.3. When h = .3, the series converges monotonically:
F0 < F1 < F2 < · · · → f(x + h). When h = −.3, there are approximants on
both sides of the answer: F0 > F2 > f(x+ h) > F1.

It often is more useful to view the Taylor series as an asymptotic expansion
of f(x + h) valid as h → 0. We explain what this means by giving an analogy
between order of magnitude (and powers of ten) and order of approximation
(powers of h). If B1 and B2 are positive numbers, then B2 is an order of
magnitude smaller than B1 roughly if B2 ≤ .1 · B1. If E1(h) and E2(h) are
functions of h defined for |h| ≤ h0, and if there is a C so that |E2(h)| ≤
C · h · |E1(h)|, then we say that E2 is an order (or an order of approximation)
smaller than E1 as h → 0. This implies that for small enough h (|h| < 1/C)
E2(h) is smaller than E1(h). Reducing h further makes E2 much smaller than
E1. It is common to know that there is such a C without knowing what it is.
Then we do not know how small h has to be before the asymptotic relation
E2 � E1 starts to hold. Figure 3.2 and Figure 3.3 show that asymptotic
relations can hold for practical values of h.

An asymptotic expansion actually is a sequence of approximations, like the
Fp(x, h), with increasing order of accuracy. One can view decimal expansions
in this way, using order of magnitude instead of order of approximation. The
expansion

π = 3.141592 · · · = 3 + 1 · .1 + 4 · (.1)2 + 1 · (.1)3 + 5 · (.1)4 + · · · (3.7)

is a sequence of approximations

Â0 ≈ 3
Â1 ≈ 3 + 1 · .1
Â2 ≈ 3 + 1 · .1 + 4 · (.1)2

etc.

The approximation Âp is an order of magnitude more accurate than Âp−1. The
error Âp − π is of the order of magnitude (.1)p+1, which also is the order of
magnitude of the first neglected term. The error in Â3 = 3.141 is Â3 − π ≈
6 ·10−4. This error is approximately the same as the next term, 5 ·(.1)4. Adding
the next term gives an approximation whose error is an order of magnitude
smaller:

Â3 + 5 · (.1)4 − π = Â4 − π ≈ −9 · 10−5 .

The big O (O for order) notation expresses asymptotic size relations. If
B1(h) > 0 for h 6= 0, the notation, O(B1(h)) as h → 0 refers to any function
that is less than C ·B1(h) when |h| ≤ h0 (for some C). Thus, B2(h) = O(B1(h))
as h→ 0 if there is a C and an h0 > 0 so that B1(h) and B2(h) are defined and
and B2(h) ≤ C ·B1(h) for |h| ≤ h0. We also write F (h) = G(h) +O(B1(h)) to



30 CHAPTER 3. LOCAL ANALYSIS

mean that the function B2(h) = F (h) − G(h) satisfies B2(h) = O(B1(h)). For
example, it is correct to write tan(h) = O(|h|) as h → 0 because if |h| ≤ π/4,
tan(h) ≤ 2|h|. In this case the h0 is necessary because tan(h)→∞ as h→ π/2
(no C could work for h = π/2). Also, C = 1 does not work, even though
tan(h) ≈ h for small h, because tan(h) > h.

There are two common misuses of the big O notation, and we indulge in both
below. One is to forget that h could be negative and write O(h) for O(|h|). The
other is to say B = O(hp) to mean that B and hp are of the same order, that
is both B(h) = O(hp) and hp = O(B(h)). Technically, it is correct to say that
h3 = O(h2). But this can be misleading, as h3 actually is an order smaller than
h2. It would be like saying you ran “less than ten miles” when you actually had
run less than one mile, technically true but misleading.

We change notation when we view the Taylor series as an asymptotic expan-
sion, writing

f(x+ h) ∼ f(x) + f ′(x) · h+
1
2
f ′′(x)h2 + · · · . (3.8)

This means that the right side is an asymptotic series that may or may not
converge. It represents f(x+ h) in the sense that the partial sums Fp(x, h) are
a family of approximations of increasing order of accuracy:

|Fp(x, h)− f(x+ h)| = O(hp+1) . (3.9)

The asymptotic expansion (3.8) is much like the decimal expansion (3.7). The
term in (3.8)of orderO(h2) is 1

2f
′′(x)·h2. The term in (3.7) of order of magnitude

10−2 is 4 · (.1)−2. The error in a p term approximation is roughly the first
neglected term, since all other neglected terms are at least one order smaller.

Figure 3.1 illustrates the asymptotic nature of the Taylor approximations.
The lowest order approximation is F0(x, h) = f(x). The graph of F0 touches
the graph of f when h = 0 but otherwise has little in common. The graph of
F1(x, h) = f(x) + f ′(x)h not only touches the graph of f when h = 0, but the
curves are tangent. The graph of F2(x, h) not only is tangent, but has the same
curvature and is a better fit for small and not so small h.

3.1.1 Technical points

This subsection presents two technical points for mathematically minded read-
ers. The first proves the basic fact that underlies most of the analysis in this
chapter, that the Taylor series (3.5) is an asymptotic expansion. The second is
two examples of asymptotic expansions that converge to the wrong answer or
do not converge at all.

The asymptotic expansion property of Taylor series comes from the Taylor
series remainder theorem.3 If the derivatives of f up to order p + 1 exist and
are continuous in the interval [x, x+ h], then there is a ξ ∈ [x, x+ h] so that

f(x+ h)− Fp(x, h) =
1

(p+ 1)!
f (p+1)(ξ)hp+1 . (3.10)

3See any good calculus book for a derivation and proof.
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If we take
C =

1
(p+ 1)!

max
y∈[x,x+h]

∣∣∣f (p+1)(y)
∣∣∣ ,

then we find that
|Fp(x, h)− f(x+ h)| ≤ C · hp+1 .

This is the proof of (3.9), which states that the Taylor series is an asymptotic
expansion.

The approximation Fp(x, h) includes terms in the sum (3.8) up to order and
including order p. The first neglected term is the term of order p+ 1, which is

1
(p+1)f

(p+1)(x). This also is the difference Fp+1 − Fp. It differs from the right
side of (3.10) only in ξ being replaced by x. Since ξ ∈ [x, x+ h], this is a small
change if h is small. Therefore, the error in the Fp is nearly equal to the first
neglected term.

An asymptotic expansion can converge to the wrong answer or not converge
at all. We give an example of each. These are based on the fact that exponentials
beat polynomials in the sense that, for any n,

tne−t → 0 as t→∞ .

If we take t = a/ |x| (because x may be positive or negative), this implies that

1
xn
e−a/x → 0 as x→ 0 . (3.11)

Consider the function f(x) = e−1/|x|. This function is continuous at x = 0
if we define f(0) = 0. The derivative at zero is (using (3.11))

f ′(0) = lim
h→0

f(h)− f(0)
h

= lim
h→0

e−1/|h|

h
= 0 .

When x 6= 0, we calculate f ′(x) = ± 1
|x|2 e

−1/|x|. The first derivative is con-
tinuous at x = 0 because (3.11) implies that f ′(x) → 0 = f ′(0) as x → 0.
Continuing in his way, one can see that each of the higher derivatives vanishes
at x = 0 and is continuous. Therefore Fp(0, h) = 0 for any p, as f (n)(0) = 0
for all n. Thus clearly Fp(0, h) → 0 as p → ∞. Simply put, the Taylor series
converges to zero for any h because all the terms are zero. But this is the wrong
answer, since, f(h) = e1/h > 0 if h 6= 0. The Taylor series, while asymptotic,
converges to the wrong answer.

What goes wrong here is that although the derivatives f (p) happen to take
the value zero when x = 0, they are very large for x close to zero. The remainder
theorem (??trf*lo) implies that Fp(x, h)→ f(x+ h) as p→∞ if

Mp =
hp

p!
max

x≤ξ≤x+h

∣∣∣f (p)(ξ)
∣∣∣→ 0 as p→∞.

Taking x = 0 and any h > 0, function f(x) = e−1/|x| has Mp →∞ as p→∞.
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Here is an example of an asymptotic Taylor series that does not converge at
all. Consider

f(h) =
∫ 1/2

0

e−x/h
1

1− x
dx . (3.12)

The integrand goes to zero exponentially as h→ 0 for any fixed x. This suggests4

that most of the integral comes from values of x near zero and that we can
approximate the integral by approximating the integrand near x = 0. Therefore,
we write 1/(1− x) = 1 + x+ x2 + · · ·, which converges for all x in the range of
integration. Integrating separately gives

f(h) =
∫ 1/2

0

e−x/hdx+
∫ 1/2

0

e−x/hxdx+
∫ 1/2

0

e−x/hx2dx+ · · · .

We get a simple formula for the integral of the general term e−x/hxn if we change
the upper limit from 1/2 to ∞. For any fixed n, changing the upper limit of
integration makes an exponentially small change in the integral, see problem
(6). Therefore the nth term is (for any p > 0)∫ 1/2

0

e−x/hxndx =
∫ ∞

0

e−x/hxndx+O(hp)

= n!hn+1 +O(hp) .

Assembling these gives

f(h) ∼ h+ h2 + 2h3 + · · ·+ (n− 1)! · hn + · · · (3.13)

This is an asymptotic expansion because the partial sums are asymptotic ap-
proximations:∣∣h+ h2 + 2h3 + · · ·+ (p− 1)! · hp − f(h)

∣∣ = O(hp+1) .

But the infinite sum does not converge; for any h > 0 we have n! · hn+1 → ∞
as n→∞.

In these examples, the higher order approximations have smaller ranges of
validity. For (??), the three term approximation f(h) ≈ h+ h2 + 2h3 is reason-
ably accurate when h = .3 but the six term approximation is less accurate, and
the ten term ”approximation” is 4.06 for an answer less than .5. The ten term
approximation is very accurate when h = .01 but the fifty term ”approximation”
is astronomical.

3.2 Numerical Differentiation

One basic numerical task is estimating the derivative of a function from given
function values. Suppose we have a smooth function, f(x), of a single variable,

4A more precise version of this intuitive argument is in exercise 6.
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x. The problem is to combine several values of f to estimate f ′. These finite
difference approximations are useful in themselves, and because they underlie
methods for solving differential equations of all kinds. Several common finite
difference approximations are

f ′(x) ≈ f(x+ h)− f(x)
h

(a)

f ′(x) ≈ f(x)− f(x− h)
h

(b)

f ′(x) ≈ f(x+ h)− f(x− h)
2h

(c)

f ′(x) ≈ −f(x+ 2h) + 4f(x+ h)− 3f(x)
2h

(d)

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x+ 2h)
12h

(e)


(3.14)

The first three have simple geometric interpretations as the slope of lines con-
necting nearby points on the graph of f(x). A carefully drawn figure shows
that (3.14c) is more accurate than (3.14a). We give an analytical explanation
of this below. The last two are more technical. The formulas (3.14a), (3.14b),
and (3.14d) are one sided because they use values only on one side of x. The
formulas (3.14c) and (3.14e) are centered because they use points symmetrical
about x and with opposite weights.

The Taylor series expansion (3.8) allows us to calculate the accuracy of each
of these approximations. Let us start with the simplest (3.14a). Substituting
(3.8) into the right side of (3.14a) gives

f(x+ h)− f(x)
h

∼ f ′(x) + h
f ′′(x)

2
+ h2 f

′′′(x)
6

+ · · · . (3.15)

This may be written:

f(x+ h)− f(x)
h

= f ′(x) + Ea(h) ,

where
Ea(h) ∼ 1

2
f ′′(x) · h+

1
6
f ′′′(x) · h2 + · · · . (3.16)

In particular, this shows that Ea(h) = O(h), which means that the one sided
two point finite difference approximation is first order accurate. Moreover,

Ea(h) =
1
2
f ′′(x) · h+O(h2) , (3.17)

which is to say that, to leading order, the error is proportional to h and given
by 1

2f
′′(x).
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Taylor series analysis applied to the two point centered difference approxi-
mation (3.14c) leads to

f ′(x) =
f(x+ h)− f(x− h)

2h
+ Ec(h)

where

Ec(h) ∼ 1
6
f ′′′(x) · h2 +

1
24
f (5)(x) · h4 + · · · (3.18)

=
1
6
f ′′′(x) · h2 +O(h4)

This centered approximation is second order accurate, Ec(h) = O(h2). This is
one order more accurate than the one sided approximations (3.14a) and (3.14b).
Any centered approximation such as (3.14c) or (3.14e) must be at least second
order accurate because of the symmetry relation Â(−h) = Â(h). Since A =
f ′(x) is independent of h, this implies that E(h) = Â(h) − A is symmetric. If
E(h) = c · h+O(h2), then

E(−h) = −c · h+O(h2) = E(h) +O(h2) ≈ −E(h) for small h,

which contradicts E(−h) = E(h). The same kind of reasoning shows that the
O(h3) term in (3.18) must be zero.

A Taylor series analysis shows that the three point one sided formula (3.14d)
is second order accurate, while the four point centered approximation (3.14e) is
fourth order. Sections 3.3.1 and 3.5 give two ways to find the coefficients 4, −3,
and 8 achieve these higher orders of accuracy.

Figure 3.2 illustrates many of these features. The first is that the higher
order formulas (3.14c), (3.14d), and (3.14e) actually are more accurate when
h is small. For h = .5, the first order two point one sided difference formula
is more accurate than the second order accurate three point formula, but their
proper asymptotic ordering is established by h = .01. For h ≤ 10−5 with the
fourth order centered difference formula and h = 10−7 with the second order
formula, double precision roundoff error makes the results significantly different
from what they would be in exact arithmetic. The rows labeled Ê give the
leading order Taylor series estimate of the error. For the first order formula,
(3.17) shows that this is Ê(h) = 1

2f
′′(x) · h. For the second order centered

formula, (3.18) gives leading order error Êc(h) = 1
6f
′′′(x) · h2. For the three

point one sided formula, the coefficient of f ′′′(x)·h2 is 1
3 , twice the coefficient for

the second order centered formula. For the fourth order formula, the coefficient
of f (5)(x) · h4 is 1

30 . The table shows that Ê is a good predictor of E, if h is at
all small, until roundoff gets in the way. The smallest error5 in the table comes
from the fourth order formula and h = 10−5. It is impossible to have an error

5The error would have been −3 · 10−19 rather than −6 · 10−12, seven orders of magnitude
smaller, in exact arithmetic. The best answer comes despite some catastrophic cancellation,
but not completely catastrophic.
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h (3.14a) (3.14c) (3.14d) (3.14e)
.5 3.793849 0.339528 7.172794 0.543374
E 2.38e+00 -1.08e+00 5.75e+00 -8.75e-01
Ê 5.99e+00 -1.48e+00 -2.95e+00 -1.85e+00
.01 2.533839 1.359949 1.670135 1.415443
E 1.12e+00 -5.84e-02 2.52e-01 -2.87e-03
Ê 1.20e+00 -5.91e-02 -1.18e-01 -2.95e-03

5 · 10−3 1.999796 1.403583 1.465752 1.418128
E 5.81e-01 -1.47e-02 4.74e-02 -1.83e-04
Ê 5.99e-01 -1.48e-02 -2.95e-02 -1.85e-04

10−3 1.537561 1.417720 1.419642 1.418311
E 1.19e-01 -5.91e-04 1.33e-03 -2.95e-07
Ê 1.20e-01 -5.91e-04 -1.18e-03 -2.95e-07

10−5 1.418431 1.418311 1.418311 1.418311
E 1.20e-04 -5.95e-10 1.16e-09 -6.05e-12
Ê 1.20e-04 -5.91e-10 -1.18e-09 -2.95e-19

10−7 1.418312 1.418311 1.418311 1.418311
E 1.20e-06 2.76e-10 3.61e-09 8.31e-10
Ê 1.20e-06 -5.91e-14 -1.18e-13 −2.95 · 10−27

Figure 3.2: Estimates of f ′(x) with f(x) = sin(5x) and x = 1 using formulas
(3.14a), (3.14c), (3.14d), and (3.14e). Each group of three rows corresponds
to one h value. The top row gives the finite difference estimate off ′(x), the
middle row gives the error E(h), and the third row is Ê(h), the leading Taylor
series term in the error formula. All calculations were done in double precision
floating point arithmetic.

this small with a first or second order formula no matter what the step size.
Note that the error in the (3.14e) column increased when h was reduced from
10−5 to 10−7 because of roundoff.

A difference approximation may not achieve its expected order of accuracy
if the requisite derivatives are infinite or do not exist. As an example of this,
let f(x) be the function

f(x) =
{

0 if x ≤ 0
x2 if x ≥ 0 .

If we want f ′(0) , the formulas (1c) and (1e) are only first order accurate despite
their higher accuracy for smoother functions. This f has a mild singularity, a
discontinuity in its second derivative. Such a singularity is hard to spot on a
graph, but may have a drastic effect on the numerical analysis of the function.

We can use finite differences to approximate higher derivatives such as

f(x+ h)− 2f(x) + f(x− h)
h2

= f ′′(x) +
h2

12
f (4) +O(h4) ,
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and to estimate partial derivatives of functions depending on several variables,
such as

f(x+ h, y)− f(x− h, y)
2h

∼ ∂

∂x
f(x, y) +

h2

3
∂3f

∂x3
(x, y) + · · · .

3.2.1 Mixed partial derivatives

There are several new features that arise only when evaluating mixed partial
derivatives or sums of partial derivatives in different variables. For example,
suppose we want to evaluate6 fxy = ∂x∂yf(x, y). Rather than using the same h
for both7 x and y, we use step size ∆x for x and ∆y for y. The first order one
sided approximation for fy is

fy ≈
f(x, y + ∆y)− f

∆y
.

We might hope this, and

fy(x+ ∆x, y) ≈ f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)
∆y

,

are accurate enough so that

∂x
(
∂yf

)
≈ fy(x+ ∆x, y)− fy

∆x

≈

f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)
∆y

− f(x, y + ∆y)− f
∆y

∆x

fxy ≈ f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)− f(x, y + ∆y) + f

∆x∆y
,(3.19)

is consistent8.
To understand the error in (3.19), we need the Taylor series for functions of

more than one variable. The rigorous remainder theorem is more complicated,
but it suffices here to use all of the “first” neglected terms. The expansion is

f(x+ ∆x, y + ∆y) ∼ f + ∆xfx + ∆yfy

+
1
2

∆x2fxx + ∆x∆yfxy +
1
2

∆y2fyy

6We abbreviate formulas by denoting partial derivatives by subscripts, ∂xf = fx, etc., and
by leaving out the arguments if they are (x, y), so f(x+ ∆x, y)− f(x, y) = f(x+ ∆x, y)− f ≈
∆xfx(x, y) = ∆xfx.

7The expression f(x+h, y+h) does not even make sense if x and y have different physical
units.

8The same calculation shows that the right side of (3.19) is an approximation of ∂y (∂xf).
This is one proof that ∂y∂xf = ∂y∂xf .
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+
1
6

∆x3fxxx +
1
2

∆x2∆yfxxy +
1
2

∆x∆y2fxyy +
1
6

∆y3fyyy

+ · · ·

+
1
p!

p∑
k=0

(
p

k

)
∆xn−k∆yk∂p−kx ∂kyf + · · · .

If we keep just the terms on the top row on the right, the second order terms on
the second row are the first neglected terms, and (using the inequality ∆x∆y ≤
∆x2 + ∆y2):

f(x+ ∆x, y + ∆y) = f + ∆xfx + ∆yfy +O
(
∆x2 + ∆y2

)
.

Similarly,

f(x+ ∆x, y + ∆y)

= f + ∆xfx + ∆yfy +
1
2

∆x2fxx + ∆x∆yfxy +
1
2

∆y2fyy

+ O
(
∆x3 + ∆y3

)
.

Of course, the one variable Taylor series is

f(x+ ∆x, y) = f + ∆xfx +
1
2

∆x2fxx +O
(
∆x3

)
, etc.

Using all these, and some algebra, gives

f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)− f(x, y + ∆y) + f

∆x∆y

= fxy +O

(
∆x3 + ∆y3

∆x∆y

)
. (3.20)

This shows that the approximation (3.19) is first order, at least if ∆x is roughly
proportional to ∆y. The fuller Taylor expansion above gives a quantitative
estimate of the error:

f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)− f(x, y + ∆y) + f

∆x∆y
− fxy

≈ 1
2

(∆xfxxy + ∆yfxyy) . (3.21)

This formula suggests (and it is true) that in exact arithmetic we could let
∆x→ 0, with ∆y fixed but small, and still have a reasonable approximation to
fxy. The less detailed version (3.20) suggests that might no be so.

A partial differential equation may involve a differential operator that is a
sum of partial derivatives. One way to approximate a differential operator is
to approximate each of the terms separately. for example, the Laplace operator
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(or Laplacian), which is 4 = ∂2
x + ∂2

y in two dimensions, may be approximated
by

4f(x, y) = ∂2
xf + ∂2

yf

≈ f(x+ ∆x, y)− 2f + f(x−∆x, y)
∆x2

+
f(x, y + ∆y)− 2f + f(x, y − 2∆y)

∆y2
.

If ∆x = ∆y = h (x and y have the same units in the Laplace operator), then
this becomes

4f ≈ 1
h2

(
f(x+ h, y) + f(x− h, y) + f(x, y + h) + f(x, y − h)− 4f

)
. (3.22)

This is the standard five point approximation (seven points in three dimensions).
The leading error term is

h2

12
(
∂4
xf + ∂4

yf
)
. (3.23)

The simplest heat equation (or diffusion equation) is ∂tf = 1
2∂

2
xf . The space

variable, x, and the time variable, t have different units. We approximate the
differential operator using a first order forward difference approximation in time
and a second order centered approximation in space. This gives

∂tf −
1
2
∂2
xf ≈

f(x, t+ ∆t)− f
∆t

− f(x+ ∆x, t)− 2f + f(x−∆x, t)
2∆x2

. (3.24)

The leading order error is the sum of the leading errors from time differencing
( 1

2∆t∂2
t f) and space differencing (∆x2

24 ∂
4
xf), which is

1
2

∆t∂2
t f −

∆x2

24
∂4
xf . (3.25)

For many reasons, people often take ∆t proportional to ∆x2. In the simplest
case of ∆t = ∆x2, the leading error becomes

∆x2

(
1
2
∂2
t f −

1
24
∂4
xf

)
.

This shows that the overall approximation (3.24) is second order accurate if we
take the time step to be the square of the space step.

3.3 Error Expansions and Richardson Extrapo-
lation

The error expansions (3.16) and (3.18) above are instances of a common situ-
ation that we now describe more systematically and abstractly. We are trying
to compute A and there is an approximation with

Â(h)→ A as h→ 0 .
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The error is E(h) = Â(h)−A. A general asymptotic error expansion in powers
of h has the form

Â(h) ∼ A+ hp1A1 + hp2A2 + · · · , (3.26)

or, equivalently,
E(h) ∼ hp1A1 + hp2A2 + · · · .

As with Taylor series, the expression (3.26) does not imply that the series on
the right converges to Â(h). Instead, the asymptotic relation (3.26) means that,
as h→ 0,

Â(h)− (A+ hp1A1) = O(hp2) (a)

Â(h)− (A+ hp1A1 + hp2A2) = O(hp3) (b)

and so on.

 (3.27)

It goes without saying that 0 < p1 < p2 < · · ·. The statement (3.27a) says not
only that A + A1h

p1 is a good approximation to Â(h), but that the error has
the same order as the first neglected term, A2h

p2 . The statement (3.27b) says
that including the O(hp2) term improves the approximation to O(hp3), and so
on.

Many asymptotic error expansions arise from Taylor series manipulations.
For example, the two point one sided difference formula error expansion (3.15)
gives p1 = 1, A1 = 1

2f
′′(x), p2 = 2, A2 = 1

6f
′′′(x), etc. The error expansion

(3.18) for the two point centered difference formula implies that p1 = 2, p2 = 4,
A1 = 1

6f
′′′(x), and A2 = 1

24f
(5)(x). The three point one sided formula has

p1 = 2 because it is second order accurate, but p2 = 3 instead of p2 = 4. The
fourth order formula has p1 = 4 and p2 = 6.

It is possible that an approximation is pth order accurate in the big O sense,
|E(h)| ≤ C ·hp, without having an asymptotic error expansion of the form (3.26).
Figure 3.4 has an example showing that this can happen when the function
f(x) is not sufficiently smooth. Most of the extrapolation and debugging tricks
described here do not apply in those cases.

We often work with asymptotic error expansions for which we know the
powers pk but not the coefficients, Ak. For example, in finite difference approxi-
mations, the Ak depend on the function f but the pk do not. Two computational
techniques that use this information are are Richardson extrapolation and con-
vergence analysis. Richardson extrapolation combines Â(h) approximations for
several values of h to produce a new approximation that has greater order of
accuracy than Â(h). Convergence analysis is a debugging method that tests the
order of accuracy of numbers produced by a computer code.

3.3.1 Richardson extrapolation

Richardson extrapolation increases the order of accuracy of an approximation
provided that the approximation has an asymptotic error expansion of the form
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(3.26) with known pk. In its simplest form, we compute Â(h) and Â(2h) and
then form a linear combination that eliminates the leading error term. Note
that

Â(2h) = A+ (2h)p1 A1 + (2h)p2 A2 + · · ·
= A+ 2p1hp1A1 + 2p2hp2A2 + · · · ,

so

2p1Â(h)− Â(2h)
2p1 − 1

= A+
2p1 − 2p2

2p1 − 1
hp2A2 +

2p3 − 2p2

2p1 − 1
hp3A3 + · · · .

In other words, the extrapolated approximation

Â(1)(h) =
2p1Â(h)− Â(2h)

2p1 − 1
(3.28)

has order of accuracy p2 > p1. It also has an asymptotic error expansion,

Â(1)(h) = A+ hp2A
(1)
2 + hp3A

(1)
3 + · · · ,

where A(1)
2 =

2p1 − 2p2

2p1 − 1
A2, and so on.

Richardson extrapolation can be repeated to remove more asymptotic error
terms. For example,

Â(2)(h) =
2p2Â(1)(h)− Â(1)(2h)

2p2 − 1

has order p3. Since Â(1)(h) depends on Â(h) and Â(2h), Â(2)(h) depends on
Â(h), Â(2h), and Â(4h). It is not necessary to use powers of 2, but this is
natural in many applications. Richardson extrapolation will not work if the
underlying approximation, Â(h), has accuracy of order hp in the O(hp) sense
without at least one term of an asymptotic expansion.

Richardson extrapolation, allows us to derive higher order difference approx-
imations from low order ones. Start, for example, with the first order one sided
approximation to f ′(x) given by (3.14a). Taking p1 = 1 in (3.28) leads to the
second order approximation

f ′(x) ≈ 2 · f(x+ h)− f(x)
h

− f(x+ 2h)− f(x)
2h

=
−f(x+ 2h) + 4f(x+ h)− 3f(x)

2h
,

which is the second order three point one sided difference approximation (3.14d).
Starting with the second order centered approximation (3.14c) (with p1 = 2 and
p2 = 4) leads to the fourth order approximation (3.14e). The second order one
sided formula has p1 = 2 and p2 = 3. Applying Richardson extrapolation to it
gives a one sided formula that uses f(x+ 4h), f(x+ 2h), f(x+ h), and f(x) to



3.3. ERROR EXPANSIONS AND RICHARDSON EXTRAPOLATION 41

give a third order approximation. A better third order one sided approximation
would use f(x+ 3h) instead of f(x+ 4h). Section 3.5 explains how to do this.

Richardson extrapolation may also be applied to the output of a complex
code. Run it with step size h and 2h and apply (3.28) to the output. This
is sometimes applied to stochastic differential equations as an alternative to
making up high order schemes from scratch, which can be time consuming and
intricate.

3.3.2 Convergence analysis

We can test a code, and the algorithm it is based on, using ideas related to
Richardson extrapolation. A naive test would be to do runs with decreasing h
values to check whether Â(h)→ A as h→ 0. A convergence analysis based on
asymptotic error expansions can be better. For one thing, we might not know
A. Even if we run a test case where A is known, it is common that a code with
mistakes limps to convergence, but not as accurately or reliably as the correct
code would. If we bother to write a code that is more than first order accurate,
we should test that we are getting the order of accuracy we worked for.

There are two cases, the case where A is known and the case where A is not
known. While we probably would not write a code for a problem to which we
know the answer, it is often possible to apply a code to a problem with a known
answer for debugging. In fact, a code should be written modularly so that it is
easy to apply it to a range or problems broad enough to include some trivial
and at least one nontrivial problem9 with a known answer.

If A is known, we can run the code with step size h and 2h and, from the
resulting approximations, Â(h) and Â(2h), compute

E(h) ≈ A1h
p1 +A2h

p2 + · · · ,
E(2h) ≈ 2p1A1h

p1 + 2p2A2h
p2 + · · · .

For small h the first term is a good enough approximation so that the ratio
should be approximately the characteristic value

R(h) =
E(2h)
E(h)

≈ 2p1 . (3.29)

Figure 3.3 is a computational illustration of this phenomenon. As h → 0, the
ratios converge to the expected result 2p1 = 23 = 8. Figure 3.4 shows what may
happen when we apply this convergence analysis to an approximation that is
second order accurate in the big O sense without having an asymptotic error
expansion. The error gets very small but the error ratio does not have simple
behavior as in Figure 3.3.

9A trivial problem is one that is too simple to test the code fully. For example, if you
compute the derivative of a linear function, any of the formulae (3.14a) – (3.14e) would give
the exact answer. The fourth order approximation (3.14e) gives the exact answer for any
polynomial of degree less than five.



42 CHAPTER 3. LOCAL ANALYSIS

h Error: E(h) Ratio: E(h)/E(h/2)
.1 4.8756e-04 3.7339e+00
.05 1.3058e-04 6.4103e+00
.025 2.0370e-05 7.3018e+00
.0125 2.7898e-06 7.6717e+00

6.2500e-03 3.6364e-07 7.8407e+00
3.1250e-03 4.6379e-08 7.9215e+00
1.5625e-03 5.8547e-09 7.9611e+00
7.8125e-04 7.3542e-10 ———-

Figure 3.3: Convergence study for a third order accurate approximation. As
h→ 0, the ratio converges to 23 = 8. The h values in the left column decrease
by a factor of two from row to row.

h Error: E(h) Ratio: E(h)/E(h/2)
.1 1.9041e-02 2.4014e+00
.05 7.9289e-03 1.4958e+01
.025 5.3008e-04 -1.5112e+00
.0125 -3.5075e-04 3.0145e+00

6.2500e-03 -1.1635e-04 1.9880e+01
3.1250e-03 -5.8529e-06 -8.9173e-01
1.5625e-03 6.5635e-06 2.8250e+00
7.8125e-04 2.3233e-06 ———-

Figure 3.4: Convergence study for an approximation that is second order ac-
curate in the sense that |E(h)| = O(h2) but that has no asymptotic error ex-
pansion. The h values are the same as in Figure 3.3. The errors decrease in an
irregular fashion.

Convergence analysis can be applied even when A is not known. In this case
we need three approximations, Â(4h), Â(2h), and Â(h). Again assuming the
existence of an asymptotic error expansion (3.26), we get, for small h,

R′(h) =
Â(4h)− Â(2h)

Â(2h)− Â(h)
≈ 2p1 . (3.30)

3.4 Integration

Numerical integration means finding approximations for quantities such as

I =
∫ b

a

f(x)dx .



3.4. INTEGRATION 43

Rectangle Îk = hkf(xk) 1st order

Trapezoid Îk =
hk
2

(f(xk) + f(xk+1)) 2nd order

Midpoint Îk = hkf(xk+1/2) 2nd order

Simpson Îk ≈
hk
6
(
f(xk) + 4f(xk+1/2) + f(xk+1)

)
4th order

2 point GQ Îk =
hk
2
(
f(xk+1/2 − hkξ) + f(xk+1/2 + hkξ)

)
4th order

3 point GQ Îk =
hk
18
(
5f(xk+1/2 − hkη) + 8f(xk+1/2) + 5f(xk+1/2 + hkη)

)
6th order

Figure 3.5: Common panel integration rules. The last two are Gauss quadrature
(Gauss – Legendre to be precise) formulas. The definitions are ξ = 1

2
√

3
and

η = 1
2

√
3
5 .

We discuss only panel methods here, though there are other elegant methods.
In a panel method, the integration interval, [a, b], is divided into n subintervals,
or panels, Pk = [xk, xk+1], where a = x0 < x1 < · · · < xn = b. If the panel Pk
is small, we can get an accurate approximation to

Ik =
∫
Pk

f(x)dx =
∫ xk+1

xk

f(x)dx (3.31)

using a few evaluations of f inside Pk. Adding these approximations gives an
approximation to I:

Î =
n−1∑
k=0

Îk . (3.32)

Some of the more common panel integral approximations are given in Figure
3.5, where we write xk+1/2 = (xk+1 + xk)/2 for the midpoint of the panel and
hk = xk+1 − xk is the width. Note that xk is the left endpoint of Pk and the
right endpoint of Pk−1. In the trapezoid rule and Simpon’s rule, we need not
evaluate f(xk) twice.

For our error analysis, we assume that all the panels are the same size

h = ∆x = |Pk| = xk+1 − xk for all k.

Given this restriction, not every value of h is allowed because b− a = nh and n
is an integer. When we take h → 0, we will assume that h only takes allowed
values h = (b − a)/n. The local truncation error is the integration error over
one panel. The overall global error is the sum of the local truncation errors in
all the panels. The global error usually is one power of h larger than the local
truncation error. If the error per panel is O(hq), then the total error will be of
the order of hq multiplied by n, the number of panels. Since n = (b− a)/h, this
suggests that the global error will be of order hq · (b− a)/h = O(hq−1).
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For the local truncation error analysis, let P = [x∗, x∗ + h] be a generic
panel. The panel integration rule approximates the panel integral

IP =
∫
P

f(x)dx =
∫ x∗+h

x∗

f(x)dx

with the approximation, ÎP . For example, the rectangle rule (top row of Figure
3.5) has panel integration rule∫ x∗+h

x∗

f(x)dx ≈ ÎP (h) = hf(x∗) .

To estimate the difference between IP and ÎP (h), we expand f in a Taylor series
about x∗:

f(x) ∼ f(x∗) + f ′(x∗)(x− x∗) +
1
2
f ′′(x∗)(x− x∗)2 + · · · .

Integrating this term by term leads to

IP ∼
∫
P

f(x∗)dx+
∫
P

f ′(x∗)(x− x∗)dx+ · · ·

= f(x∗)h+
1
2
f ′(x∗)h2 +

1
6
f ′′(x∗)h3 + · · · .

The error in integration over this panel then is

E(P, h) = ÎP (h)− IP ∼ −
1
2
f ′(x∗)h2 − 1

6
f ′′(x∗)h3 − · · · . (3.33)

This shows that the local truncation error for the rectangle rule is O(h2) and
identifies the leading error coefficient.

E = Î − I

=
n−1∑
n=0

Îk − Ik

E ∼ −
n−1∑
k=0

1
2
f ′(xk)h2 −

n−1∑
k=0

1
6
f ′′(xk)h3 − · · · . (3.34)

We sum over k and use simple inequalities to get the order of magnitude of the
global error:

|E| <≈ 1
2

n−1∑
k=0

|f ′(xk)| · h2

≤ n · 1
2

max
a≤x≤b

|f ′(x)| · h2

=
b− a
h

O(h2)

= O(h) .
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This shows that the rectangle rule is first order accurate overall.
Looking at the global error in more detail leads to an asymptotic error

expansion. Applying the rectangle rule error bound to another function, g(x),
we have

n−1∑
k=0

g(xk)h =
∫ b

a

g(x)dx+O(h) .

Taking g(x) = f ′(x) gives

n−1∑
k=0

f ′(xk)h =
∫ b

a

f ′(x)dx+O(h) = f(b)− f(a) +O(h) .

From (3.34) we have

E ≈ −

(
n−1∑
k=0

f ′(xk)h

)
h

2

≈ −

(∫ b

a

f ′(x)dx

)
h

2

E ≈ −1
2

(f(b)− f(a))h . (3.35)

This gives the first term in the asymptotic error expansion. It shows that the
leading error not only is bounded by h, but roughly is proportional to h. It also
demonstrates the curious fact that if f is differentiable then the leading error
term is determined by the values of f at the endpoints and is independent of
the values of f between. This is not true if f has a discontinuity in the interval
[a, b].

To get the next term, apply (3.34) to the error itself, i.e.

n−1∑
k=0

f ′(xk)h =
∫ b

a

f ′(x)dx− h

2
(f ′(b)− f ′(a)) +O(h2)

= f(b)− f(a)− h

2
(f ′(b)− f ′(a)) +O(h2) .

In the same way, we find that

n−1∑
k=0

f ′′(xk)
h3

6
= (f ′(b)− f ′(a))

h2

6
+O(h3) .

Combining all these gives the first two terms in the error expansion:

E(h) ∼ −1
2

(f(b)− f(a))h+
1
12

(f ′(b)− f ′(a))h2 + · · · . (3.36)

It is clear that this procedure can be used to continue the expansion as far
as we want, but you would have to be very determined to compute, for example,
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n Computed Integral Error Error/h (E −A1h)/h2 (E −A1h−A2h
2)/h3

10 3.2271 -0.2546 -1.6973 0.2900 -0.7250
20 3.3528 -0.1289 -1.7191 0.2901 -0.3626
40 3.4168 -0.0649 -1.7300 0.2901 -0.1813
80 3.4492 -0.0325 -1.7354 0.2901 -0.0907

160 3.4654 -0.0163 -1.7381 0.2901 -0.0453

Figure 3.6: Computational experiment illustrating the asymptotic error expan-
sion for rectangle rule integration.

n Computed Integral Error Error/h (E −A1h)/h2

10 7.4398e-02 -3.1277e-02 -3.1277e-01 -4.2173e-01
20 9.1097e-02 -1.4578e-02 -2.9156e-01 -4.1926e-01
40 9.8844e-02 -6.8314e-03 -2.7326e-01 -1.0635e-01
80 1.0241e-01 -3.2605e-03 -2.6084e-01 7.8070e-01

160 1.0393e-01 -1.7446e-03 -2.7914e-01 -1.3670e+00
320 1.0482e-01 -8.5085e-04 -2.7227e-01 -5.3609e-01
640 1.0526e-01 -4.1805e-04 -2.6755e-01 1.9508e+00

1280 1.0546e-01 -2.1442e-04 -2.7446e-01 -4.9470e+00
2560 1.0557e-01 -1.0631e-04 -2.7214e-01 -3.9497e+00
5120 1.0562e-01 -5.2795e-05 -2.7031e-01 1.4700e+00

Figure 3.7: Computational experiment illustrating the breakdown of the asymp-
totic expansion for a function with a continuous first derivative but discontinu-
ous second derivative.

the coefficient of h4. An elegant and more systematic discussion of this error
expansion is carried out in the book of Dahlquist and Bjork. The resulting error
expansion is called the Euler McLaurin formula. The coefficients 1/2, 1/12, and
so on, are related to the Bernoulli numbers.

The error expansion (3.36) will not be valid if the integrand, f , has singular-
ities inside the domain of integration. Suppose, for example, that a = 0, b = 1,
u = 1/

√
2, and f(x) = 0 for x ≤ u and f(x) =

√
x− u for x ≥ u. In this case

the error expansion for the rectangle rule approximation to
∫ 1

0
f(x)dx has one

valid term only. This is illustrated in Figure 3.7. The “Error/h” column shows
that the first coefficient, A1, exists. Moreover, A1 is given by the formula (3.36).
The numbers in the last column do not tend to a limit. This shows that the
coefficient A2 does not exist. The error expansion does not exist beyond the
first term.

The analysis of the higher order integration methods listed in Figure 3.5 is
easier if we use a symmetric basic panel. From now on, the panel of length h
will have x∗ in the center, rather at the left end, that is

P = [x∗ − h/2, x∗ + h/2] .

If we now expand f(x) in a Taylor series about x∗ and integrate term by term,
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we get

∫
P

f(x)dx =
∫ x∗+

h
2

x=x∗−h2
f(x)dx ∼ f(x∗)h+

f ′′(x∗)
24

h3 +
f (4)(x∗)

384
h5 + · · · .

For the midpoint rule, this leads to a global error expansion in even powers of
h, E ≈ A1h

2 +A2h
4 + · · ·, with A1 = (f ′(b)− f ′(a))/24. Each of the remaining

panel methods is symmetric about the center of the panel. This implies that
each of them has local truncation error containing only odd powers of h and
global error containing only even powers of h.

The leading power of h in the error expansion is the order of accuracy. It can
be determined by a simple observation: the order of the local truncation error is
one more than the degree of the lowest monomial that is not integrated exactly
by the panel method. For example, the rectangle rule integrates f(x) = x0 ≡ 1
exactly but gets f(x) = x1 ≡ x wrong. The order of the lowest monomial not
integrated exactly is 1 so the local truncation error is O(h2) and the global
error is O(h). The midpoint rule integrates x0 and x1 correctly but gets x2

wrong. The order of the lowest monomial not integrated exactly is 2 so the
local truncation error is O(h3) and the global error is O(h2). If the generic
panel has x∗ in the center, then∫

P

(x− x∗)n dx

is always done exactly if n is odd. This is because both the exact integral and
its panel method approximation are zero by symmetry.

To understand why this rule works, think of the Taylor expansion of f(x)
about the midpoint, x∗. This approximates f by a sum of monomials. Applying
the panel integral approximation to f is the same as applying the approxima-
tion to each monomial and summing the results. Moreover, the integral of a
monomial (x− x∗)n over P is proportional to hn+1, as is the panel method ap-
proximation to it, regardless of whether the panel method is exact or not. The
first monomial that is not integrated exactly contributes something proportional
to hn+1 to the error.

Using this rule it is easy to determine the accuracy of the approximations in
Figure 3.5. The trapezoid rule integrates constants and linear functions exactly,
but it gets quadratics wrong. This makes the local truncation error third order
and the global error second order. The Simpson’s rule coefficients 1/6 and 2/3
are designed exactly to integrate constants and quadratics exactly, which they
do. Simpson’s rule integrates cubics exactly (by symmetry) but gets quartics
wrong. This gives Simpson’s rule fourth order global accuracy. The two point
Gauss quadrature also does constants and quadratics correctly but quartics
wrong (check this!). The three point Gauss quadrature rule does constants,
quadratics, and quartics correctly but gets (x − x∗)6 wrong. That makes it
sixth order accurate.
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3.5 The method of undetermined coefficients

The method of undetermined coefficients is a general way to find an approxima-
tion formula of a desired type. Suppose we want to estimate some A in terms
of given data g1(h), g2(h), . . .. The method is to assume a linear estimation
formula of the form

Â(h) = a1(h)g1(h) + a2(h)g2(h) + · · · , (3.37)

then determine the unknown coefficients ak(h) by matching Taylor series up to
the highest possible order. The coefficients often take the form of a constant
times some power of h: ak(h) = akh

pk . The algebra is simpler if we guess or
figure out the powers first. The estimator is consistent if Â(h) − A → 0 as
h → ∞. Generally (but not always), being consistent is the same as being at
least first order accurate. At the end of our calculations, we may discover that
there is no consistent estimator of the desired type.

We illustrate the method in a simple example: estimate f ′(x) from g1 = f(x)
and g2 = f(x + h). As above, we will leave out the argument x whenever
possible and write f for f(x), f ′ for f ′(x), etc. The estimator is (dropping the
x argument)

f ′ ≈ Â = a1(h)f + a2(h)f(x+ h) .

Now expand in Taylor series:

f(x+ h) = f + f ′h+
1
2
f ′′ + · · · .

The estimator is

Â = a1(h)f + a2(h)f + a2(h)f ′h+ a2(h)f ′′h2 + · · · . (3.38)

Looking at the right hand side, we see various coefficients, f , f ′, and so on.
Since the relation is supposed to work whatever the values of f , f ′, etc. may be,
we choose a1 and a2 so that the coefficient of f is zero. From (3.38), this leads
to

0 = a1(h) + a2(h) .

To make the estimator consistent, we try

1 = a2(h)h .

These two conditions lead to

a2 =
1
h
, a1 =

−1
h

, (3.39)

so the estimate is

f ′(x) ≈ Â =
−1
h
f(x) +

1
h
f(x+ h)

=
f(x+ h)− f(x)

h
.
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This is the first order one sided difference approximation we saw earlier. Plug-
ging the values (3.39) into (3.38) shows that the estimator satisfies Â = f ′ +
O(h), which is the first order accuracy we found before.

A more complicated problem is to estimate f ′(x) from f(x), f(x−h), f(x+
h), f(x+2h). This is not centered nor is it completely one sided, but it is biased
to one side. It has proven useful in high accuracy wave simulations. This time
we guess that all the coefficients have a power 1/h, as all the estimates of f ′ so
far have this property. Thus assume the form:

f ′ ≈ Â =
1
h

(a−1f(x− h) + a0f + a1f(x+ h) + a2f(x+ 2h)) .

The Taylor series expansions are

f(x− h) = f − f ′h + f ′′

2 h
2 − f ′′′

6 h3 + f(4)

24 h
4 + · · ·

f(x+ h) = f + f ′h + f ′′

2 h
2 + f ′′′

6 h3 + f(4)

24 h
4 + · · ·

f(x+ 2h) = f + 2f ′h + 2f ′′h2 + 4f ′′′

3 h3 + 2f(4)

3 h4 + · · ·

Equating powers of h turns out to be the same as equating the coefficients of f ,
f ′, etc. from both sides:

f , O(h−1) : 0 = a−1 + a0 + a1 + a2

f ′ , O(h0) : 1 = −a−1 + a1 + 2a2

f ′′ , O(h1) : 0 = 1
2a−1 + 1

2a1 + 2a2

f ′′′ , O(h2) : 0 = −1
6 a−1 + 1

6a1 + 4
3a2

(3.40)

We could compute the O(h3) equation but already we have four equations for
the four unknown coefficients. If we would use the O(h3) equation in place of the
O(h2) equation, we loose an order of accuracy in the resulting approximation.

These are a system of 4 linear equations in the four unknowns a−1 through
a2, which we solve in an ad hoc way. Notice that the combination b = −a−1 +a1

appears in the second and fourth equations. If we substitute b, these equations
are

1 = b+ 2a2 ,

0 =
1
6
b+

4
3
a2 .

which implies that b = −8a2 and then that a2 = − 1
6 and b = 4

3 . Then, since
−4a2 = 2

3 , the third equation gives a−1 + a1 = 2
3 . Since b = 4

3 is known, we get
two equations for a−1 and a1:

a1 − a−1 =
4
3
,

a1 + a−1 =
2
3
.
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The solution is a1 = 1 and a−1 = −1
3 . With these, the first equation leads to

a0 = −1
2 . Finally, our approximation is

f ′(x) =
1
h

(
−1
3
f(x− h)− 1

2
f(x) + f(x+ h)− 1

6
f(x+ 2h)

)
+O(h3) .

Note that the first step in this derivation was to approximate f by its Taylor
approximation of order 3, which would be exact if f were a polynomial of order
3. The derivation has the effect of making Â exact on polynomials of degree 3
or less. The four equations (3.40) arise from asking Â to be exact on constants,
linear functions, quadratics, and cubics. We illustrate this approach with the
problem of estimating f ′′(x) as accurately as possible from f(x), f(x+h), f ′(x)
and f ′(x+ h). The estimator we seek has the form

f ′′ ≈ Â = af + bf(x+ h) + cf ′ + df ′(x+ h) .

We can determine the four unknown coefficients a, b, c, and d by requiring the
approximation to be exact on constants, linears, quadratics, and cubics. It does
not matter what x value we use, so let us take x = 0. This gives, respectively,
the four equations:

0 = a+ b (constants, f = 1) ,
0 = bh+ c+ d (linears, f = x) ,

1 = b
h2

2
+ dh (quadratics, f = x2/2) ,

0 = b
h3

6
+ d

h2

2
(cubics, f = x3/6) .

Solving these gives

a =
−6
h2

, b =
6
h2

, c =
−4
h

, d =
−2
h

.

and the approximation

f ′′(x) ≈ 6
h2

(
−f(x) + f(x+ h)

)
− 2
h

(
2f ′(x) + f ′(x+ h)

)
.

A Taylor series calculation shows that this is second order accurate.

3.6 Adaptive parameter estimation

In most real computations, the computational strategy is not fixed in advance,
but is adjusted adaptively as the computation proceeds. If we are using one of
the approximations (̂A)(h), we might not know an appropriate h when we write
the program, and the user might not have the time or expertise to choose h for
each application. For example, exercise 12 involves hundreds or thousands of
numerical integrations. It is out of the question for the user to experiment man-
ually to find a good h for each one. We need instead a systematic computational
procedure for finding an appropriate step size.
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Suppose we are computing something about the function f , a derivative or
an integral. We want a program that takes f , and a desired level of accuracy10,
e, and returns Â with

∣∣∣Â−A∣∣∣ ≤ e with a high degree of confidence. We have

Â(h) that we can evaluate for any h, and we want an automatic way to choose
h so that

∣∣∣Â(h)−A
∣∣∣ ≤ e. A natural suggestion would be to keep reducing h

until the answer stops changing. We seek a quantitative version of this.
Asymptotic error expansions of Section 3.3 give one approach. For example,

if Â(h) is a second order accurate approximation to an unknown A and h is
small enough we can estimate the error using the leading term:

E(h) = Â(h)−A ≈ A1h
2 .

We can estimate A1h
2 from Â(h) and Â(2h) using the ideas that give (3.28).

The result is the Richardson extrapolation error estimate

E(h) ≈ A1h
2 ≈ 1

3
(
Â(2h)− Â(h)

)
. (3.41)

The adaptive strategy would be to keep reducing h by a factor of two until the
estimated error (3.41) is within the tolerance11:

for (
evaluate Â(2h) and Â(h) ; // initialize∣∣∣Â(2h)− Â(h)

∣∣∣ ≥ 3ε ; // stopping test

{ h = h/2; evaluate Â(h) } ; // increment
) ;

(3.42)

A natural strategy might be to stop when
∣∣∣Â(2h)− Â(h)

∣∣∣ ≤ e. Our quantitative
asymptotic error analysis shows that this strategy is off by a factor of 3. We
achieve accuracy roughly e when we stop at

∣∣∣Â(2h)− Â(h)
∣∣∣ ≤ 3e. This is

because Â(h) is more accurate than Â(2h).
We can base reasonably reliable software on refinements of the basic strategy

(3.42). Some drawbacks of (3.42) are that

1. It needs an initial guess, a starting value of h.

2. It may be an infinite loop.

3. It might terminate early if the initial h is outside the asymptotic range
where error expansions are accurate.

4. If Â(h) does not have an asymptotic error expansion, the program will
not detect this.

10This is absolute error. We also could seek a bound on relative error:
∣∣Â−A∣∣ / |A| ≤ ε.

11In the increment part we need not evaluate Â(2h) because this is what we called Â(h)
before we replaced h with h/2.
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5. It does not return the best possible estimate of A.

A plausible initial guess, h0, will depend on the scales (length or time, etc.)
of the problem. For example 10−10 meters is natural for a problem in atomic
physics but not in airplane design. The programmer or the user should supply
h0 based on understanding of the problem. The programmer can take h0 = 1
if he or she thinks the user will use natural units for the problem (Ångströms
for atomic physics, meters for airplanes). It might happen that you need h =
h0/1000 to satisfy (3.42), but you should give up if h = h0 ·εmach. For integration
we need an initial n = (b − a)/h. It might be reasonable to take n0 = 10, so
that h0 = (b− a)/10.

Point 2 says that we need some criterion for giving up. As discussed more in
Section 3.7 we should anticipate the ways our software can fail and report failure.
When to give up should depend on the problem. For numerical differentiation,
we can stop when roundoff or propagated error from evaluating f (see Chapter
2, Section?) creates an error as big as the answer. For integration limiting the
number of refinements to 20, would limit the number of panels to n0 · 220 ≈
n0 · 106. The revised program might look like

h = h0;
hMin = 10*macheps*h0; //macheps = machine precision

while
(∣∣∣Â(2h)− Â(h)

∣∣∣ ≥ 3e
)

if ( h <= hMin ) {
Print an error message.
errorCode = HMIN REACHED; return -1;}

h = h/2 ;
return A(h) ;

(3.43)

h = h0;
hMin = 10*macheps*h0; //macheps = machine precision
for (

evaluate Â(2h) and Â(h) ; // initialize∣∣∣Â(2h)− Â(h)
∣∣∣ ≥ 3ε ; // stopping test

{ h = h/2; evaluate Â(h) } ; // increment
) {

if ( h <= hMin ) {
Print an error message;
errorCode = HMIN REACHED;
return -1;}
}

(3.44)

We cannot have perfect protection from point 3, though premature termi-
nation is unlikely if h0 is sensible and e (the desired accuracy) is small enough.
A more cautious programmer might do more convergence analysis, for example
asking that the Â(4h) and Â(2h) error estimate be roughly 2p times larger than
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the Â(2h) and Â(h) estimate. There might be irregularities in f(x), possibly
jumps in some derivative, that prevent the asymptotic error analysis but do not
prevent convergence. It would be worthwhile returning an error flag in this case,
as some commercial numerical software packages do.

Part of the risk in point 4 comes from the possibility that Â(h) converges
more slowly than the hoped for order of accuracy suggests. For example if
Â(h) ≈ A+A1h

1/2, then the error is three times that suggested by (3.42). The
extra convergence analysis suggested above might catch this.

Point 5 is part of a paradox afflicting many error estimation strategies. We
estimate the size of E(h) = Â(h) − A by estimating the value of E(h). This
leaves us a choice. We could ignore the error estimate (3.41) and report Â(h)
as the approximate answer, or we could subtract out the estimated error and
report the more accurate Â(h)− Ê(h). This is the same as applying one level of
Richardson extrapolation to Â. The corrected approximation probably is more
accurate, but we have no estimate of its error. The only reason to be dissatisfied
with this is that we cannot report an answer with error less than e until the
error is far less than e.

3.7 Software

There are several things a scientific programmer can do to make codes easier to
debug and more reliable. Everyone has had the experience of breaking a code,
making a change that for some reason makes the whole thing stop working. A
program that is designed to be changed is flexible, less likely to be broken in this
way. Modular programs have different pieces in separate procedures (methods,
subroutines) that can be tested separately. Many of the modules can be tested
using convergence analysis described in Section 3.3.2. Programmers should go
far as possible to prevent silent failure. It is better to have no answer than a
wrong one.

3.7.1 Flexible programming

Suppose you want to compute I =
∫ 2

0
f(x)dx using a panel method. The rect-

angle rule Î = ∆x
∑n−1
k=0 f(xk) with n = 100 could be coded:

double I = 0; // line 1
for ( int k = 0; k < 100; k++) // line 2

I += .02*f(.02*k); // line 3

Here the number n = 100 is hard wired, which means built into the code in a way
that makes it hard to change on a whim. It would be easy to break this code by
changing line 2 to for ( int k = 0; k < 90; k++) but forgetting to change
.02 to 2/90 ≈ .0222, or changing it in only one place: I += (2/90)*f(.02*k);.
By the way, this last has the bug that (2/90) evaluates to zero because it is an
integer divide.

A more flexible version would be:
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int n = 100; // The number of points
double a = 0; // The left endpoint for integration
double b = 2; // The right endpoint for integration
double dx = ( b - a ) / n; // Width of a panel

double I = 0; // line 1
double x;
for ( int k = 0; k < 100; k++) { // line 2

x = k*dx;
I += dx*f(x); // line 3
}

Changing to int n = 90; would give a correct program. Because the variable
dx has a name, you can check in the debugger that it has the correct value.
The more flexible version has a few more lines of code which take a few extra
seconds to type.

You probably will want to test each module of your program on a prob-
lem you know the answer to. For example, if you are calculating H(T ) =∫ T

0
esin(x)dx, you would code it in a way that it is easy to apply to G(T ) =∫ T

0
exdx.

3.7.2 Modular programming

Modular programming is helpful for any software project. In scientific com-
puting we design procedures that can be tested separately on their own test
problems. For example, if we apply adaptive Richardson extrapolation as in
Section 3.6 for an integral, we would write a generic adaptive Richardson ex-
trapolation program and test it on data that does not come from an integrator,
then we would write an integrator and test it outside the Richardson procedure.
If the two procedures work correctly separately, they have a good chance to
work well together.

Designing scientific software, or any software, involves more than choosing
data structures and procedure interfaces. You also need a testing plan. The code
should be designed so that the modules can be tested separately. For example,
even if I know my production integration code will use n = 50 panels, I might
put the number of panels as a calling argument so I can do a convergence study.

3.7.3 Report failure

Error handling is another indispensable part of software design. Any module
that can fail (most can) must have a way to report failure. The designer will
choose an appropriate mechanism. The simplest is just to print something and
stop the program when something goes wrong. This is not appropriate for
commercial software but could be fine for a research code that only the author
will run. More sophisticated might be to write to a log file and return an error
flag, or even to throw an exception that could be caught by the calling routine.
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Equally important is detecting failure. This means checking and forwarding
all the internal failure reporting, such as:

double *vec; // Treat vec as an array.
vec = new double[n]; // Allocate memory for n values
if ( vec == NIL ) .. REPORT .. // Complain if didn’t work.

It also means checking calling arguments for plausibility:

#define MAXN 10000 /* Largest allowed # of panels */
int Integrate( // Integrate f(x)

double (*f)(double), // supply f implicitly
double *I, // return the estimated integral
int n) { // using n panels.

if ( n <= 0 ) {
.. complain that n is too small ..;
return 1; // The error flag for negative n.

if ( n > MAXN ) {
cout << "In Integrate, got n = " << n << " greater than"

<< " MAXN = << MAXN << endl;
return 2; // The error flag for n too large.

. . .do the integral . . .
*I = . . . answer . . .
return 0; // error flag = 0 means it worked.

}

Of course, this only works if the calling program checks the error flag, i.e. eFlag
= Integrate( f, @I, n); if (eFlag) .. WRONG ANSWER .. ;

Lastly, it means thinking of all loops that could be infinite loops, such as

while ( error > targetError ){ // try to get error < targetError

... make the solution more accurate...;

}

This could be an infinite loop if targetError is too small or the asymptotic
error expansion is wrong. Instead, at least put in a trip counter

#define MAX_TRIP_COUNT 1000 /* stop a runaway refinement loop */
int tripCount = 0;
while ( error > targetError ) {

... make the solution more accurate...;

if ( ++ tripCount > MAX_TRIP_COUNT ) report error & quit.
}
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3.8 References and further reading

For a review of one variable calculus, I recommend the Schaum outline. The
chapter on Taylor series explains the remainder estimate clearly.

There several good old books on classical numerical analysis. Two favorites
are Numerical Methods by Germund Dahlquist and Åke Björk, and Analysis of
Numerical Methods by Gene Isaacson and Herb Keller. Particularly interesting
subjects are the symbolic calculus of finite difference operators and Gaussian
quadrature.

There are several applications of convergent Taylor series in scientific com-
puting. One example is the fast multipole method of Leslie Greengard and
Vladimir Rokhlin.

3.9 Exercises

1. Verify that (3.23) represents the leading error in the approximation (3.22).
Hint, this does not require multidimensional Taylor series. Why?

2. Use multidimensional Taylor series to show that the rotated five point
operator

1
2h2

(
f(x+h, y+h)+f(x+h, y−h)+f(x−h, y+h)+f(x−h, y−h)−4f

)
is a consistent approximation to 4f . Use a symmetry argument to show
that the approximation is at least second order accurate. Show that the
leading error term is

h2

12
(
∂4
xf + 6∂2

x∂
2
yf + ∂4

yf
)
.

3. What coefficient should we use in place of 4
3 if Â(h) is first order accurate?

Find the coefficient as a function of p, the order of accuracy.

4. Find a formula that estimates f ′′(x) using the four values f(x), f(x+ h),
f(x+2h), and f(x+3h) with the highest possible order of accuracy. What
is this order of accuracy? For what order polynomials does the formula
give the exact answer?

5. Suppose we have panels Pk as in (3.31) and panel averages Fk =
∫
Pk
f(x)dx/(xk+1−

xk).

(a) What is the order of accuracy of Fk as an estimate of f((xk +
xk+1)/2) = f(xk+1/2)?

(b) Assuming the panels all have size h, find a higher order accurate
estimate of f(xk+1/2) using Fk, Fk−1, and Fk+1.

6. This discusses the function (3.12) more carefully.
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(a) Show that the Taylor series for g(x) = 1/(1 − x) about x = 0 is the
geometric series 1/(1− x) =

∑∞
n=0 x

n, which converges for |x| < 1.

(b) Prove the simple remainder formula g(x) =
∑p
n=0 x

n + Rp(x) with
Rp(x) = xp+1/(1−x). Hint: factor xp+1 out of Rp(x) =

∑∞
n=p+1 x

n.

(c) Use the formula −h∂xe−x/h = e−x/h to prove that
∫∞

0
e−x/hxndx =

nh
∫∞

0
e−x/hxn−1dx, and then

∫∞
0
e−x/hxndx = n!hn+1.

(d) Use the same integration by parts and (3.11) to show that
∫∞

1/2
e−x/hxndx =

O(xp) for any p and n.

(e) Note that for 0 ≤ x ≤ 1/2, 1/(1 − x) ≤ 2. Use this and part b to
prove the remainder bound∫ 1/2

0

e−x/hRp(x)dx ≤ 2
∫ 1/2

0

e−x/hxp+1dx

≤ 2
∫ ∞

0

e−x/hxp+1dx = O(hp+1) .

(f) Show that
∫ 1/2

0
e−x/hxndx =

∫∞
0
e−x/hxndx + O(xp) for any n and

p.

(g) Conclude that (3.13) indeed is a valid asymptotic expansion.

7. An application requires accurate values of f(x) = ex − 1 for x very close
to zero.

(a) Show that the problem of evaluating f(x) is well conditioned for small
x.

(b) How many digits of accuracy would you expect from the code f =
exp(x) - 1; for x ∼ 10−5 and for x ∼ 10−10 in single and in double
precision?

(c) Let f(x) =
∑∞
n=1 fnx

n be the Taylor series about x = 0. Calculate
the first three terms, the terms involving x, x2, and x3. Let p(x) be
the degree three Taylor approximation of f(x) about x = 0.

(d) Assuming that x0 is so small that the error is nearly equal to the
largest neglected term, estimate max |f(x)− p(x)| when |x| ≤ x0.

(e) We will evaluate f(x) using

if ( abs(x) > x0 ) f = exp(x) - 1;
else f = p3(x); // given by part c.

What x0 should we choose to maximize the accuracy of f(x) for
|x| < 1 assuming double precision arithmetic and that the expo-
nential function is evaluated to full double precision accuracy (exact
answer correctly rounded)?
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8. Suppose that f(x) is a function that is evaluated to full machine preci-
sion but that there is εmach rounding error in evaluating Â = (f(x+ h)−
f(x))/h. What value of h minimizes the total error including both round-
ing and truncation error? This will be h∗(εmach) ∼ εqmach. Let e∗(εmach)
be the resulting best estimate of f ′(x). Show that e∗ ∼ εrmach and find r.

9. Repeat Exercise 8 with the two point centered difference approximation to
f ′(x). Show that the best error possible with centered differencing is much
better than the best possible with the first order approximation. This is
one of the advantages of higher order finite difference approximations.

10. Verify that the two point Gauss quadrature formula of Figure 3.5 is exact
for monomials of degree less than six. This involves checking the functions
f(x) = 1, f(x) = x2, and f(x) = x4 because the odd order monomials are
exact by symmetry. Check that the three point Gauss quadrature formula
is exact for monomials of degree less than 8.

11. Find the replacement to adaptive halting criterion (3.41) for a method of
order p.

12. We want to know how the function,

f(t) =
∫ 1

0

cos
(
tx2
)
dx , (3.45)

behaves for large t. There is an approximation,

f(t) ∼
√
π

8t
+

1
2t

sin(t)− 1
16t2

cos(t) + · · · , (3.46)

that is supposed to hold for large t. We want to know how accurate this
approximation is and how large t has to be before it is useful. This exercise
goes through some of the steps that go into creating scientific software to
investigate this question numerically: (a) Design the basic code to be
modular and robust, (b) Check that is gives the right answer in one case
you can check (note: not the problem of interest), (c) Check that the
basic computational method gives the accuracy it should. (d) Write an
automatic adaptive version of the code that allows it to produce accurate
answers hands off, without manual tuning of computational parameters
(∆x in this case) for each run. (e) Do the science. To appreciate the value
of part (d), the science step involves thousands of integrations to evaluate
f(t) for various t values. Nobody wants to do a thousand runs choosing
∆x by hand for each one.

(a) Write a procedure (or “method”) to estimate f(t) using a panel inte-
gration method with uniformly spaced points. The procedure should
be well documented, robust, and clean. Robust will mean many
things in later exercises. Here is means: (i) that it should use the
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correct number of panels even though the points xk are computed
in inexact floating point arithmetic, and (ii) that the procedure will
return an error code and possibly print an error message if one of
the calling arguments is out of range (here, probably just n ≤ 0).
It should take as inputs t and n and return the approximate inte-
gral with that t, and ∆x = 1/n. If your panel integration formula
uses endpoints of the panel, you must write the code so that f(xk) is
evaluated only once. This routine should be written so that another
person could easily substitute a different panel method or a different
integrand by changing a few lines of code.

(b) Check the correctness of the procedure from part (a) by seeing whether
it gives the right answer for small t. We can estimate f(t) for small t
using a few terms of its Taylor series. From cos(u) ≈ 1− 1

2u
2 + 1

24u
4 +

· · ·, we get cos(tx2) ≈ 1− 1
2 t

2x4 + · · ·. Integrating this approximation
over the x interval gives f(t) ≈ 1 − 1

10 t
2 + · · ·. Compute the next

few terms and use them to get an approximate value of f(t) for small
t. Then write a driver program that calls both the integration pro-
cedure, and the procedure that approximates f using Taylor series,
and compares the results. Use reasonable but not huge values of n.

(c) With t = 1, do a convergence study to verify the second order accu-
racy of the trapezoid rule and the fourth order accuracy of Simpson’s
rule. This requires you to write a different driver to call the integra-
tion procedure with several values of n and compare the answers in
the manner of a convergence study. Once you have done this for the
trapezoid rule, it should take less than a minute to redo it for Simp-
son’s rule. This is how you can tell whether you have done part (a)
well.

(d) Write a procedure that uses the basic integration procedure from
part (a), together with Richardson error estimation to find an n that
gives f(t) to within a specified error tolerance. The procedure should
work by repeatedly doubling n until the estimated error, based on
comparing approximations, is less than the tolerance given. This
routine should be robust enough to quit and report failure if it is
unable to achieve the requested accuracy. The input should be t and
the desired error bound. The output should be the estimated value
of f , the number of points used, and an error flag to report failure.
Before applying this procedure to the panel integration procedure,
apply it to the fake procedure fakeInt.c or fakeInt.C. Note that
these testers have options to make the Richardson program fail or
succeed. Try it both ways, to make sure the robustness feature of your
Richardson procedure works. Include with your homework output
illustrating the behavior of your Richardson procedure when it fails.

(e) Here is the science part of the problem. Make a few plots showing
f and its approximations using one, two and all three terms on the
right side of (3.46) for t in the range 1 ≤ t ≤ 1000. In all cases we
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want to evaluate f so accurately that the error in our f value is much
less than the error of the approximation (3.46). Note that even for a
fixed level of accuracy, more points are needed for large t. Plot the
integrand to see why.
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4.1 Introduction

Linear algebra and calculus are the basic tools of quantitative science. The oper-
ations of linear algebra include solving systems of equations, finding subspaces,
solving least squares problems, factoring matrices, and computing eigenvalues
and eigenvectors. In practice most of these operations will be done by soft-
ware packages that you buy or download. This chapter discusses formulation
and condition number of the main problems in computational linear algebra.
Chapter 5.1 discusses algorithms.

Conditioning is the primary concern in many practical linear algebra com-
putations. Easily available linear algebra software is stable in the sense that
the results are as accurate as the conditioning of the problem allows. Unfor-
tunately, condition numbers as large as 1018 occur in not terribly large or rare
practical problems. The results of such a calculation in double precision would
be completely unreliable.

If a computational method for a well conditioned problem is unstable (much
less accurate than its conditioning allows), it is likely because one of the sub-
problems is ill conditioned. For example, the problem of computing the matrix
exponential, eA, may be well conditioned while the problem of computing the
eigenvalues and eigenvectors of A is ill conditioned. A stable algorithm for com-
puting eA in that case must avoid using the eigenvalues and eigenvectors of A,
see Exercise 12.

The condition number measures how small perturbations in the data affect
the answer. This is called perturbation theory in linear algebra. Suppose1 A is a
matrix and f(A) is the solution of a linear algebra problem involving A, such as
x that satisfies Ax = b, or λ and v that satisfies Av = λv. Perturbation theory
seeks to estimate ∆f = f(A + ∆A) − f(A) when ∆A is small. Usually, this
amounts to calculating the derivative of f with respect to A. We often do this
by applying implicit differentiation to the relevant equations (such as Ax = b).

It often is helpful to simplify the results of perturbation calculations using
simple bounds that involve vector or matrix norms. For example, suppose we
want to say that all the entries in ∆A or ∆v are small. For a vector, v, or a
matrix, A, the norm, ‖v‖ or ‖A‖, is a number that characterizes the size of v
or A. Using norms, we can say that the relative size of a perturbation in A is
‖∆A‖ / ‖A‖.

The condition number of a problem involving A depends on the problem as
well as on A. For example, the condition number of f(A) = A−1b, the problem
of finding x so that Ax = b, informally2 is given by∥∥A∥∥∥∥A−1

∥∥ . (4.1)

The problem of finding the eigenvectors of A has a condition number that does
1This notation replaces our earlier A(x). In linear algebra, A always is a matrix and x

never is a matrix.
2To get this result, we not only maximize over ∆A but also over b. If the relative error

really were increased by a factor on the order of ‖A‖
∥∥A−1

∥∥ the finite element method, which

is the main computational technique for structural analysis, would not work.
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not resemble (4.1). For example, finding eigenvectors of A can be well condi-
tioned even when

∥∥A−1
∥∥ is infinite (A is singular).

There are several ways to represent an n × n matrix in the computer. The
simplest is to store the n2 numbers in an n × n array. If this direct storage is
efficient, we say A is dense. Much of the discussion here and in Chapter 5.1
applies mainly to dense matrices. A matrix is sparse if storing all its entries
directly is inefficient. A modern (2006) desktop computer has enough memory
for n2 numbers if if n is less than about3 50, 000. This makes dense matrix
methods impractical for solving systems of equations with more than 50, 000
variables. The computing time solving n = 50, 000 linear equations in this way
would be about a day. Sparse matrix methods can handle larger problems and
often give faster methods even for problems that can be handled using dense
matrix methods. For example, finite element computations often lead to sparse
matrices with orders of magnitude larger n that can be solved in minutes

One way a matrix can be sparse is for most of its entries to be zero. For
example, discretizations of the Laplace equation in three dimensions have as
few as seven non-zero entries per row, so that 7/n is the fraction of entries of A
that are not zero. Sparse matrices in this sense also arise in circuit problems,
where a non-zero entry in A corresponds to a direct connection between two
elements in the circuit. Such matrices may be stored in sparse matrix format,
in which we keep lists noting which entries are not zero and the values of the
non-zero elements. Computations with such sparse matrices try to avoid fill in.
For example, they would avoid explicit computation of A−1 because most of its
entries are not zero. Sparse matrix software has heuristics that often do very
well in avoiding fill in. The interested reader should consult the references.

In some cases it is possible to compute the matrix vector product y = Ax for
a given x efficiently without calculating the entries of A explicitly. One example
is the discrete Fourier transform (DFT) described in Chapter 1. This is a full
matrix (every entry different from zero) with n2 non-zero entries, but the FFT
(fast Fourier transform) algorithm computes y = Ax in O(n log(n)) operations.
Another example is the fast multipole method that computes forces from mutual
electrostatic interaction of n charged particles with b bits of accuracy in O(nb)
work. Many finite element packages never assemble the stiffness matrix, A.

Computational methods can be direct or iterative. A direct method would get
the exact answer in exact arithmetic using a predetermined number of arithmetic
operations. For example, Gauss elimination computes the LU factorization of A
using O(n3) operations. Iterative methods produce a sequence of approximate
solutions that converge to the exact answer as the number of iterations goes to
infinity. They usually are faster than direct methods for very large problems,
particularly when A is sparse.

3With n2 floating point numbers and 8 bytes per number (double precision), we need
50, 0002 × 8 = 2 · 1010 bytes, which is 20GBytes.
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4.2 Review of linear algebra

This section recalls some aspects of linear algebra we make use of later. It is not
a substitute for a course on linear algebra. We make use of many things from
linear algebra, such as matrix inverses, without explanation. People come to
scientific computing with vastly differing points of view in linear algebra. This
section should give everyone a common language.

4.2.1 Vector spaces

Linear algebra gets much of its power through the interaction between the ab-
stract and the concrete. Abstract linear transformations are represented by
concrete arrays of numbers forming a matrix. The set of solutions of a homo-
geneous system of equations forms an abstract subspace of Rn that we can try
to characterize. For example, a basis for such a subspace may be computed by
factoring a matrix in a certain way.

A vector space is a set of elements that may be added and multiplied by
scalar numbers4 (either real or complex numbers, depending on the application).
Vector addition is commutative (u+ v = v + u) and associative ((u+ v) +w =
u + (v + w)). Multiplication by scalars is distributive over vector addition
(a(u + v) = au + av and (a + b)u = au + bu for scalars a and b and vectors u
and v). There is a unique zero vector, 0, with 0 + u = u for any vector u.

The standard vector spaces are Rn (or Cn), consisting of column vectors

u =


u1

u2

·
·
un


where the components, uk, are arbitrary real (or complex) numbers. Vector
addition and scalar multiplication are done componentwise.

If V is a vector space and V ′ ⊂ V , then we say that V ′ is a subspace of V if
V ′ is also a vector space with the same vector addition and scalar multiplication
operations. We may always add elements of V ′ and multiply them by scalars,
but V ′ is a subspace if the result always is an element of V ′. We say V ′ is
a subspace if it is closed under vector addition and scalar multiplication. For
example, suppose V = Rn and V ′ consists of all vectors whose components sum
to zero (

∑n
k=1 uk = 0). If we add two such vectors or multiply by a scalar, the

result also has the zero sum property. On the other hand, the set of vectors
whose components sum to one (

∑n
k=1 uk = 1) is not closed under vector addition

or scalar multiplication.

4Physicists use the word “scalar” in a different way. For them, a scalar is a number that
is the same in any coordinate system. The components of a vector in a particular basis are
not scalars in this sense.
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A basis for vector space V is a set of vectors f1, . . ., fn so that any u ∈ V
may be written in a unique way as a linear combination of the vectors fk:

u = u1f1 + · · ·+ unfn ,

with scalar expansion coefficients uk. The standard vector spaces Rn and Cn

have standard bases ek, the vector with all zero components but for a single 1
in position k. This is a basis because

u =


u1

u2

·
·
un

 = u1


1
0
·
·
0

+ u2


0
1
·
·
0

+ · · ·+ un


0
0
·
·
1

 =
n∑
k=1

ukek .

In view of this, there is little distinction between coordinates, components, and
expansion coefficients, all of which are called uk. If V has a basis with n ele-
ments, we say the dimension of V is n. It is possible to make this definition
because of the theorem that states that every basis of V has the same number
of elements. A vector space that does not have a finite basis is called infinite di-
mensional5. The vector space of all polynomials (with no limit on their degree)
is infinite dimensional.

Polynomials provide other examples of vector spaces. A polynomial in the
variable x is a linear combination of powers of x, such as 2 + 3x4, or 1, or
1
3 (x − 1)2(x3 − 3x)6. We could multiply out the last example to write it as a
linear combination of powers of x. The degree of a polynomial is the highest
power that it contains. The complicated product above has degree 20. One
vector space is the set, Pd, of all polynomials of degree not more than d. This
space has a basis consisting of d+ 1 elements:

f0 = 1 , f1 = x , . . . , fd = xd .

Another basis of P3 consists of the “Hermite” polynomials

H0 = 1 , H1 = x , H2 = x2 − 1 , H3 = x3 − 3x .

These are useful in probability because if x is a standard normal random vari-
able, then they are uncorrelated:

E [Hj(X)Hk(X)] =
1√
2π

∫ ∞
−∞

Hj(x)Hk(x)e−x
2/2dx = 0 if j 6= k.

Still another basis of P3 consists of Lagrange interpolating polynomials for the
points 1, 2, 3, and 4:

l1 =
(x− 2)(x− 3)(x− 4)
(1− 2)(1− 3)(1− 4)

, l2 =
(x− 1)(x− 3)(x− 4)
(2− 1)(2− 3)(2− 4)

,

5An infinite dimensional vector space might have an infinite basis, whatever that might
mean.
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l3 =
(x− 1)(x− 2)(x− 4)
(3− 1)(3− 2)(3− 4)

, l4 =
(x− 1)(x− 2)(x− 3)
(3− 1)(3− 2)(3− 4)

.

These are useful for interpolation because, for example, l1(1) = 1 while l2(1) =
l3(1) = l4(1) = 0. If we want u(x) to be a polynomial of degree 3 taking specified
values u(1) = u1, u(2) = u2, u(3) = u3, and u(4) = u4, the answer is

u(x) = u1l1(x) + u2l2(x) + u3l3(x) + u4l4(x) .

For example, at x = 2, the l2 term takes the value u2 while the other three
terms are zero. The Lagrange interpolating polynomials are linearly indepen-
dent because if 0 = u(x) = u1l1(x) + u2l2(x) + u3l3(x) + u4l4(x) for all x then
in particular u(x) = 0 at x = 1, 2, 3, and 4, so u1 = u2 = u3 = u4 = 0.

If V ′ ⊂ V is a subspace of dimension m of a vector space of dimension n,
then it is possible to find a basis, fk, of V so that the first m of the fk form a
basis of V ′. For example, if V = P3 and V ′ is the polynomials that vanish at
x = 2 and x = 3, we can take

f1 = (x− 2)(x− 3) , f2 = x(x− 2)(x− 3) , f3 = 1 , f4 = x .

Note the general (though not universal) rule that the dimension of V ′ is equal
to the dimension of V minus the number of constraints or conditions that define
V ′. Whenever V ′ is a proper subspace of V , there is some u ∈ V that is not in
V ′, m < n. One common task in computational linear algebra is finding a well
conditioned basis for a subspace specified in some way.

4.2.2 Matrices and linear transformations

Suppose V and W are vector spaces. A linear transformation from V to W is a
function that produces an element of W for any element of V , written w = Lv,
that is linear. Linear means that L(v1 + v2) = Lv1 + Lv2 for any two vectors
in V , and Lxv = xLv for any scalar x and vector v ∈ V . By convention we
write Lv instead of L(v) even though L represents a function from V to W .
This makes algebraic manipulation with linear transformations look just like
algebraic manipulation of matrices, deliberately blurring the distinction between
linear transformations and matrix multiplication. The simplest example is the
situation of V = Rn, W = Rm, and Lu = A · u, for some m× n matrix A. The
notation A · u means that we should multiply the vector u by the matrix A.
Most of the time we leave out the dot.

Any linear transformation between finite dimensional vector spaces may be
represented by a matrix. Suppose f1, . . ., fn is a basis for V , and g1, . . ., gm is
a basis for W . For each k, the linear transformation of fk is an element of W
and may be written as a linear combination of the gj :

Lfk =
m∑
j=1

ajkgj .
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Because the transformation is linear, we can calculate what happens to a vector
u ∈ V in terms of its expansion u =

∑
k ukfk. Let w ∈ W be the image of u,

w = Lu, written as w =
∑
j wjgj . We find

wj =
n∑
k=1

ajkuk ,

which is ordinary matrix-vector multiplication.
The matrix that represents L depends on the basis. For example, suppose

V = P3, W = P2, and L represents differentiation:

L
(
p0 + p1x+ p2x

2 + p3x
3
)

=
d

dx

(
p0 + p1x+ p2x

2 + p3x
3
)

= p1+2p2x+3p3x
2 .

If we take the basis 1, x, x2, x3 for V , and 1, x, x2 for W , then the matrix is 0 1 0 0
0 0 2 0
0 0 0 3


The matrix would be different if we used the Hermite polynomial basis for V .
(See Exercise 1).

Conversely, an m×n matrix, A, represents a linear transformation from Rn

to Rm (or from Cn to Cm). We denote this transformation also by A. If v ∈ Rm
is an m component column vector, then w = Av, the matrix vector product,
determines w ∈ Rn, a column vector with n components. As before, the notation
deliberately is ambiguous. The matrix A is the matrix that represents the linear
transformation A using standard bases of Rn and Rm.

A matrix also may represent a change of basis within the same space V .
If f1, . . ., fn, and g1, . . ., gn are different bases of V , and u is a vector with
expansions u =

∑
k vkfk and u =

∑
j wjgj , then we may write

v1

·
·
vn

 =


a11 a12 · a1n

a21 a22 · a2n

· · · ·
an1 an2 · ann




w1

·
·
wn


As before, the matrix elements ajk are the expansion coefficients of gj with
respect to the fk basis6. For example, suppose u ∈ P3 is given in terms of
Hermite polynomials or simple powers: u =

∑3
j=0 vjHj(x) =

∑3
k=0 wjx

j , then
v0

v1

v2

v3

 =


1 0 −1 0
0 1 0 −3
0 0 1 0
0 0 0 1




w0

w1

w2

w3


6We write ajk for the (j, k) entry of A.
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We may reverse the change of basis by using the inverse matrix:
w1

·
·
wn

 =


a11 a12 · a1n

a21 a22 · a2n

· · · ·
an1 an2 · ann


−1

v1

·
·
vn


Two bases must have the same number of elements because only square matrices
can be invertible.

Composition of linear transformations corresponds to matrix multiplication.
If L is a linear transformation from V to W , and M is a linear transformation
from W to a third vector space, Z, then ML is the composite tranformation
that takes V to7 W . The composite of L and M is defined if the target (or
range) of L, is the same as the source (or domain) of M , W in this case. If A
is an m × n matrix and and B is p × q, then the target of A is W = Rn and
the source of B is Rq. Therefore, the composite AB is defined if n = p. This
is the condition for the matrix product A ·B (usually written without the dot)
to be defined. The result is a transformation from V = Rm to Z = Rp, i.e., the
m× p matrix AB.

For vector spaces V and W , the set of linear transformations from V to W
forms a vector space. We can add two linear transformations and multiply a
linear transformation by a scalar. This applies in particular to m× n matrices,
which represent linear transformations from Rn to Rm. The entries of A + B
are ajk + bjk. An n × 1 matrix has a single column and may be thought of as
a column vector. The product Au is the same whether we consider u to be a
column vector or an n × 1 matrix. A 1 × n matrix has a single row and may
be thought of as a row vector. If r is such a row vector, the product rA makes
sense, but Ar does not. It is useful to distinguish between row and column
vectors although both are determined by n components. The product ru is a
1× 1 matrix ((1× n) · (n× 1) gives 1× 1), i.e., a scalar.

If the source and targets are the same, V = W , or n = m = p = q, then
both composites LM and ML both are defined, but they probably are not
equal. Similarly, if A and B are n× n matrices, then AB and BA are defined,
but AB 6= BA in general. If A, B, and C are matrices so that the products
AB and BC both are defined, then the products A · (BC) and (AB) · C also
are defined. The associative property of matrix multiplication is the fact that
these are equal: A(BC) = (AB)C. In actual computations it may be better to
compute AB first then multiply by C than to compute BC first the compute
A(BC). For example suppose u is a 1 × n row vector, and B and C are n × n
matrices. Then uB = v is the product of a row vector and a square matrix, which
takes O(n2) additions and multiplications (flops) to compute, and similarly for
vC = (uB)C. On the other hand, BC is the product of n× n matrices, which
takes O(n3) flops to compute. Thus (uB)C takes an order of magnitude fewer
flops to compute than u(BC).

7First v goes to w = Lv, then w goes to z = Mw. In the end, v has gone to M(Lv).
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If A is an m×n matrix with real entries ajk, the transpose of A, written A∗,
is the n ×m matrix whose (j, k) entry is a∗jk = akj . If A has complex entries,
then A∗, the adjoint of A, is the n ×m matrix wth entries a∗jk = akj (a is the
complex conjugate of a.). If the entries of A are real, the adjoint and transpose
are the same. The transpose often is written At, but we use the same notation
for adjoint and transpose. The transpose or adjoint of a column vector is a row
vector with the same number of entries, and vice versa. By convention, the
vector spaces Rn and Cn consist of n component column vectors. A real square
(n = m) matrix is symmetric if A = A∗. A complex square matrix is self-adjoint
if A∗ = A. We often use the term “self-adjoint” for either case.

If u and v are n component column vectors (u ∈ Cn, v ∈ Cn), their standard
inner product is

〈u, v〉 = u∗v =
n∑
k=1

ukvk . (4.2)

The inner product is antilinear in its first argument, which means that

〈xu+ yv, w〉 = x〈u,w〉+ y〈v, w〉 ,

for complex numbers x and y. It is linear in the second argument:

〈u, xv + yw〉 = x〈u,w〉y + 〈v, w〉 .

It determines the standard euclidean norm ‖u‖ = 〈u, u〉1/2. The complex con-
jugates are not needed when the entries of u and v are real. The reader should
check that 〈u, v〉 = 〈v, u〉. The adjoint of A is determined by the requirement
that 〈A∗u, v〉 = 〈u,Av〉 for all u and v.

4.2.3 Vector norms

A norm is a way to describe the size of a vector. It is a single number extracted
from the information describing u, which we write ‖u‖ (read “the norm of u”).
There are several different norms that are useful in scientific computing. We say
‖u‖ is a norm if it has the following properties. First, ‖u‖ ≥ 0, with ‖u‖ = 0
only when u = 0. Second, it should be homogeneous: ‖xu‖ = |x| ‖u‖ for any
scalar, x. Third, it should satisfy the triangle inequality, ‖u+ v‖ ≤ ‖u‖+ ‖v‖,
for any two vectors u and v.

There are several simple norms for Rn or Cn that have names. One is the
l1 norm

‖u‖1 = ‖u‖l1 =
n∑
k=1

|uk| .

Another is the l∞ norm, also called the sup norm or the max norm:

‖u‖∞ = ‖u‖l∞ = max
k=1,...,n

|uk| .
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Another is the l2 norm, also called the Euclidian norm

‖u‖2 = ‖u‖l2 =

(
n∑
k=1

|uk|2
)1/2

= 〈u, u〉1/2 .

The l2 norm is natural for vectors representing positions or velocities in three
dimensional space. If the components of u ∈ Rn represent probabilities, the l1

norm might be more appropriate. In some cases we may have a norm defined
indirectly or with a definition that is hard to turn into a number. For example
in the vector space P3 of polynomials of degree 3, we can define a norm

‖p‖ = max
a≤x≤b

|p(x)| . (4.3)

There is no simple formula for ‖p‖ in terms of the coefficients of p.
The notion of vector norms is not perfect. For one thing, the choice of norm

seems arbitrary in many cases . For example, what norm should we use for
the two dimensional subspace of P3 consisting of polynomials that vanish when
x = 2 and x = 3? Another criticism is that norms may not make dimensional
sense if the different components of u have different units. This might happen,
for example, if the components of u represent different factors (or variables) in a
linear regression. The first factor, u1, might be age of a person, the second, u2,
income, the third the number of children. In some units, we might get (because
the computer stores only numbers, not units)

u =

 45
50000

2

 (4.4)

In situations like these we can define for example, a dimensionless version of the
l1 norm:

‖u‖ =
n∑
k=1

1
uk
· |uk| ,

where uk is a typical value of a quantity with the units of uk in the problem at
hand.

We can go further and use the basis

fk = ukek (4.5)

of Rn. In this basis, the components of u are ũk = 1
uk
uk, which are dimension-

less. This is balancing or diagonal scaling. For example, if we take a typical
age to be u1 = 40(years), a typical salary to be u2 = 60, 000(dollars/year),
and a typical number of children to be u3 = 2.3 (US national average), then
the normalized components are comparable well scaled numbers: (f1, f2, f3) =
(1.125, .833, .870). The matrix representing a linear transformation in the fk
basis is likely to be better conditioned than the one using the ek basis.
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4.2.4 Norms of matrices and linear transformations

Suppose L is a linear transformation from V to W . If we have norms for the
spaces V and W , we can define a corresponding norm of L, written ‖L‖, as the
largest amount by which it stretches a vector:

‖L‖ = max
u6=0

‖Lu‖
‖u‖

. (4.6)

The norm definition (4.6) implies that for all u,

‖Lu‖ ≤ ‖L‖ · ‖u‖ . (4.7)

Moreover, ‖L‖ is the sharp constant in the inequality (4.7) in the sense that if
‖Lu‖ ≤ C · ‖u‖ for all u, then C ≥ ‖L‖. Thus, (4.6) is equivalent to saying that
‖L‖ is the sharp constant in (4.7).

The different vector norms give rise to different matrix norms. The ma-
trix norms corresponding to certain standard vector norms are written with
corresponding subscripts, such as

‖L‖l2 = max
u6=0

‖Lu‖l2
‖u‖l2

. (4.8)

For V = W = Rn, it turns out that (for the linear transformation represented
in the standard basis by A)

‖A‖l1 = max
k

∑
j

|ajk| ,

and
‖A‖l∞ = max

j

∑
k

|ajk| .

Thus, the l1 matrix norm is the maximum column sum while the max norm is
the maximum row sum. Other norms are hard to compute explicitly in terms of
the entries of A. People often say that ‖L‖l2 is the largest singular value of L,
but this is not too helpful because (4.8) is the definition of the largest singular
value of L.

Any norm defined by (4.6) in terms of vector norms has several properties
derived from corresponding properties of vector norms. One is homogeneity:
‖xL‖ = |x| ‖L‖. Another is that ‖L‖ ≥ 0 for all L, with ‖L‖ = 0 only for L = 0.
The triangle inequality for vector norms implies that if L and M are two linear
transformations from V to W , then ‖L+M‖ ≤ ‖L‖ + ‖M‖. Finally, we have
‖LM‖ ≤ ‖L‖ ‖M‖. This is because the composite transformation stretches no
more than the product of the individual maximum stretches:

‖M(Lu)‖ ≤ ‖M‖ ‖Lu‖ ≤ ‖M‖ ‖L‖ ‖u‖ .

Of course, all these properties hold for matrices of the appropriate sizes.
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All of these norms have uses in the theoretical parts of scientific comput-
ing, the l1 and l∞ norms because they are easy to compute and the l2 norm
because it is invariant under orthogonal transformations such as the discrete
Fourier transform. The norms are not terribly different from each other. For
example, ‖A‖l1 ≤ n ‖A‖l∞ and ‖A‖l∞ ≤ n ‖A‖l1 . For n ≤ 1000, this factor of
n may not be so important if we are asking, for example, about catastrophic
ill-conditioning.

4.2.5 Eigenvalues and eigenvectors

Let A be an n×n matrix, or a linear transformation from V to V . We say that
λ is an eigenvalue, and r 6= 0 the corresponding (right) eigenvector if

Ar = λr .

Eigenvalues and eigenvectors are useful in understanding dynamics related to A.
For example, the differential equation du

dt = u̇ = Au has solutions u(t) = eλtr.
Moreover, eigenvalues and their relatives, singular values, are the basis of prin-
cipal component analysis in statistics. In general, eigenvalues and eigenvectors
may be complex even though A is real. This is one reason people work with
complex vectors in Cn, even for applications that seem to call for Rn.

Although their descriptions seem similar, the symmetric eigenvalue problem
(A symmetric for real A or self-adjoint for complex A), is vastly different from
the general, or unsymmetric problem. This contrast is detailed below. Here I
want to emphasize the differences in conditioning. In some sense, the eigenvalues
of a symmetric matrix are always well-conditioned functions of the matrix –
a rare example of uniform good fortune. By contrast, the eigenvalues of an
unsymmetric matrix may be so ill-conditioned, even for n as small as 20, that
they are not computable (in double precision arithmetic) and essentially useless.
Eigenvalues of unsymmetric matrices are too useful to ignore, but we can get
into trouble if we ignore their potential ill-conditioning. Eigenvectors, even
for symmetric matrices, may be ill-conditioned, but the consequences of this
ill-conditioning seem less severe.

We begin with the unsymmetric eigenvalue problem. Nothing we say is
wrong if A happens to be symmetric, but some of the statements might be
misleading. An n × n matrix may have as many as n eigenvalues, denoted λk,
k = 1, . . . , n. If all the eigenvalues are distinct, the corresponding eigenvectors,
denoted rk, with Ark = λkrk must be linearly independent, and therefore form
a basis for Rn. These n linearly independent vectors can be assembled to form
the columns of an n × n eigenvector matrix that we call the right eigenvector
matrix.

R =


...

...
r1 · · · rn
...

...

 . (4.9)
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We also consider the diagonal eigenvalue matrix with the eigenvalues on the
diagonal and zeros in all other entries:

Λ =

 λ1 0
. . .

0 λn

 .

The eigenvalue – eigenvector relations may be expressed in terms of these ma-
trices as

AR = RΛ . (4.10)

To see this, check that multiplying R by A is the same as multiplying each of
the columns of R by A. Since these are eigenvectors, we get

A


...

...
r1 · · · rn
...

...

 =


...

...
λ1r1 · · · λnrn

...
...



=


...

...
r1 · · · rn
...

...


 λ1 0

. . .
0 λn


= RΛ .

Since the columns of R are linearly independent, R is invertible, we can multiply
(4.10) from the right and from the left by R−1 to get

R−1ARR−1 = R−1RΛR−1 ,

then cancel the R−1R and RR−1, and define8 L = R−1 to get

LA = ΛL .

This shows that the kth row of L is an eigenvector of A if we put the A on the
right:

lkA = λklk .

Of course, the λk are the same: there is no difference between “right” and
“left” eigenvalues. The matrix equation we used to define L, LR = I, gives
useful relations between left and right eigenvectors. The (j, k) entry of LR is
the product of row j of L with row k of R. When j = k this product should
be a diagonal entry of I, namely one. When j 6= k, the product should be zero.
That is

lkrk = 1
ljrk = 0 if j 6= k.

}
(4.11)

8Here L refers to a matrix, not a general linear transformation.
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These are called biorthogonality relations. For example, r1 need not be orthog-
onal to r2, but it is orthogonal to l2. The set of vectors rk is not orthogonal,
but the two sets lj and rk are biorthogonal. The left eigenvectors are sometimes
called adjoint eigenvectors because their transposes form right eigenvectors for
the adjoint of A:

A∗l∗j = λj l
∗
j .

Still supposing n distinct eigenvalues, we may take the right eigenvectors to
be a basis for Rn (or Cn if the entries are not real). As discussed in Section
2.2, we may express the action of A in this basis. Since Arj = λjrj , the matrix
representing the linear transformation A in this basis will be the diagonal matrix
Λ. In the framework of Section 2.2, this is because if we expand a vector v ∈ Rn
in the rk basis, v = v1r1 + · · · + vnrn, then Av = λ1v1r1 + · · · + λnvnrn.
For this reason finding a complete set of eigenvectors and eigenvalues is called
diagonalizing A. A matrix with n linearly independent right eigenvectors is
diagonalizable.

If A does not have n distinct eigenvalues then there may be no basis in which
the action of A is diagonal. For example, consider the matrix

J =
(

0 1
0 0

)
.

Clearly, J 6= 0 but J2 = 0. A diagonal or diagonalizable matrix cannot have
this property: if Λ2 = 0 then Λ = 0, and if the relations A 6= 0, A2 = 0 in one
basis, they hold in any other basis. In general a Jordan block with eigenvalue
λ is a k × k matrix with λ on the diagonal, 1 on the superdiagonal and zeros
elsewhere: 

λ 1 0 · · · 0
0 λ 1 0 0
... 0

. . . . . .
...

...
...

. . . λ 1
0 0 · · · 0 λ

 .

If a matrix has fewer than n distinct eigenvalues, it might or might not be
diagonalizable. If A is not diagonalizable, a theorem of linear algebra states
that there is a basis in which A has Jordan form. A matrix has Jordan form if
it is block diagonal with Jordan blocks of various sizes and eigenvalues on the
diagonal. It can be difficult to compute the Jordan form of a matrix numerically,
as we will see.

The eigenvalue – eigenvector problem for symmetric or self-adjoint matrices
is different and in many ways simpler than the general nonsymmetric eigenvalue
problem. The eigenvalues are real. The left eigenvectors are transposes of the
right eigenvectors: lk = r∗k. There are no Jordan blocks; every symmetric matrix
is diagonalizable even if the number of distinct eigenvalues is less than n. The
biorthogonality relations (4.11) become the normalization conditions

r∗j rj = 1 , (4.12)
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and the orthogonality relations

r∗j rk = 0 (4.13)

A set of vectors satisfying both (4.12) and (4.13) is called orthonormal. A
complete set of eigenvectors of a symmetric matrix forms an orthonormal basis.
It is easy to check that the orthonormality relations are equivalent to the matrix
R in (4.9) satisfying R∗R = I, or, equivalently, R−1 = R∗. Such a matrix is
called orthogonal. The matrix form of the eigenvalue relation (4.10) may be
written R∗AR = Λ, or A = RΛR∗, or R∗A = ΛR∗. The latter shows (yet
again) that the rows of R∗, which are r∗k, are left eigenvectors of A.

4.2.6 Differentiation and perturbation theory

The main technique in the perturbation theory of Section 4.3 is implicit dif-
ferentiation. We use the formalism of virtual perturbations from mechanical
engineering, which is related to tangent vectors in differential geometry. It may
seem roundabout at first, but it makes actual calculations quick.

Suppose f(x) representsm functions, f1(x), . . . , fm(x) of n variables, x1, . . . , xn.
The Jacobian matrix9, f ′(x), is the m×n matrix of partial derivatives f ′jk(x) =
∂xkfj(x). If f is differentiable (and f ′ is Lipschitz continuous), then the first
derivative approximation is (writing x0 for x to clarify some discussion below)

f(x0 + ∆x)− f(x0) = ∆f = f ′(x0)∆x+O
(
‖∆x‖2

)
. (4.14)

Here ∆f and ∆x are column vectors.
Suppose s is a scalar “parameter” and x(s) is a differentiable curve inRn with

x(0) = x0. The function f(x) then defines a curve in Rm with f(x(0)) = f(x0).
We define two vectors, called virtual perturbations,

ẋ =
dx(s)
ds

(0) , ḟ =
df(x(s))
ds

(0) .

The multivariate calculus chain rule implies the virtual perturbation formula

ḟ = f ′(x0)ẋ . (4.15)

This formula is nearly the same as (4.14). The virtual perturbation strategy is to
calculate the linear relationship (4.15) between virtual perturbations and use it
to find the approximate relation (4.14) between actual perturbations. For this,
it is important that any ẋ ∈ Rn can be the virtual perturbation corresponding
to some curve: just take the straight “curve” x(s) = x0 + sẋ.

The Leibnitz rule (product rule) for matrix multiplication makes virtual
perturbations handy in linear algebra. Suppose A(s) and B(s) are differentiable

9See any good book on multivariate calculus.
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curves of matrices and compatible for matrix multiplication. Then the virtual
perturbation of AB is given by the product rule

d

ds
AB

∣∣∣∣
s=0

= ȦB +AḂ . (4.16)

To see this, note that the (jk) entry of A(s)B(s) is
∑
l ajl(s)blk(s). Differenti-

ating this using the ordinary product rule then setting s = 0 yields∑
l

ȧjlblk +
∑
l

ajlḃlk .

These terms correspond to the terms on the right side of (4.16). We can differ-
entiate products of more than two matrices in this way.

As an example, consider perturbations of the inverse of a matrix, B = A−1.
The variable x in (4.14) now is the matrix A, and f(A) = A−1. Apply implicit
differentiation to the formula AB = I, use the fact that I is constant, and we
get ȦB +AḂ = 0. Then solve for Ḃ (and use A−1 = B, and get

Ḃ = −A−1ȦA−1 .

The corresponding actual perturbation formula is

∆
(
A−1

)
= −A−1 ∆A A−1 +O

(
‖∆A‖2

)
. (4.17)

This is a generalization of the fact that the derivative of 1/x is −1/x2, so
∆(1/x) ≈ −1/x2∆x. When x is replaced by A and ∆A does not commute with
A, we have to worry about the order of the factors. The correct order is (4.17).

For future reference we comment on the case m = 1, which is the case of
one function of n variables. The 1 × n Jacobian matrix may be thought of as
a row vector. We often write this as 5f , and calculate it from the fact that
ḟ = 5f(x) · ẋ for all ẋ. In particular, x is a stationary point of f if 5f(x) = 0,
which is the same as ḟ = 0 for all ẋ. For example, suppose f(x) = x∗Ax for
some n×n matrix A. This is a product of the 1×n matrix x∗ with A with the
n× 1 matrix x. The Leibnitz rule (4.16) gives, if A is constant,

ḟ = ẋ∗Ax+ x∗Aẋ .

Since the 1× 1 real matrix ẋ∗Ax is equal to its transpose, this is

ḟ = x∗(A+A∗)ẋ .

This implies that (both sides are row vectors)

5 ( x∗Ax ) = x∗(A+A∗) . (4.18)

If A∗ = A, we recognize this as a generalization of n = 1 formula d
dx (ax2) = 2ax.
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4.2.7 Variational principles for the symmetric eigenvalue
problem

A variational principle is a way to find something by solving a maximization or
minimization problem. The Rayleigh quotient for an n× n matrix is

Q(x) =
x∗Ax

x∗x
=
〈x,Ax〉
〈x, x〉

. (4.19)

If x is real, x∗ is the transpose of x, which is a row vector. If x is complex, x∗

is the adjoint. In either case, the denominator is x∗x =
∑n
k=1 |xk|

2 = ‖x‖2l2 .
The Rayleigh quotient is defined for x 6= 0. A vector r is a stationary point if
5Q(r) = 0. If r is a stationary point, the corresponding value λ = Q(r) is a
stationary value.

Theorem 1 If A is a real symmetric or a complex self-adjoint matrix, each
eigenvector of A is a stationary point of the Rayleigh quotient and the cor-
responding eigenvalue is the corresponding stationary value. Conversely, each
stationary point of the Rayleigh quotient is an eigenvector and the corresponding
stationary value the corresponding eigenvalue.

Proof: We give the proof for real x and real symmetric A. The complex self-
adjoint case is an exercise. Underlying the theorem is the calculation (4.18) that
if A∗ = A (this is where symmetry matters) then 5 ( x∗Ax ) = 2x∗A. With
this we calculate (using the quotient rule and (4.18) with A = I)

5Q = 2
(

1
x∗x

)
x∗A− 2

(
x∗Ax

(x∗x)2

)
x∗ .

If x is a stationary point (5Q = 0), then x∗A =
(
x∗Ax
x∗x

)
x∗, or, taking the

transpose,

Ax =
(
x∗Ax

x∗x

)
x .

This shows that x is an eigenvector with

λ =
x∗Ax

x∗x
= Q(x)

as the corresponding eigenvalue. Conversely if Ar = λr, then Q(r) = λ and the
calculations above show that 5Q(r) = 0. This proves the theorem.

A simple observation shows that there is at least one stationary point of Q
for Theorem 1 to apply to. If α is a real number, then Q(αx) = Q(x). We may
choose α so that10 ‖αx‖ = 1. This shows that

max
x 6=0

Q(x) = max
‖x‖=1

Q(x) = max
‖x‖=1

x∗Ax .

10In this section and the next, ‖x‖ = ‖x‖l2 .
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A theorem of analysis states that if Q(x) is a continuous function on a compact
set, then there is an r so that Q(r) = maxxQ(x) (the max is attained). The
set of x with ‖x‖ = 1 (the unit sphere) is compact and Q is continuous. Clearly
if Q(r) = maxxQ(x), then 5Q(r) = 0, so r is a stationary point of Q and an
eigenvector of A.

The key to finding the other n − 1 eigenvectors is a simple orthogonality
relation. The principle also is the basis of the singular value decomposition. If
r is an eigenvector of A and x is orthogonal to r, then x also is orthogonal to
Ar. Since Ar = λr, and x is orthogonal to r if x∗r = 0, this implies x∗Ar =
x∗λr = 0. More generally, suppose we have m < n and eigenvectors r1, . . . , rm.
eigenvectors r1, . . . , rm with m < n. Let Vm ⊆ Rn be the set of x ∈ Rn with
x∗rj = 0 for j = 1, . . . ,m. It is easy to check that this is a subspace of Rn. The
orthogonality principle is that if x ∈ Vm then Ax ∈ Vm. That is, if x∗rj = 0 for
all j, then (Ax)∗rj = 0 for all j. But (Ax)∗rj = x∗A∗rj = x∗Arj = x∗λjrj = 0
as before.

The variational and orthogonality principles allow us to find n−1 additional
orthonormal eigenvectors as follows. Start with r1, a vector that maximizes Q.
Let V1 be the vector space of all x ∈ Rn with r∗1x = 0. We just saw that V1 is
an invariant subspace for A, which means that Ax ∈ V1 whenever x ∈ V1. Thus
A defines a linear transformation from V1 to V1, which we call A1. Chapter 5.1
gives a proof that A1 is symmetric in a suitable basis. Therefore, Theorem 1
implies that A1 has at least one real eigenvector, r2, with real eigenvalue λ2.
Since r2 ∈ V1, the action of A and A1 on r2 is the same, which means that
Ar2 = λ2r2. Also since r2 ∈ V1, r2 is orthogonal to r1. Now let V2 ⊂ V1 be the
set of x ∈ V1 with x∗r2 = 0. Since x ∈ V2 means x∗r1 = 0 and x∗r2 = 0, V2 is an
invariant subspace. Thus, there is an r3 ∈ V2 with Ar3 = A1r3 = A2r3 = λ3r3.
And again r3 is orthogonal to r2 because r3 ∈ V2 and r3 is orthogonal to r1

because r3 ∈ V2 ⊂ V1. Continuing in this way, we eventually find a full set of n
orthogonal eigenvectors.

4.2.8 Least squares

Suppose A is an m× n matrix representing a linear transformation from Rn to
Rm, and we have a vector b ∈ Rm. If n < m the linear equation system Ax = b
is overdetermined in the sense that there are more equations than variables to
satisfy them. If there is no x with Ax = b, we may seek an x that minimizes
the residual

r = Ax− b . (4.20)

This linear least squares problem

min
x
‖Ax− b‖l2 , (4.21)

is the same as finding x to minimize the sum of squares

SS =
n∑
j=1

r2
j .
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Linear least squares problems arise through linear regression in statistics.
A linear regression model models the response, b, as a linear combination of
m explanatory vectors, ak, each weighted by a regression coefficient, xk. The
residual, R = (

∑m
k=1 akxk)−b, is modeled as a Gaussian random variable11 with

mean zero and variance σ2. We do n experiments. The explanatory variables and
response for experiment j are ajk, for k = 1. . . . ,m, and bj , and the residual (for
given regression coefficients) is rj =

∑m
k=1 ajkxk−bj . The log likelihood function

is (r depends on x through (4.20) f(x) = −σ2
∑n
j=1 r

2
j . Finding regression

coefficients to maximize the log likelihood function leads to (4.21).
The normal equations give one approach to least squares problems. We

calculate:

‖r‖2l2 = r∗r

= (Ax− b)∗ (Ax− b)
= x∗A∗Ax− 2x∗A∗b+ b∗b .

Setting the gradient to zero as in the proof of Theorem 1 leads to the normal
equations

A∗Ax = A∗b , (4.22)

which can be solved by
x = (A∗A)−1

A∗b . (4.23)

The matrix M = A∗A is the moment matrix or the Gram matrix. It is sym-
metric, and positive definite if A has rank m, so the Choleski decomposition of
M (see Chapter 5.1) is a good way to solve (4.22). The matrix (A∗A)−1

A∗

is the pseudoinverse of A. If A were square and invertible, it would be A−1

(check this). The normal equation approach is the fastest way to solve dense
linear least squares problems, but it is not suitable for the subtle ill-conditioned
problems that arise often in practice.

The singular value decomposition in Section 4.2.9 and the QR decomposition
from Section 5.4 give better ways to solve ill-conditioned linear least squares
problems.

4.2.9 Singular values and principal components

Eigenvalues and eigenvectors of a symmetric matrix have at many applications.
They can be used to solve dynamical problems involving A. Because the eigen-
vectors are orthogonal, they also determine the l2 norm and condition number of
A. Eigenvalues and eigenvectors of a non-symmetric matrix are not orthogonal
so the eigenvalues do not determine the norm or condition number. Singular
values for non-symmetric or even non-square matrices are a partial substitute.

Let A be an m× n matrix that represents a linear transformation from Rn

to Rm. The right singular vectors, vk ∈ Rn form an orthonormal basis for
11See any good book on statistics for definitions of Gaussian random variable and the log

likelihood function. What is important here is that a systematic statistical procedure, the
maximum likelihood method, tells us to minimize the sum of squares of residuals.
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Rn. The left singular vectors, uk ∈ Rm, form an orthonormal basis for Rm.
Corresponding to each vk and uk pair is a non-negative singular value, σk with

Avk = σkuk . (4.24)

By convention these are ordered so that σ1 ≥ σ2 ≥ · · · ≥ 0. If n < m we
interpret (4.24) as saying that σk = 0 for k > n. If n > m we say σk = 0 for
k > m.

The non-zero singular values and corresponding singular vectors may be
found one by one using variational and orthogonality principles similar to those
in Section 4.2.7. We suppose A is not the zero matrix (not all entries equal to
zero). The first step is the variational principle:

σ1 = max
x 6=0

‖Ax‖
‖x‖

. (4.25)

As in Section 4.2.7, the maximum is achieved, and σ1 > 0. Let v1 ∈ Rn be a
maximizer, normalized to have ‖v1‖ = 1. Because ‖Av1‖ = σ1, we may write
Av1 = σ1u1 with ‖u1‖ = 1. This is the relation (4.24) with k = 1.

The optimality condition calculated as in the proof of Theorem 1 implies
that

u∗1A = σ1v
∗
1 . (4.26)

Indeed, since σ1 > 0, (4.25) is equivalent to12

σ2
1 = max

x 6=0

‖Ax‖2

‖x‖2

= max
x 6=0

(Ax)∗(Ax)
x∗x

σ2
1 = max

x 6=0

x∗(A∗A)x
x∗x

. (4.27)

Theorem 1 implies that the solution to the maximization problem (4.27), which
is v1, satisfies σ2v1 = A∗Av1. Since Av1 = σu1, this implies σ1v1 = A∗u1, which
is the same as (4.26).

The analogue of the eigenvalue orthogonality principle is that if x∗v1 = 0,
then (Ax)∗ u1 = 0. This is true because

(Ax)∗ u1 = x∗ (A∗u1) = x∗σ1v1 = 0 .

Therefore, if we define V1 ⊂ Rn by x ∈ V1 if x∗v1 = 0, and U1 ⊂ Rm by y ∈ U1

if y∗u1 = 0, then A also defines a linear transformation (called A1) from V1 to
U1. If A1 is not identically zero, we can define

σ2 = max
x∈V1
x 6=0

‖Ax‖2

‖x‖2
= max

x∗v1=0
x 6=0

‖Ax‖2

‖x‖2
,

12These calculations make constant use of the associativity of matrix multiplication, even
when one of the matrices is a row or column vector.
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and get Av2 = σ2u2 with v∗2v1 = 0 and u∗2u1 = 0. This is the second step
constructing orthonormal bases satisfying (4.24). Continuing in this way, we
can continue finding orthonormal vectors vk and uk that satisfy (4.24) until
reach Ak = 0 or k = m or k = n. After that point, the may complete the v and
u bases arbitrarily as in Chapter 5.1 with remaining singular values being zero.

The singular value decomposition (SVD) is a matrix expression of the rela-
tions (4.24). Let U be the m ×m matrix whose columns are the left singular
vectors uk (as in (4.9)). The orthonormality relations u∗juk = δjk are equivalent
to U being an orthogonal matrix: U∗U = I. Similarly, we can form the orthog-
onal n× n matrix, V , whose columns are the right singular vectors vk. Finally,
the m × n matrix, Σ, has the singular values on its diagonal (with somewhat
unfortunate notation), σjj = σj , and zeros off the diagonal, σjk = 0 if j 6= k.
With these definitions, the relations (4.24) are equivalent to AV = UΣ, which
more often is written

A = UΣV ∗ . (4.28)

This the singular value decomposition. Any matrix may be factored, or decom-
posed, into the product of the form (4.28) where U is an m × m orthogonal
matrix, Σ is an m × n diagonal matrix with nonnegative entries, and V is an
n× n orthogonal matrix.

A calculation shows that A∗A = V Σ∗ΣV ∗ = V ΛV ∗. This implies that the
eigenvalues of A∗A are given by λj = σ2

j and the right singular vectors of A
are the eigenvectors of A∗A. It also implies that κl2(A∗A) = κl2(A)2. This
means that the condition number of solving the normal equations (4.22) is the
square of the condition number of the original least squares problem (4.21).
If the condition number of a least squares problem is κl2(A) = 105, even the
best solution algorithm can amplify errors by a factor of 105. Solving using the
normal equations can amplify rounding errors by a factor of 1010.

Many people call singular vectors uk and vk principal components. They
refer to the singular value decomposition as principal component analysis, or
PCA. One application is clustering, in which you have n objects, each with m
measurements, and you want to separate them into two clusters, say “girls”
and “boys”. You assemble the data into a matrix, A, and compute, say, the
largest two singular values and corresponding left singular vectors, u1 ∈ Rm

and u2 ∈ Rm. The data for object k is ak ∈ Rm, and you compute zk ∈ R2 by
zk1 = u∗1ak and zk2 = u∗2ak, the components of ak in the principal component
directions. You then plot the n points zk in the plane and look for clusters, or
maybe just a line that separates one group of points from another. Surprising
as may seem, this simple procedure does identify clusters in practical problems.

4.3 Condition number

Ill-conditioning can be a serious problem in numerical solution of problems in
linear algebra. We take into account possible ill-conditioning when we choose
computational strategies. For example, the matrix exponential exp(A) (see
Exercise 12) can be computed using the eigenvectors and eigenvalues of A. We
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will see in Section 4.3.3 that the eigenvalue problem may be ill conditioned even
when the problem of computing exp(A) is fine. In such cases we need a way to
compute exp(A) that does not use the eigenvectors and eigenvalues of A.

As we said in Section 2.7 (in slightly different notation), the condition num-
ber is the ratio of the change in the answer to the change in the problem data,
with (i) both changed measured in relative terms, and (ii) the change in the
problem data being small. Norms allow us to make this definition more precise
in the case of multivariate functions and data. Let f(x) represent m functions
of n variables, with ∆x being a change in x and ∆f = f(x + ∆x) − f(x) the
corresponding change in f . The size of ∆x, relative to x is ‖∆x‖ / ‖x‖, and
similarly for ∆f . In the multivariate case, the size of ∆f depends not only on
the size of ∆x, but also on the direction. The norm based condition number
seeks the worst case ∆x, which leads to

κ(x) = lim
ε→0

max
‖∆x‖=ε

‖f(x+∆x)−f(x)‖
‖f(x)‖
‖∆x‖
‖x‖

. (4.29)

Except for the maximization over directions ∆x with ‖∆x‖ = ε, this is the same
as the earlier definition 2.8.

Still following Section 2.7, we express (4.29) in terms of derivatives of f . We
let f ′(x) represent the m×n Jacobian matrix of first partial derivatives of f , as in
Section 4.2.6, so that, ∆f = f ′(x)∆x+O

(
‖∆x‖2

)
. Since O

(
‖∆x‖2

)
/ ‖∆x‖ =

O (‖∆x‖), the ratio in (4.29) may be written

‖∆f‖
‖∆x‖

· ‖x‖
‖f‖

=
‖f ′(x)∆x‖
‖∆x‖

· ‖x‖
‖f‖

+O (‖∆x‖) .

The second term on the right disappears as ∆x→ 0. Maximizing the first term
on the right over ∆x yields the norm of the matrix f ′(x). Altogether, we have

κ(x) = ‖f ′(x)‖ · ‖x‖
‖f(x)‖

. (4.30)

This differs from the earlier condition number definition (2.10) in that it uses
norms and maximizes over ∆x with ‖∆x‖ = ε.

In specific calculations we often use a slightly more complicated way of stat-
ing the definition (4.29). Suppose that P and Q are two positive quantities and
there is a C so that P ≤ C · Q. We say that C is the sharp constant if there
is no C ′ with C ′ < C so that P ≤ C ′ ·Q. For example, we have the inequality
sin(2ε) ≤ 3 · ε for all x. But C = 3 is not the sharp constant because the in-
equality also is true with C ′ = 2, which is sharp. But this definition is clumsy,
for example, if we ask for the sharp constant in the inequality tan(ε) ≤ C · ε.
For one thing, we must restrict to ε→ 0. The sharp constant should be C = 1
because if C ′ > 1, there is an ε0 so that if ε ≤ ε0, then tan(ε) ≤ C ′ · ε. But the
inequality is not true with C = 1 for any ε. Therefore we write

P (ε)
≤
∼
CQ(ε) as ε→ 0 (4.31)
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if

lim
ε→0

P (ε)
Q(ε)

≤ C .

In particular, we can seek the sharp constant, the smallest C so that

P (ε) ≤ C ·Q(ε) +O(ε) as ε→ 0.

The definition (??) is precisely that κ(x) is the sharp constant in the inequality

‖∆f‖
‖f‖

≤
∼
‖∆x‖
‖x‖

as ‖x‖ → 0. (4.32)

4.3.1 Linear systems, direct estimates

We start with the condition number of calculating b = Au in terms of u with A
fixed. This fits into the general framework above, with u playing the role of x,
and Au of f(x). Of course, A is the Jacobian of the function u→ Au, so (4.30)
gives

κ(A, u) = ‖A‖ · ‖u‖
‖Au‖

. (4.33)

The condition number of solving a linear system Au = b (finding u as a function
of b) is the same as the condition number of the computation u = A−1b. The
formula (4.33) gives this as

κ(A−1, b) =
∥∥A−1

∥∥ · ‖b‖
‖A−1b‖

= ‖A−1‖ · ‖Au‖
‖u‖

.

For future reference, not that this is not the same as (4.33).
The traditional definition of the condition number of the Au computation

takes the worst case relative error not only over perturbations ∆u but also over
vectors u. Taking the maximum over ∆u led to (4.33), so we need only maximize
it over u:

κ(A) = ‖A‖ ·max
u6=0

‖u‖
‖Au‖

. (4.34)

Since A(u+ ∆u)−Au = A∆u, and u and ∆u are independent variables, this is
the same as

κ(A) = max
u6=0

‖u‖
‖Au‖

· max
∆u6=0

‖A∆u‖
‖∆u‖

. (4.35)

To evaluate the maximum, we suppose A−1 exists.13 Substituting Au = v,
u = A−1v, gives

max
u6=0

‖u‖
‖Au‖

= max
v 6=0

∥∥A−1v
∥∥

‖v‖
=
∥∥A−1

∥∥ .
13See exercise 8 for a the l2 condition number of the u → Au problem with singular or

non-square A.



84 CHAPTER 4. LINEAR ALGEBRA I, THEORY AND CONDITIONING

Thus, (4.34) leads to

κ(A) = ‖A‖
∥∥A−1

∥∥ (4.36)

as the worst case condition number of the forward problem.
The computation b = Au with

A =
(

1000 0
0 10

)
illustrates this discussion. The error amplification relates ‖∆b‖ / ‖b‖ to ‖∆u‖ / ‖u‖.
The worst case would make ‖b‖ small relative to ‖u‖ and ‖∆b‖ large relative
to ‖∆u‖: amplify u the least and ∆u the most. This is achieved by taking

u =
(

0
1

)
so that Au =

(
0

10

)
with amplification factor 10, and ∆u =

(
ε
0

)
with A∆u =

(
1000ε

0

)
and amplification factor 1000. This makes ‖∆b‖ / ‖b‖

100 times larger than ‖∆u‖ / ‖u‖. For the condition number of calculating

u = A−1b, the worst case is b =
(

0
1

)
and ∆b =

(
ε
0

)
, which amplifies the error

by the same factor of κ(A) = 100.
The informal condition number (4.34) has advantages and disadvantages over

the more formal one (4.33). At the time we design a computational strategy,
it may be easier to estimate the informal condition number than the formal
one, as we may know more about A than u. If we have no idea what u will
come up, we have a reasonable chance of getting something like the worst one.
Moreover, κ(A) defined by (4.34) determines the convergence rate of iterative
strategies for solving linear systems involving A. On the other hand, there are
cases, particularly when solving partial differential equations, where κ(A) is
much more pessimistic than κ(A, u). For example, in Exercise 11, κ(A) is on
the order of n2, where n is the number of unknowns. The truncation error for
the second order discretization is on the order of 1/n2. A naive estimate using
(4.34) might suggest that solving the system amplifies the O(n−2) truncation
error by a factor of n2 to be on the same order as the solution itself. This does
not happen because the u we seek is smooth, and not like the worst case.

The informal condition number (4.36) also has the strange feature than
κ(A) = κ(A−1), since

(
A−1

)−1 = A. For one thing, this is not true, even using
informal definitions, for nonlinear problems. Moreover, it is untrue in important
linear problems, such as the heat equation.14 Computing the solution at time
t > 0 from “initial data” at time zero is a linear process that is well conditioned
and numerically stable. Computing the solution at time zero from the solution
at time t > 0 is so ill conditioned as to be essentially impossible. Again, the
more precise definition (4.33) does not have this drawback.

14See, for example, the book by Fritz John on partial differential equations.
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4.3.2 Linear systems, perturbation theory

If Au = b, we can study the dependence of u on A through perturbation theory.
The starting point is the perturbation formula (4.17). Taking norms gives

‖∆u‖
<
≈
∥∥A−1

∥∥ ‖∆A‖ ‖u‖ , (for small ∆A), (4.37)

so
‖∆u‖
‖u‖

<
≈
∥∥A−1

∥∥ ‖A‖ · ‖∆A‖
‖A‖

(4.38)

This shows that the condition number satisfies κ ≤
∥∥A−1

∥∥ ‖A‖. The condition
number is equal to

∥∥A−1
∥∥ ‖A‖ if the inequality (4.37) is (approximately for small

∆A) sharp, which it is because we can take ∆A = εI and u to be a maximum
stretch vector for A−1.

We summarize with a few remarks. First, the condition number formula
(4.36) applies to the problem of solving the linear system Au = b both when we
consider perturbations in b and in A, though the derivations here are different.
However, this is not the condition number in the strict sense of (4.29) and
(4.30) because the formula (4.36) assumes taking the worst case over a family of
problems (varying b in this case), not just over all possible small perturbations in
the data. Second, the formula (4.36) is independent of the size of A. Replacing
A with cA leaves κ(A) unchanged. What matters is the ratio of the maximum
to minimum stretch, as in (4.35).

4.3.3 Eigenvalues and eigenvectors

The eigenvalue relationship is Arj = λjrj . Perturbation theory allows to esti-
mate the changes in λj and rj that result from a small ∆A. These perturbation
results are used throughout science and engineering. We begin with the sym-
metric or self-adjoint case, it often is called Rayleigh Schödinger perturbation
theory15 Using the virtual perturbation method of Section 4.2.6, differentiating
the eigenvalue relation using the product rule yields

Ȧrj +Aṙj = λ̇jrj + λj ṙj . (4.39)

Multiply this from the left by r∗j and use the fact that r∗j is a left eigenvector16

gives
r∗j Ȧjrj = λ̇lr

∗
j rj .

If rj is normalized so that r∗j rj = ‖rj‖2l2 = 1, then the right side is just λ̇j .
Trading virtual perturbations for actual small perturbations turns this into the
famous formula

∆λj = r∗j ∆A rj + O
(
‖∆A‖2

)
. (4.40)

15Lord Rayleigh used it to study vibrational frequencies of plates and shells. Later Erwin
Schrödinger used it to compute energies (which are eigenvalues) in quantum mechanics.

16Arj = λjrj ⇒ (Arj)∗ = (λjrj)∗ ⇒ r∗jA = λjr
∗
j since A∗ = A and λj is real.
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We get a condition number estimate by recasting this in terms of rela-
tive errors on both sides. The important observation is that ‖rj‖l2 = 1, so
‖∆A · rj‖l2 ≤ ‖∆A‖l2 and finally∣∣r∗j ∆A rj

∣∣ ≤≈ ‖∆A‖l2 .

This inequality is sharp because we can take ∆A = εrjr
∗
j , which is an n × n

matrix with (see exercise 7)
∥∥εrjr∗j∥∥l2 = |ε|. Putting this into (4.40) gives the

also sharp inequality, ∣∣∣∣∆λjλj

∣∣∣∣ ≤ ‖A‖l2|λj |
‖∆A‖l2
‖A‖l2

.

We can put this directly into the abstract condition number definition (4.29) to
get the conditioning of λj :

κj(A) =
‖A‖l2
|λj |

=
|λ|max

|λj |
(4.41)

Here, κj(A) denotes the condition number of the problem of computing λj ,
which is a function of the matrix A, and ‖A‖l2 = |λ|max refers to the eigenvalue
of largest absolute value.

The condition number formula (4.41) predicts the sizes of errors we get in
practice. Presumably λj depends in some way on all the entries of A and the
perturbations due to roundoff will be on the order of the entries themselves,
multiplied by the machine precision, εmach, which are on the order of ‖A‖. Only
if λj is very close to zero, by comparison with |λmax|, will it be hard to compute
with high relative accuracy. All of the other eigenvalue and eigenvector problems
have much worse condition number difficulties.

The eigenvalue problem for non-symmetric matrices can by much more sen-
sitive. To derive the analogue of (4.40) for non-symmetric matrices we start
with (4.39) and multiply from the left with the corresponding left eigenvector,
lj . After simplifying, the result is

λ̇j = ljȦrj , ∆λj = lj∆Arj +O
(
‖∆A‖2

)
. (4.42)

In the non-symmetric case, the eigenvectors need not be orthogonal and the
eigenvector matrix R need not be well conditioned. For this reason, it is possible
that lk, which is a row of R−1 is very large. Working from (4.42) as we did for
the symmetric case leads to∣∣∣∣∆λjλj

∣∣∣∣ ≤ κLS(R)
‖A‖
|λj |
‖∆A‖
‖A‖

.

Here κLS(R) =
∥∥R−1

∥∥ ‖R‖ is the linear systems condition number of the right
eigenvector matrix. Therefore, the condition number of the non-symmetric
eigenvalue problem is (again because the inequalities are sharp)

κj(A) = κLS(R)
‖A‖
|λj |

. (4.43)
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Since A is not symmetric, we cannot replace ‖A‖ by |λ|max as we did for (4.41).
In the symmetric case, the only reason for ill-conditioning is that we are looking
for a (relatively) tiny number. For non-symmetric matrices, it is also possible
that the eigenvector matrix is ill-conditioned. It is possible to show that if
a family of matrices approaches a matrix with a Jordan block, the condition
number of R approaches infinity. For a symmetric or self-adjoint matrix, R is
orthogonal or unitary, so that ‖R‖l2 = ‖R∗‖l2 = 1 and κLS(R) = 1.

The eigenvector perturbation theory uses the same ideas, with the extra
trick of expanding the derivatives of the eigenvectors in terms of the eigenvectors
themselves. We expand the virtual perturbation ṙj in terms of the eigenvectors
rk. Call the expansion coefficients mjk, and we have

ṙj =
n∑
l=1

mjlrl .

For the symmetric eigenvalue problem, if all the eigenvalues are distinct, the
formula follows from multiplying (4.39) from the left by r∗k:

mjk =
r∗kȦrj
λj − λk

,

so that
∆rj =

∑
k 6=j

r∗k∆Arj
λj − λk

+O
(
‖∆A‖2

)
.

(The term j = k is omitted because mjj = 0: differentiating r∗j rj = 1 gives
r∗j ṙj = 0.) This shows that the eigenvectors have condition number “issues”
even when the eigenvalues are well-conditioned, if the eigenvalues are close to
each other. Since the eigenvectors are not uniquely determined when eigenvalues
are equal, this seems plausible. The unsymmetric matrix perturbation formula
is

mkj =
ljȦrk
λj − λk

.

Again, we have the potential problem of an ill-conditioned eigenvector basis,
combined with the possibility of close eigenvalues. The conclusion is that the
eigenvector conditioning can be problematic, even though the eigenvalues are
fine, for closely spaced eigenvalues.

4.4 Software

4.4.1 Software for numerical linear algebra

There have been major government-funded efforts to produce high quality soft-
ware for numerical linear algebra. This culminated in the public domain software
package LAPack. LAPack is a combination and extension of earlier packages
Eispack, for solving eigenvalue problems, and Linpack, for solving systems of
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equations. Many of the high quality components of Eispack and Linpack also
were incorporated into Matlab, which accounts for the high quality of Matlab
linear algebra routines.

Our software advice is to use LAPack or Matlab software for computational
linear algebra whenever possible. It is worth the effort in coax the LAPack make
files to work in a particular computing environment. You may avoid wasting
time coding algorithms that have been coded thousands of times before, or
you may avoid suffering from the subtle bugs of the codes you got from next
door that came from who knows where. The professional software often does it
better, for example using balancing algorithms to improve condition numbers.
The professional software also has clever condition number estimates that often
are more sophisticated than the basic algorithms themselves.

4.4.2 Test condition numbers

Part of the error flag in linear algebra computation is the condition number.
Accurate computation of the condition number may be more expensive than
the problem at hand. For example, computing ‖A‖

∥∥A−1
∥∥ is more several times

more expensive than solving Ax = b. However, there are cheap heuristics that
generally are reliable, at least for identifying severe ill-conditioning. If the con-
dition number is so large that all relative accuracy in the data is lost, the routine
should return an error flag. Using such condition number estimates makes the
code slightly slower, but it makes the computed results much more trustworthy.

4.5 Resources and further reading

If you need to review linear algebra, the Schaum’s Outline review book on Lin-
ear Algebra may be useful. For a practical introduction to linear algebra written
by a numerical analyst, try the book by Gilbert Strang. More theoretical treat-
ments may be found in the book by Peter Lax or the one by Paul Halmos.
An excellent discussion of condition number is given in the SIAM lecture notes
of Lloyd N. Trefethen. Beresford Parlett has a nice but somewhat out-of-date
book on the theory and computational methods for the symmetric eigenvalue
problem. The Linear Algebra book by Peter Lax also has a beautiful discussion
of eigenvalue perturbation theory and some of its applications. More applica-
tions may be found in the book Theory of Sound by Lord Rayleigh (reprinted
by Dover Press) and in any book on quantum mechanics. I do not know an ele-
mentary book that covers perturbation theory for the non-symmetric eigenvalue
problem in a simple way.

The software repository Netlib, http://netlib.org, is a source for LAPack.
Other sources of linear algebra software, including Mathematica and Numeri-
cal Recipes, are not recommended. Netlib also has some of the best available
software for solving sparse linear algebra problems.
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4.6 Exercises

1. Let L be the differentiation operator that takes P3 to P2 described in
Section 4.2.2. Let fk = Hk(x) for k = 0, 1, 2, 3 be the Hermite polynomial
basis of P3 and gk = Hk(x) for k = 0, 1, 2 be the Hermite basis of P2.
What is the matrix, A, that represents this L in these bases?

2. Suppose L is a linear transformation from V to V and that f1, . . ., fn,
and g1, . . ., gn are two bases of V . Any u ∈ V may be written in a unique
way as u =

∑n
k=1 vkfk, or as u =

∑n
k=1 wkgk. There is an n× n matrix,

R that relates the fk expansion coefficients vk to the gk coefficients wk by
vj =

∑n
k=1 rjkwk. If v and w are the column vectors with components vk

and wk respectively, then v = Rw. Let A represent L in the fk basis and
B represent L in the gk basis.

(a) Show that B = R−1AR.

(b) For V = P3, and fk = xk, and gk = Hk, find R.

(c) Let L be the linear transformation Lp = q with q(x) = ∂x(xp(x)).
Find the matrix, A, that represents L in the monomial basis fk.

(d) Find the matrix, B, that represents L in the Hermite polynomial
basis Hk.

(e) Multiply the matrices to check explicitly that B = R−1AR in this
case.

3. If A is an n ×m matrix and B is an m × l matrix, then AB is an n × l
matrix. Show that (AB)∗ = B∗A∗. Note that the incorrect suggestion
A∗B∗ in general is not compatible for matrix multiplication.

4. Let V = Rn and M be an n × n real matrix. This exercise shows that
‖u‖ = (u∗Mu)1/2 is a vector norm whenever M is positive definite (defined
below).

(a) Show that u∗Mu = u∗M∗u = u∗
(

1
2 (M +M∗)

)
u for all u ∈ V . This

means that as long as we consider functions of the form f(u) = u∗Mu,
we may assume M is symmetric. For the rest of this question, assume
M is symmetric. Hint: u∗Mu is a 1 × 1 matrix and therefore equal
to its transpose.

(b) Show that the function ‖u‖ = (u∗Mu)1/2 is homogeneous: ‖xu‖ =
|x| ‖u‖.

(c) We say M is positive definite if u∗Mu > 0 whenever u 6= 0. Show
that if M is positive definite, then ‖u‖ ≥ 0 for all u and ‖u‖ = 0 only
for u = 0.

(d) Show that ifM is symmetric and positive definite (SPD), then |u∗Mv| ≤
‖u‖ ‖v‖. This is the Cauchy Schwartz inequality. Hint (a famous old
trick): φ(t) = (u+ tv)∗M(u+ tv) is a quadratic function of t that is
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non-negative for all t if M is positive definite. The Cauchy Schwartz
inequality follows from requiring that the minimum value of φ is not
negative, assuming M∗ = M .

(e) Use the Cauchy Schwartz inequality to verify the triangle inequality
in its squared form ‖u+ v‖2 ≤ ‖u‖2 + 2 ‖u‖ ‖u‖+ ‖v‖2.

(f) Show that if M = I then ‖u‖ is the l2 norm of u.

5. Verify that ‖p‖ defined by (4.3) on V = P3 is a norm as long as a < b.

6. Suppose A is the n×n matrix that represents a linear transformation from
Rn to Rn in the standard basis ek. Let B be the matrix of the same linear
transformation in the scaled basis (4.5).

(a) Find a formula for the entries bjk in terms of the ajk and uk.

(b) Find a matrix formula for B in terms of A and the diagonal scaling
matrix W = diag(uk) (defined by wkk = uk, wjk = 0 if j 6= k) and
W−1.

7. Show that if u ∈ Rm and v ∈ Rn and A = uv∗, then ‖A‖l2 = ‖u‖l2 · ‖v‖l2 .
Hint: Note that Aw = mu where m is a scalar, so ‖Aw‖l2 = |m| · ‖u‖l2 .
Also, be aware of the Cauchy Schwarz inequality: |v∗w| ≤ ‖v‖l2 ‖w‖l2 .

8. Suppose that A is an n× n invertible matrix. Show that

∥∥A−1
∥∥ = max

u6=0

‖u‖
‖Au‖

=
(

min
u6=0

‖Au‖
‖u‖

)−1

.

9. The symmetric part of the real n × n matrix is M = 1
2 (A+A∗). Show

that 5
(

1
2x
∗Ax

)
= Mx.

10. The informal condition number of the problem of computing the action of
A is

κ(A) = max
x 6=0, ∆x 6=0

‖A(x+∆x)−Ax‖
‖Ax‖
‖x+∆x‖
‖x‖

.

Alternatively, it is the sharp constant in the estimate

‖A(x+ ∆x)−Ax‖
‖Ax‖

≤ C · ‖x+ ∆x‖
‖x‖

,

which bounds the worst case relative change in the answer in terms of the
relative change in the data. Show that for the l2 norm,

κ = σmax/σmin ,

the ratio of the largest to smallest singular value of A. Show that this
formula holds even when A is not square.
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11. We wish to solve the boundary value problem for the differential equation

1
2
∂2
xu = f(x) for 0 < x < 1, (4.44)

with boundary conditions

u(0) = u(1) = 0 . (4.45)

We discretize the interval [0, 1] using a uniform grid of points xj = j∆x
with n∆x = 1. The n− 1 unknowns, Uj , are approximations to u(xj), for
j = 1, . . . , n− 1. If we use a second order approximation to 1

2∂
2
xu, we get

discrete equations

1
2

1
∆x2

(Uj+1 − 2Uj + Uj−1) = f(xj) = Fj . (4.46)

Together with boundary conditions U0 = Un = 0, this is a system of
n − 1 linear equations for the vector U = (U1, . . . , Un−1)∗ that we write
as AU = F .

(a) Check that there are n−1 distinct eigenvectors of A having the form
rkj = sin(kπxj). Here rkj is the j component of eigenvector rk.
Note that rk,j+1 = sin(kπxj+1) = sin(kπ(xj + ∆x)), which can be
evaluated in terms of rkj using trigonometric identities.

(b) Use the eigenvalue information from part (a) to show that
∥∥A−1

∥∥→
2/π2 as n→∞ and κ(A) = O(n2) (in the informal sense) as n→∞.
All norms are l2.

(c) Suppose Ũj = u(xj) where u(x) is the exact but unknown solution
of (4.44), (4.45). Show that if u(x) is smooth then the residual17,
R = AŨ − F , satisfies ‖R‖ = O(∆x2) = O(1/n2). For this to be
true we have to adjust the definition of ‖U‖ to be consistent with
the L2 integral ‖u‖2L2 =

∫ 1

x=0
u2(x)dx. The discrete approximation

is ‖U‖2l2 = ∆x
∑n
k=1 U

2
j .

(d) Show that A
(
U − Ũ

)
= R. Use part (b) to show that

∥∥∥U − Ũ∥∥∥ =

O(∆x2) (with the ∆x modified ‖·‖).
(e) (harder) Create a fourth order five point central difference approxi-

mation to ∂2
xu. You can do this using Richardson extrapolation from

the second order three point formula. Use this to find an A so that
solving AU = F leads to a fourth order accurate U . The hard part is
what to do at j = 1 and j = n− 1. At j = 1 the five point approxi-
mation to ∂2

xu involves U0 and U−1. It is fine to take U0 = u(0) = 0.
Is it OK to take U−1 = −U1?

17Residual refers to the extent to which equations are not satisfied. Here, the equation is

AU = F , which Ũ does not satisfy, so R = AŨ − F is the residual.
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(f) Write a program in Matlab to solve AU = F for the second order
method. The matrix A is symmetric and tridiagonal (has nonzeros
only on three diagonals, the main diagonal, and the immediate sub
and super diagonals). Use the Matlab matrix operation appropriate
for symmetric positive definite tridiagonal matrices. Do a conver-
gence study to show that the results are second order accurate.

(g) (extra credit) Program the fourth order method and check that the
results are fourth order when f(x) = sin(πx) but not when f(x) =
max(0, .15− (x− .5)2). Why are the results different?

12. This exercise explores conditioning of the non-symmetric eigenvalue prob-
lem. It shows that although the problem of computing the fundamental
solution is well-conditioned, computing it using eigenvalues and eigen-
vectors can be an unstable algorithm because the problem of computing
eigenvalues and eigenvectors is ill-conditioned. For parameters 0 < λ < µ,
there is a Markov chain transition rate matrix, A, whose entries are ajk = 0
if |j − k| > 1 If 1 ≤ j ≤ n− 2, aj,j−1 = µ, ajj = −(λ+ µ), and aj,j+1 = λ
(taking j and k to run from 0 to n − 1). The other cases are a00 = −λ,
a01 = λ, an−1,n−1 = −µ, and an−1,n−2 = µ. This matrix describes a
continuous time Markov process with a random walker whose position at
time t is the integer X(t). Transitions X → X + 1 happen with rate λ
and transitions X → X − 1 have rate µ. The transitions 0 → −1 and
n − 1 → n are not allowed. This is the M/M/1 queue used in operations
research to model queues (X(t) is the number of customers in the queue
at time t, λ is the rate of arrival of new customers, µ is the service rate. A
customer arrival is an X → X+1 transition.). For each t, we can consider
the row vector p(t) = (p1(t), . . . , pn(t)) where pj(t) = Prob(X(t) = j).
These probabilities satisfy the differential equation ṗ = d

dtp = pA. The
solution can be written in terms of the fundamental solution, S(t), which
in an n× n matrix that satisfies Ṡ = SA, S(0) = I.

(a) Show that if Ṡ = SA, S(0) = I, then p(t) = p(0)S(t).

(b) The matrix exponential may be defined through the Taylor series
exp(B) =

∑∞
k=0

1
k!B

k. Use matrix norms and the fact that
∥∥Bk∥∥ ≤

‖B‖k to show that the infinite sum of matrices converges.

(c) Show that the fundamental solution is given by S(t) = exp(tA). Top
do this, it is enough to show that exp(tA) satisfies the differential
equation d

dt exp(tA) = exp(tA)A using the infinite series, and show
exp(0A) = I.

(d) Suppose A = LΛR is the eigenvalue and eigenvector decomposition of
A, show that exp(tA) = L exp(tΛ)R, and that exp(tΛ) is the obvious
diagonal matrix.

(e) Use the Matlab function [R,Lam] = eig(A); to calculate the eigen-
values and right eigenvector matrix of A. Let rk be the kth column
of R. For k = 1, . . . , n, print rk, Ark, λkrk, and ‖λk −Ark‖ (you
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choose the norm). Mathematically, one of the eigenvectors is a mul-
tiple of the vector 1 defined in part h. The corresponding eigenvalue
is λ = 0. The computed eigenvalue is not exactly zero. Take n = 4
for this, but do not hard wire n = 4 into the Matlab code.

(f) Let L = R−1, which can be computed in Matlab using L=R^(-1);.
Let lk be the kth row of L, check that the lk are left eigenvectors of
A as in part e. Corresponding to λ = 0 is a left eigenvector that is a
multiple of p∞ from part h. Check this.

(g) Write a program in Matlab to calculate S(t) using the eigenvalues and
eigenvectors of A as above. Compare the results to those obtained
using the Matlab built in function S = expm(t*A);. Use the values
λ = 1, µ = 4, t = 1, and n ranging from n = 4 to n = 80. Compare
the two computed Ŝ(t) (one using eigenvalues, the other just using
expm) using the l1 matrix norm. Use the Matlab routine cond(R) to
compute the condition number of the eigenvector matrix, R. Print
three columns of numbers, n, error, condition number. Comment on
the quantitative relation between the error and the condition number.

(h) Here we figure out which of the answers is correct. To do this, use the
known fact that limt→∞ S(t) = S∞ has the simple form S∞ = 1p∞,
where 1 is the column vector with all ones, and p∞ is the row vector
with p∞,j = ((1 − r)/(1 − rn))rj , with r = λ/µ. Take t = 3 ∗ n
(which is close enough to t = ∞ for this purpose) and the same
values of n and see which version of S(t) is correct. What can you
say about the stability of computing the matrix exponential using
the ill conditioned eigenvalue/eigenvector problem?

13. This exercise explores eigenvalue and eigenvector perturbation theory for
the matrix A defined in exercise 12. Let B be the n × n matrix with
bjk = 0 for all (j, k) except b00 = −1 and b1,n−1 = 1 (as in exercise 12,
indices run from j = 0 to j = n − 1). Define A(s) = A + sB, so that
A(0) = A and dA(s)

ds = B when s = 0.

(a) For n = 20, print the eigenvalues of A(s) for s = 0 and s = .1.
What does this say about the condition number of the eigenvalue
eigenvector problem? All the eigenvalues of a real tridiagonal matrix
are real18 but that A(s = .1) is not tridiagonal and its eigenvalues
are not real.

(b) Use first order eigenvalue perturbation theory to calculate λ̇k = d
dsλk

when s = 0. What size s do you need for ∆λk to be accurately
approximated by sλ̇k? Try n = 5 and n = 20. Note that first order
perturbation theory always predicts that eigenvalues stay real, so
s = .1 is much too large for n = 20.

18It is easy to see that if A is tridiagonal then there is a diagonal matrix, W , so thatWAW−1

is symmetric. Therefore, A has the same eigenvalues as the symmetric matrix WAW−1.
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5.1 Introduction

As we say earlier, many algorithms of numerical linear algebra may be for-
mulated as ways to calculate matrix factorizations. This point of view gives
conceptual insight. Since computing the factorization is usually much more ex-
pensive than using it, storing the factors makes it possible, for example, to solve
many systems of equations, Ax = b, with the same the same A but different b
(and therefore different x), faster than if we had started over each time. Finally,
when we seek high performance, we might take advantage of alternative ways
to organize computations of the factors.

This chapter does not cover the many factorization algorithms in great detail.
This material is available, for example, in the book of Golub and van Loan and
many other places. My aim is to make the reader aware of what the computer
does (roughly), and how long it should take. First I explain how the classical
Gaussian elimination algorithm may be viewed as a matrix factorization, the
LU factorization. The algorithm presented is not the practical one because it
does not include “pivoting”. Next, I discuss the Choleski (LL∗) decomposi-
tion, which is a natural version of LU for symmetric positive definite matrices.
Understanding the details of the Choleski decomposition will be useful later
when we study optimization methods and still later when we discuss sampling
multivariate normal random variables with correlations. Finally, we show how
to compute matrix factorizations, such as the QR decomposition, that lead to
orthogonal matrices.

5.2 Gauss elimination and the LU decomposi-
tion

Gauss elimination is a simple systematic way to solve systems of linear equations.
For example, suppose we have the system of equations

e1 : 2x+ y + z = 4 ,
e2 : x+ 2y + z = 3 ,
e3 : x+ y + 2z = 4 .

To find the values of x, y, and z, we first try to write equations that contain fewer
variables, and eventually just one. We can “eliminate” x from the equation e2

by subtracting 1
2 of both sides of e1 from e2.

e′2 : x+ 2y + z − 1
2

(2x+ y + z) = 3− 1
2
· 4 ,

Which involves just y and z:

e′2 :
3
2
y +

1
2
z = 2 .
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We can do the same to eliminate x from e3, subtracting 1
2 of each side of e1

from the corresponding side of e3:

e′3 : x+ y + 2z − 1
2

(2x+ y + z) = 4− 1
2
· 4 ,

which gives

e′3 :
1
2
y +

3
2
z = 2 .

We now have a pair of equations, e′2, and e′3 that involve only y and z. We
can use e′2 to eliminate y from e3; we subtract 1

3 of each side of e′2 from the
corresponding side of e′3 to get:

e′′3 :
1
2
y +

3
2
z − 1

3
(
3
2
y +

1
2
z) = 2− 1

3
· 2 ,

which simplifies to:

e′′3 :
4
3
z =

5
3
.

This completes the elimination phase. In the “back substitution” phase we
successively find the values of z, y, and x. First, from e′′3 we immediately find

z =
5
4
.

Then we use e′2 (not e′3) to get y:

3
2
y +

1
2
· 5

4
= 1 =⇒ y =

1
4
.

Lastly, e1 yields x:

2x+
1
4

+
5
4

= 4 =⇒ x =
9
4
.

The reader can (and should) check that x = 9
4 , y = 1

4 , and z = 5
4 satisfies the

original equations e1, e2, and e3.
The above steps may be formulated in matrix terms. The equations, e1, e2,

and e3, may be assembled into a single equation involving a matrix and two
vectors:  2 1 1

1 2 1
1 1 2

 ·
 x

y
z

 =

 4
3
4

 .

The operation of eliminating x from the second equation may be carried out by
multiplying this equation from the left on both sides by the elementary matrix

E21 =

 1 0 0
− 1

2 1 0
0 0 1

 . (5.1)
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The result is 1 0 0
− 1

2 1 0
0 0 1

 ·
 2 1 1

1 2 1
1 1 2

 ·
 x

y
z

 =

 1 0 0
− 1

2 1 0
0 0 1

 ·
 4

3
4

 .

Doing the matrix multiplication gives 2 1 1
0 3

2
1
2

1 1 2

 ·
 x

y
z

 =

 4
1
4

 .

Note that the middle row of the matrix contains the coefficients from e′2. Simi-
larly, the effect of eliminating x from e3 comes from multiplying both sides from
the left by the elementary matrix

E31 =

 1 0 0
0 1 0
− 1

2 0 1

 .

This gives 1 0 0
0 1 0
− 1

2 0 1

 ·
 2 1 1

0 3
2

1
2

1 1 2

 ·
 x

y
z

 =

 1 0 0
0 1 0
− 1

2 0 1

 ·
 4

1
4

 ,

which multiplies out to become 2 1 1
0 3

2
1
2

0 1
2

3
2

 ·
 x

y
z

 =

 4
1
2

 .

This is the matrix form of three equations e1, e′2, and e′3. The last elimination
step removes y from the last equation using

E32 =

 1 0 0
0 1 0
0 − 1

3 1

 .

This gives 1 0 0
0 1 0
0 − 1

3 1

 ·
 2 1 1

0 3
2

1
2

0 1
2

3
2

 ·
 x

y
z

 =

 1 0 0
0 1 0
0 − 1

3 1

 ·
 4

1
2

 ,

which multiplies out to be 2 1 1
0 3

2
1
2

0 0 4
3

 ·
 x

y
z

 =

 4
1
5
3

 . (5.2)
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Because the matrix in (5.2) is upper triangular, we may solve for z, then y, then
x, as before. The matrix equation (5.2) is equivalent to the system e1, e′2, and
e′′3 .

We can summarize this sequence of multiplications with elementary matrices
by saying that we multiplied the original matrix,

A =

 2 1 1
1 2 1
1 1 2


first by E21, then by E31, then by E32 to get the upper triangular matrix

U =

 2 1 1
0 3

2
1
2

0 0 4
3

 .

This may be written formally as

E32E31E21A = U .

We turn this into a factorization of A by multiplying successively by the inverses
of the elementary matrices:

A = E−1
21 E

−1
31 E

−1
32 U .

It is easy to check that we get the inverse of an elementary matrix, Ejk simply
by reversing the sign of the number below the diagonal. For example,

E−1
31 =

 1 0 0
0 1 0
1
2 0 1


since  1 0 0

0 1 0
1
2 0 1

 ·
 1 0 0

0 1 0
− 1

2 0 1

 =

 1 0 0
0 1 0
0 0 1

 .

Also, the product of the elementary matrices just has the nonzero subdiagonal
elements of all of them in their respective positions (check this):

L = E−1
21 E

−1
31 E

−1
32

=

 1 0 0
1
2 1 0
0 0 1

 ·
 1 0 0

0 1 0
1
2 0 1

 ·
 1 0 0

0 1 0
0 1

3 1


=

 1 0 0
1
2 1 0
1
2

1
3 1
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Finally, the reader should verify that we actually have A = LU : 2 1 1
1 2 1
1 1 2

 =

 1 0 0
1
2 1 0
1
2

1
3 1

 ·
 2 1 1

0 3
2

1
2

0 0 4
3

 .

Now we know that performing Gauss elimination on the three equations e1,
e2, and e3 is equivalent to finding an LU factorization of A where the lower
triangular factor has ones on its diagonal.

Finally, we can turn this process around and seek the elements of L and U
directly from the structure of L and U . In terms of the entries of L and U , the
matrix factorization becomes 1 0 0

l21 1 0
l31 l32 1

 ·
 u11 u12 u13

0 u22 u23

0 0 u33

 =

 2 1 1
1 2 1
1 1 2

 . (5.3)

We may find the entries ljk and ujk one by one by multiplying out the product
on the left and comparing to the known element on the right. For the (1, 1)
element, we get

1 · u11 = 2 ,

Which gives u11 = 2, as we had before. With this, we may calculate either l21

from matching the (2, 1) entries, or u12 from the (1, 2) entries. The former gives

l21 · u11 = 1 ,

which, given u11 = 2, gives l21 = 1
2 . The latter gives

1 · u12 = 1 .

and then u12 = 1. These calculations show that the LU factorization, if it exists,
is unique (remembering to put ones on the diagonal of L). They also show that
there is some freedom in the order in which we compute the ljk and ujk.

We may compute the LU factors of A without knowing the right hand side 4
3
4

 .

If we know L and U and then learn the right hand side, we may find x, y, and
z in a two stage process. First, forward substitution finds x′, y′, and z′ so that

L ·

 x′

y′

z′

 =

 4
3
4

 . (5.4)

Then back substitution finds x, y, and z so that

U ·

 x
y
z

 =

 x′

y′

z′

 . (5.5)
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This vector solves the original equations because

A

 x
y
z

 = L · U ·

 x
y
z

 = L ·

 x′

y′

z′

 =

 4
3
4

 .

Since L is lower triangular, we may solve (5.4) in the forward order, first
find x′, then y′, then z′. The first equation is 1 · x′ = 4 (because l11 = 1). The
next is l21x

′ + 1 · y′ = 3, which gives y′ = 1, since l21 = 1
2 . Finally, l13 = 1

2 and
l23 = 1

3 give z′ = 5
3 .

Knowing x′, then y′, then z′, we may find x, y, and z from (5.5) in the
backward order (U being upper triangular), first z, then y, then x. First u33z =
z′, or 4

3z = 5
3 gives z = 5

4 . Then u22y + u23z = y′, or 3
2y + 1

2
5
4 = 1 gives y = 1

4 .
Then u11x + u12y + u23z = x′, or 2 · x + 1 · 1

4 + 1 · 5
4 = 4, gives x = 9

4 . The
reader will recognize that these calculations are essentially the same as the ones
at the beginning of the section, as solving a system using LU factorization is
essentially the same as using elementary Gauss elimination.

The general LU algorithm for solving linear systems should be clear from
this example. We have an n × n matrix A, and a column vector b ∈ Rn, and
we wish to find another column vector x so that Ax = b. This is equivalent
to n linear equations in the n unknowns x1, . . ., xn. We first compute the LU
decomposition of A, in one of several related ways. Then we solve a lower trian-
gular system of equations Ly = b using forward elimination. The intermediate
vector entries, y1, . . ., yn, are what we would have gotten had we applied Gauss
elimination to the right hand side and A at the same time. Finally, we perform
back substitution, finding x with Ux = y. Multiplying this by L and using
LU = a and Ly = b, we see that this x solves our problem.

Dense linear algebra computations (computations with dense matrices) like
these can take lots of computer time for large n. We make an abstract count
of the number of floating point operations involved in Gauss elimination. The
elimination process goes from k = 1 to k = n−1, at each stage removing (setting
to zero through elimination) the elements ajk for j > k by subtracting a multiple
of row k from row j. Since rows k and j at this stage have each have n−k nonzero
entries, the work for row j is n− k additions and multiplications. The number
of rows eliminated at stage k is n− 1, so the work for stage k is about (n− k)2.
The total work for all the stages is about

∑n
k=1(n − k)2 =

∑n
k=1 k

2 ≈ 1
3n

3.
Once we have L and U , the forward and backward substitutions take O(n2)
operations each, far fewer than 1

3n
3. For this reason, if we need to solve more

than one problem Ax = b with the same A, we should compute and save the
LU factors once, then use them with the different b vectors.

We can appreciate the 1
3n

3 work estimate in several ways. If the computer
time to factor an n×n matrix is T , the time for a 2n×2n matrix will be roughly
8T . Ten seconds would become a minute and twenty seconds. If a one gigahertz
computer performed one addition and multiplication per cycle, that would be
109 adds and multiplies per second. Factoring a hypothetical 50, 000 × 50, 000
matrix requires about 1

3 (50, 000)3 ≈ 40·1012 operations, which would take about
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4·104 seconds, which is about eleven hours. I doubt any desktop computer could
do it nearly that fast.

The elimination and factorization algorithms just described may fail or be
numerically unstable even when A is well conditioned. To get a stable algorithm,
we need to introduce “pivoting”. In the present context1 this means adaptively
reordering the equations or the unknowns so that the elements of L do not grow.
Details are in the references.

5.3 Choleski factorization

Many applications call for solving linear systems of equations with a symmetric
and positive definite A. An n×n matrix is positive definite if x∗Ax > 0 whenever
x 6= 0. Symmetric positive definite (SPD) matrices arise in many applications.
If B is anm×nmatrix withm ≥ n and rank(B) = n, then the product A = B∗B
is SPD. This is what happens when we solve a linear least squares problem using
the normal equations, see Section 4.2.8). If f(x) is a scalar function of x ∈ Rn,
the Hessian matrix of second partials has entries hjk(x) = ∂2f(x)/∂xj∂xk. This
is symmetric because ∂2f/∂xj∂xk = ∂2f/∂xk∂xj . The minimum of f probably
is taken at an x∗ with H(x∗) positive definite, see Chapter 6. Solving elliptic
and parabolic partial differential equations often leads to large sparse SPD linear
systems. The variance/covariance matrix of a multivariate random variable is
symmetric, and positive definite except in degenerate cases.

We will see that A is SPD if and only if A has an LU factorization with
U = L∗, i.e. A = LL∗ for a lower triangular matrix, L. This is the Choleski
factorization, or Choleski decomposition of A. As with the LU factorization, we
can find the entries of L from the equations for the entries of LL∗ = A one at
a time, in a certain order. We write it out:

l11 0 0 · · · 0

l21 l22 0 · · ·
...

l31 l32 l33
. . .

...
...

. . . 0
ln1 ln2 · · · lnn


·



l11 l21 l31 · · · ln1

0 l22 l32 · · · ln2

0 0 l33
. . .

...
...

...
. . .

0 0 · · · lnn



=



a11 a21 a31 · · · an1

a21 a22 a32 · · · an2

a31 a32 a33
. . .

...
...

...
. . .

an1 an2 · · · ann

 .

Notice that we have written, for example, a32 for the (2, 3) entry because A is
symmetric. We start with the top left corner. Doing the matrix multiplication

1The term “pivot” means something different, for example, in linear programming.
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gives
l211 = a11 =⇒ l11 =

√
a11 .

The square root is real because a11 > 0 because A is positive definite and2

a11 = e∗1Ae1. Next we match the (2, 1) entry of A. The matrix multiplication
gives:

l21l11 = a21 =⇒ l21 =
1
l11
a21 .

The denominator is not zero because l11 > 0 because a11 > 0. We could continue
in this way, to get the whole first column of L. Alternatively, we could match
(2, 2) entries to get l22:

l221 + l222 = a22 =⇒ l22 =
√
a22 − l221 .

It is possible to show (see below) that if the square root on the right is not real,
then A was not positive definite. Given l22, we can now compute the rest of the
second column of L. For example, matching (3, 2) entries gives:

l31 · l21 + l32 · l22 = a32 =⇒ l32 =
1
l22

(a32 − l31 · l21) .

Continuing in this way, we can find all the entries of L. It is clear that if L
exists and if we always use the positive square root, then all the entries of L are
uniquely determined.

A slightly different discussion of the Choleski decomposition process makes
it clear that the Choleski factorization exists whenever A is positive definite.
The algorithm above assumed the existence of a factorization and showed that
the entries of L are uniquely determined by LL∗ = A. Once we know the
factorization exists, we know the equations are solvable, in particular, that
we never try to take the square root of a negative number. This discussion
represents L as a product of elementary lower triangular matrices, a point of
view that will be useful in constructing the QR decomposition (Section 5.4).

Suppose we want to apply Gauss elimination to A and find an elementary
matrix of the type (5.1) to set a21 = a12 to zero. The matrix would be

E21 =


1 0 · · ·

−a12
a11

1 0 · · ·

0 0
. . .

...

 .

Multiplying out gives:

E21A =


a11 a12 a13 · · ·

0 a′22 a′23 · · ·
a13 a23 a33

...

 .

2Here e1 is the vector with one as its first component and all the rest zero. Similarly
akk = e∗kAek.
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Only the entries in row two have changed, with the new values indicated by
primes. Note that E21A has lost the symmetry of A. We can restore this
symmetry by multiplying from the right by E∗21 This has the effect of subtracting
a12
a11

times the first column of E21A from the second column. Since the top row
of A has not changed, this has the effect of setting the (1, 2) entry to zero:

E21AE
∗
21 =


a11 0 a13 · · ·

0 a′22 a′23 · · ·
a13 a′23 a33

...

 .

Continuing in this way, elementary matrices E31, etc. will set to zero all the
elements in the first row and top column except a11. Finally, let D1 be the
diagonal matrix which is equal to the identity except that d11 = 1/

√
a11. All in

all, this gives (D∗1 = D1):

D1En1 · · ·E31E21AE
∗
21E

∗
31 · · ·E∗n1D

∗
1 =


1 0 0 · · ·
0 a′22 a′23 · · ·
0 a′23 a′33
...

 . (5.6)

We define L1 to be the lower triangular matrix

L1 = D1En1 · · ·E31E21 ,

so the right side of (5.6) is A1 = L1AL
∗
1 (check this). It is nonsingular since

D1 and each of the elementary matrices are nonsingular. To see that A1 is
positive definite, simply define y = L∗x, and note that y 6= 0 if x 6= 0 (L1 being
nonsingular), so x∗A1x = x∗LAL∗x = y∗Ay > 0 since A is positive definite. In
particular, this implies that a′22 > 0 and we may find an L2 that sets a′22 to one
and all the a2k to zero.

Eventually, this gives Ln−1 · · ·L1AL
∗
1 · · ·L∗n−1 = I. Solving for A by revers-

ing the order of the operations leads to the desired factorization:

A = L−1
1 · · ·L

−1
n−1L

−∗
n−1 · · ·L

−∗
1 ,

where we use the common convention of writing M−∗ for the inverse of the
transpose of B, which is the same as the transpose of the inverse. Clearly, L is
given by L = L−1

1 · · ·L
−1
n−1.

All this may seem too abstract, but as with Gauss elimination from Sec-
tion 5.2, the products of inverses of elementary matrices are easy to figure out
explicitly.

Once we have the Choleski decomposition of A, we can solve systems of
equations Ax = b using forward and back substitution, as we did for the LU
factorization.
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5.4 Orthogonal matrices, least squares, and the
QR factorization

Many problems in linear algebra call for linear transformations that do not
change the l2 norm:

‖Qx‖l2 = ‖x‖l2 for all x ∈ Rn. (5.7)

A real matrix satisfying (5.7) is orthogonal, because3

‖Qx‖2l2 = (Qx)∗Qx = x∗Q∗Qx = x∗x = ‖x‖2l2 .

(Recall that Q∗Q = I is the definition of orthogonality for square matrices.)
There is a version of Gauss elimination for solving linear least squares prob-

lems that uses orthogonal matrices Qjk rather than elementary lower triangular
matrices Ejk to make A upper triangular. A related problem is constructing
an orthonormal basis for a subspace. If v1, . . . , vm span V ⊆ Rn, we desire an
orthonormal basis for V or an orthonormal basis for the orthogonal complement
of V . Finally, reductions using the Qjk are a first step in many algorithms for
finding eigenvalues and eigenvectors of symmetric matrices.

The elementary matrix E21 operates only on the top two rows of a matrix
and modifies only the second row. The Givens rotation, Q21(θ), is an orthogonal
matrix that modifies both rows one and two. As with E21, the parameter may
be chosen so that Q21A has a zero in the (2, 1) position. Suppose we have

a 2 × 2 matrix A =
(
a11 a12

a21 a22

)
, and we want an orthogonal matrix Q =(

q11 q12

q21 q22

)
so that QA = A′ =

(
a′11 a′12

a′21 a′22

)
has a′21 = 0. An orthogonal

matrix preserves angles between vectors,4 so an orthogonal matrix operating on
the plane (R2) must be a simple rotation possibly followed by a reflection about
some line (reflect on this). The 2 × 2 matrix that represents rotation through

angle θ is Q =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, so a′21 = − sin(θ)a11 + cos(θ)a21. We

achieve a′21 = 0 with the choice(
cos(θ)
sin(θ)

)
=

1√
a2

11 + a2
21

(
a11

a21

)
.

A Givens rotation, Qjk, in dimension n > 2 acts only on rows j and k of A.

3This shows an orthogonal matrix satisfies (5.7). Exercise 8 shows that a matrix satisfying
(5.7) must be orthogonal.

4The angle between vectors x and y is given by x∗y = ‖x‖ · ‖y‖ · cos(θ). This shows that
if Q preserves lengths of vectors and inner products, it also preserves angles.
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For example

Q42 =



1 0 0 0 · · ·
0 cos(θ) 0 sin(θ) 0 · · ·
0 0 1 0 · · ·
0 − sin(θ) 0 cos(θ) 0
... 0 0 0 1

. . .
...

. . . . . .


.

This is the identity matrix except for the cos(θ) and sin(θ) entries shown. The
matrix A′ = Q42A is the same as A except in rows 2 and 4. We could choose θ
to set a′42 = 0, as above.

The Givens’ elimination strategy for the least squares problem (4.21) is an
orthogonal matrix version of Gauss elimination. It is based on the observation
that orthogonal Q does not change the l2 norm of the residual: ‖Qr‖l2 = ‖r‖l2 .
That means that solving (4.21) is equivalent to solving

min
x
‖QAx−Qb‖l2 .

If we choose Q = Qjk with j > k to eliminate (set to zero) all the entries ajk
below the diagonal (j < k). Of course, we must apply the Qjk in the same order
to b. In the end, we have an equivalent problem

min
x
‖Rx− b′‖l2 , (5.8)

where R is upper triangular5:

r11 r12 · · · r1n

0 r22 · · ·
...

...
. . . . . .

0 · · · 0 rnn
0 · · · 0
...

...
0 · · · 0


·


x1

x2

...
xn


−



b′1
b′2
...
b′n
b′n+1

...
b′m


=



r′1
r′2
...
r′n
r′n+1

...
r′m


Assuming none of the diagonals rjj is zero, the best we can do is to choose x so
that the first n components of r′ are set to zero. Clearly x has no effect on the
last m− n components of r′

5.5 Projections and orthogonalization

There is a geometric interpretion of the solution to the linear least squares
problem as an orthogonal projection in the l2 norm. This section explains that

5The upper triangular part of the LU decomposition is called U while the upper triangluar
part of the QR decomposition is called R. The use of rjk for the entries of R and rj for the
entries of the residual is not unique to this book.
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interpretation and shows how to use the QR decomposition to compute other
projections and to construct a well conditioned basis for a subspace of Rn given
by linear constraints. Section 5.4 shows how to calculate this projection using
the QR decomposition of A. There are other projections tha

5.6 Rank and conditioning of a basis set

5.7 Software: Performance and cache manage-
ment

In scientific computing, performance refers to the time it takes to run the pro-
gram that does the computation. Faster computers give more performance, but
so do better programs. To write high performance software, we should know
what happens inside the computer, something about the compiler and about the
hardware. This and several later Software sections explore performance-related
issues.

Memory hierarchy is one aspect of computing hardware that influences per-
formance. How long it takes to execute an instruction such as a = b * c; de-
pends on where a, b, and c are stored. The time needed to fetch the operands, b
and c, and to store the result, a, can be far greater than the time needed to do
the operation a = b ∗ c. This delay depends on where in the memory hierarchy
the variables are stored when the instruction is executed.

A computer processor such as the Pentium 4 (P4) operates in time slots
called cycles. We will give numbers for a specific but typical P4 that we call
Paul. The speed of a processor is given in Hertz (cycles per second). Paul runs
at 2 GHz, or 2× 109 cycles per second. At this rate, each cycle takes .5× 10−9

seconds, which is half a nanosecond. If the pipeline is full (see Section ??), the
processor can perform one floating point operation per cycle, if it can get the
data.

The structure and performance of the memory hierarchy differs from pro-
cessor to processor. On the top of the hierarchy are a small number of registers
(about 20 for Paul). Next is level one cache. For Paul, transfer between a reg-
ister and level one cache takes one or two cycles. Paul has two separate level
one caches of 32 KBytes (32× 210 bytes) each, one for instructions (see Section
??), and the other for data, such as the values of a, b, and c. Next is level two
cache with a 3 or 4 cycle delay, which has 2 MBytes in Paul’s case. Below the
cache is main memory. One high end office desktop in 2006 had main memory
with a 10 nanosecond latency and 6.4 GByte/sec bandwidth.6 Latency is the
time delay between asking for a set of numbers (see below) and the arrival of
the first one. For Paul, 10 nanoseconds is about 20 cycles. Once data starts

6The band in bandwidth is the range of frequencies, the frequency band that can be realized
on a given connection. A book on signal processing will show that the number of bits that a
connection can transmit per second is proportional to the range of frequencies it can support,
its bandwidth.
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flowing, consecutive bytes are delivered at the rate of 6.4 × 109 bytes/sec, or
about one double precision word per nanosecond.

Logically, computer memory is a long list of bytes. For each integer address,
k, in the address space 0 ≤ k < MS (MS for memory size), there is one byte
of information. In a fetch operation, the processor specifies an address and the
memory provides the contents of that address from somewhere in the hierarchy.
In a store operation, the processor specifies the contents and the address the
memory should write it into. Except for performance, the caches do not change
the way the processor views data.

A cache consists of a set of cache lines, each one consisting of a short sequence
of consecutive memory bytes. Paul’s cache lines hold 128 bytes, or 16 double
precision floating point words. Each of his level one caches has 256 such lines.
The address space is divided into neighboring disjoint lines, any one of which
may occupy a level one or level two cache line. At any given moment, some of
these lines are in level one or level two caches.

When the processor requests a byte that is not in a register, the memory will
get it from the nearest place, level one cache, level two cache, or main memory.7

For example, if it asks for byte 129 and the line of bytes from 128 to 255 is in
cache, the memory will supply the cached value with the delay for the cache
it was in. If byte 129 is not in cache, a cache miss, the whole cache line of
bytes 128 to 255 will be copied from main memory to cache. This takes about
60 cycles for Paul: A 10 nsec latency and 128 byte/(6.4 GByte/sec) = 20 nsec
transfer time give 30 nsec, or 60 cycles. Whatever data was in that cache line
would be flushed, lost from cache but saved in main memory.

Many details of cahce management are constantly changing as hardware
improves and are beyond the programmer’s control. For example, Paul may
have to decide which cache line to flush when there is a cache miss. If he stores
a byte that is in cache (changing its value), does he write back that value to
main memory at the same time or only when the line is flushed? How does he
decide which lines to put in level one and level two? Processor manufacturers
(Intel, AMD, etc.) make available detailed descriptions of the cache strategies
for each of their processors.

Variable reuse and data locality are two factors under the programmer’s
control that effect cache and ultimately software performance. If the variable b
needs to be used many times, the programmer can avoid cache misses by making
these consecutive. If a program uses byte k, it is likely that fetching byte k + 1
immediately after will not cause a cache miss because k and k + 1 are likely to
be in the same cache line.

To see this concretely, consider the product of n×n matrices A = BC using
the vanilla formula ajk =

∑n
l=1 bjlclk. If n is known at compile time,8 the code

could be

7We also could consider the hard drive as a level in the memory hierarchy below main
memory. Transfer between main memory and the hard drive is very slow on the nanosecond
time scale.

8It is a tragedy that C/C++ is so clumsy in handling arrays of more than one index.
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double a[N][N], b[N][N], c[N][N];
.
. (define B and C)
.

for ( j = 0; j < N; j++ ) { // j from 0 to N-1 in C.
for ( k = 0; k < N; k++ ) {

sum = 0;
for ( l = 0; l < N; l++ ) // The inner loop.

sum += b[j][l]*c[l][k]; // one line l loop
a[j][k] = sum;
} // end k loop

} // end of j loop

Let us examine the pattern of memory references in this code. In C/C++
(and not in FORTRAN) the second index of the array “moves fastest”. In
memory, the entries of A are stored in the order a[0][0], a[0][1], ... ,
a[0][N-1],a[1][0], a[1][1], .... The inner loop, for ( l=0; l<N; l++)
.., references consecutive entries of b, which is good because each cache miss
loads 16 consecutive elements of b, so only one in 16 references to b leads to a
cache miss. References to c are offset by a stride ofN . IfN > 15, each c reference
in the inner loop references a different cache line and therefore probably causes
a cache miss.

A simple solution, if memory is not a problem, would be to compute the
transpose of c before the matrix multiplication:

double ct[N][N];
.
. (as before)
.

for ( j = 0; j < N; j++ ) // Compute the transpose of c.
for ( k = 0; k < N; k++ )

ct[j][k] = c[k][j];
for ( j = 0; j < N; j++ ) { // Martix multiply loops as before

.

. (as before)

.
sum += b[j][l]*ct[k][l]; // Use ct for data locality.
.
. (as before)
.

The new inner loop accesses both arrays with a unit stride to improve data
locality. For large n, the loop that computes C∗ uses 2n2 memory references,
one fetch and one store for each (j, k), while the loop that computes A = BC
uses n3 references to C. Thus, the time computing C∗ should be tiny compared
to the time saved in computing the matrix product.
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5.8 References and resources

The algorithms of numerical linear algebra for dense matrices are described in
great detail in the book by Charles vanLoan and Gene Golub and in the book by
James Demmel. The book ??? describes computational methods for matrices
stored in sparse matrix format. Still larger problems are solved by iterative
methods. Generally speaking, iterative methods are not very effective unless
the user can concoct a good preconditioner, which is an approximation to the
inverse. Effective preconditioners usually depend in physical understanding of
the problem and are problem specific.

Despite its importance for scientific computing, there is a small literature on
high performance computing. The best book available in 2006 seems to be High
Performance Computing by Kevin Down and Charles Severance. Truly high
performance computing is done on computers with more than one processor,
which is called parallel computing. There are many specialized algorithms and
programming techniques for parallel computing.

The LAPack software package is designed to make the most of memory
hierarchies. In 2006, it is the best way to do high performance computational
linear algebra, at least on dense matrices. It comes with a package called Atlas
that chooses good parameters (block sizes, etc.) for LAPack depending on
the cache performance of your particular processor. The LAPack manual is
published by SIAM, the Society for Industrial and Applied Mathematics.

5.9 Exercises

1. The solution to Au = b may be written b = A−1u. This can be a good
way to analyze algorithms involving linear systems (see Sections 4.3.1 and
6.3). But we try to avoid forming A−1 explicitly in computations because
it is more that twice as expensive as solving the linear equations. A good
way to form B = A−1 is to solve the matrix equation AB = I. Gauss
elimination applied to A gives A = LU , where the entries of L are the
pivots used in elimination.

(a) Show that about 1
3n

3 work reduces AB = I to UB = L−1, where the
entries of U and L−1 are known.

(b) Show that computing the entries of B from UB = L−1 takes about
1
2n

3 work. Hint: It takes one flop per element for each of the n
elements of the bottom row of B, then two flops per element of the
n−1 row of B, and so on to the top. The total is n×(1+2+ · · ·+n).

(c) Use this to verify the claim that computing A−1 is more than twice
as expensive as solving Au = b.

2. Show that a symmetric n × n real matrix is positive definite if and only
if all its eigenvalues are positive. Hint: If R is a right eigenvector matrix,
then, for a symmetric matrix we may normalize so that R−1 = R∗ and



5.9. EXERCISES 111

A = RΛR∗, where Λ is a diagonal matrix containing the eigenvalues (See
Sections 4.2.5 and 4.2.7). Then x∗Ax = x∗RΛR∗x = (x∗R)Λ(R∗x) =
y∗Λy, where y = R∗x. Show that y∗Λy > 0 for all y 6= 0 if and only
if all the diagonal entries of Λ are positive. Show that if A is positive
definite, then there is a C > 0 so that x∗Ax > C ‖x‖l2 for all x. (Hint:
‖x‖l2 = ‖x‖l2 , C = λmin.)

3. Write a program to compute the LL∗ decomposition of an SPD matrix
A. Your procedure should have as arguments the dimension, n, and the
matrix A. The output should be the Choleski factor, L. Your procedure
must detect and report a matrix that is not positive definite and should
not perform the operation sqrtc if c < 0. Write another procedure that
has n and L as arguments and returns the product LL∗. Hand in: (i)
printouts of the two procedures and the driving program, (ii) a printout of
results showing that the testing routine reports failure when LL∗ 6= A, (iii)
a printout showing that the Choleski factoring procedure reports failure
when A is not positive definite, (iv) a printout showing that the Choleski
factoring procedure works correctly when applied to a SPD matrix, proven
by checking that LL∗ = A.

4. A square matrix A has bandwidth 2k + 1 if ajk = 0 whenever |j − k| > k.
A subdiagonal or superdiagonal is a set of matrix elements on one side of
the main diagonal (below for sub, above for super) with j−k, the distance
to the diagonal, fixed. The bandwidth is the number of nonzero bands. A
bandwidth 3 matrix is tridiagonal, bandwidth 5 makes pentadiagonal, etc.

(a) Show that a SPD matrix with bandwidth 2k+1 has a Choleski factor
with nonzeros only on the diagonal and up to k bands below.

(b) Show that the Choleski decomposition algorithm computes this L
in work proportional to k2n (if we skip operations on entries of A
outside its nonzero bands).

(c) Write a procedure for Choleski factorization of tridiagonal SPD ma-
trices, apply it to the matrix of Exercise 11, compare the running
time with this dense matrix factorizer and the one from Exercise 5.3.
Of course, check that the answer is the same, up to roundoff.

5. Suppose v1, . . . , vm is an orthonormal basis for a vector space V ⊆ Rn.
Let L be a linear transofrmation from V to V . Let A be the matrix that
represents L in this basis. Show that the entries of A are given by

ajk = v∗jLvk . (5.9)

Hint: Show that if y ∈ V , the representation of y is this basis is y =∑
j yjvj , where yj = v∗j y. In physics and theoretical chemistry, inner

products of the form (5.9) are called matrix elements. For example, the
eigenvalue perturbation formula (4.40) (in physicist terminology) simply
says that the perturbation in an eigenvalue is (nearly) equal to to the
appropriate matrix element of the perturbation in the matrix.
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6. Suppose A is an n × n symmetric matrix and V ⊂ Rn is an invariant
subspace for A (i.e. Ax ∈ V if x ∈ V ). Show that A defines a linear
transformation from V to V . Show that there is a basis for V in which
this linear transformation (called A restricted to V ) is represented be a
symmmetric matrix. Hint: construct an orthonormal basis for V .

7. If Q is an n × n matrix, and (Qx)∗Qy = x∗y for all x and y, show that
Q is an orthogonal matrix. Hint: If (Qx)∗Qy = x∗(Q∗Q)y = x∗y, we can
explore the entries of Q∗Q by choosing particular vectors x and y.

8. If ‖Qx‖l2 = ‖x‖l2 for all x, show that (Qx)∗Qy = x∗y for all x and y. Hint
(polarization): If ‖Q(x+ sy)‖2l2 = ‖x+ sy‖2l2 for all s, then (Qx)∗Qy =
x∗y.
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6.1 Introduction

This chapter discusses two related computational problems. One is root finding,
or solving systems of nonlinear equations. This means that we seek values of
n variables, (x1, . . . , xn) = x ∈ Rn, to satisfy n nonlinear equations f(x) =
(f1(x), . . . , fn(x)) = 0. We assume that f(x) is a smooth function of x. The
other problem is smooth optimization, or finding the minimum (or maximum1)
value of a smooth objective function, V (x). These problems are closely related.
Optimization algorithms use the gradient of the objective function, solving the
system of equations g(x) = ∇V (x) = 0. However, the optimization problem has
special structure that makes it easier than the general root finding problem.

The theory here is for black box (“closed box” would be more accurate)
methods. This means algorithms that do not depend on details of the definitions
of the functions f(x) or V (x). Instead, they use procedures that evaluate f(x)
or V (x) for a given x value, such as int fEval( double* f, double* x) (f
and x probably vectors). The code doing the root finding will learn about f
only by “user-supplied” procedures, such as fEval, that supply values of f or
V and their derivatives. The person writing the root finding or optimization
code need not “open the box” to see how fEval works. This makes it possible
for specialists to create general purpose optimization and root finding software
that is efficient and robust, without knowing all the problems it may be applied
to. It is unlikely that someone could create a general purpose root finder that
is as good as the best available on the web.

There is a strong incentive to use derivative information as well as function
values. For root finding, we use the n× n Jacobian matrix, f ′(x), with entries
f ′(x)jk = ∂xkfj(x). For optimization, we use the gradient and the n×n Hessian
matrix of second partials H(x)jk = ∂xj∂xkV (x). It may seem like too much
extra work to go from the n components of f to the n2 entries of f ′, but
algorithms that use f ′ often are much faster and more reliable than those that
do not.

There are drawbacks to using general-purpose software that treats each spe-
cific problem as a black box. Large-scale computing problems usually have
specific features that have a big impact on how they should be solved. Re-
formulating a problem to fit into a generic f(x) = 0 or minx V (x) form may
increase the condition number. Problem-specific solution strategies may be
more effective than the generic Newton’s method. In particular, the Jacobian
or the Hessian may be sparse in a way that general purpose software cannot take
advantage of. Some more specialized algorithms are in Exercise 6c (Marquart-
Levenberg for nonlinear least squares), and Section ?? (Gauss-Seidel iteration
for large systems). iteration

The algorithms discussed here are iterative (see Section 2.4). They produce
a sequence of approximations, or iterates, that should converge to the desired
solution, x∗. In the simplest case, each iteration starts with a current iterate,
x, and produces a successor iterate, x′ = Φ(x). The algorithm starts from an

1Optimization refers either to minimization or maximization. But finding the maximum
of V (x) is the same as finding the minimum of −V (x).
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initial guess2, x0, then produces a sequence of iterates xk+1 = Φ(xk). The
algorithm succeeds if the iterates converge to the solution: xk → x∗ as k →∞.
An iterative method fails if the iterates fail to converge or converge to the wrong
answer. For an algorithm that succeeds, the convergence rate is the rate at which
‖xk − x∗‖ → 0 as k →∞.

An iterative method is locally convergent if it succeeds whenever the initial
guess is close enough to the solution. That is, if there is an R > 0 so that if
‖x0 − x∗‖ ≤ R then xk → x∗ as k →∞. The algorithms described here, mostly
variants of Newton’s method, all are locally convergent if the problem is non-
degenerate (terminology below). An iterative method is globally convergent if it
finds the answer from any initial guess. Between these extremes are algorithms
that are more or less robust. The algorithms described here consist of a relatively
simple locally convergent method, usually Newton’s method, enhanced with
safeguards that guarantee that some progress is made toward the solution from
any x. We will see that safeguards based on mathematical analysis and reasoning
are more effective than heuristics.

All iterative methods need some kind of convergence criterion (more prop-
erly, halting criterion). One natural possibility is to stop when the relative
change in x is small enough: ‖xk+1 − xk‖ / ‖xk‖ ≤ ε. It also makes sense to
check that the residuals, the components of f(x) or ∇V (x), are small. Even
without roundoff error, an iterative method would be very unlikely to get the
exact answer. However, as we saw in Section 2.4, good algorithms and well con-
ditioned problems still allow essentially optimal accuracy: ‖xk − x∗‖ / ‖x∗‖ ∼
εmach.

The final section of this chapter is on iterative methods that do not use higher
derivatives. The discussion applies to linear or nonlinear problems. For opti-
mization, it turns out that the rate of convergence of simple iterative methods
is determined by the condition number of H for solving linear systems involving
H, see Section 4.3.1 and the condition number formula (4.36). More precisely,
the number of iterations needed to reduce the error by a factor of 2 is propor-
tional to κ(H) = λmax(H)/λmin(H). This, more than linear algebra roundoff,
explains our fixation on condition number. The condition number κ(H) = 104

could arise in a routine partial differential equation problem. This bothers us
not so much because it makes us lose 4 out of 16 double precision digits of ac-
curacy, but because it takes tens of thousands of iterations to solve the damn
problem.

6.2 Solving a single nonlinear equation

The simplest problem is that of solving a single equation in a single variable:
f(x) = 0. Single variable problems are easier than multi-variable problems.
There are simple criteria that guarantee a solution exists. Some algorithms for
one dimensional problems, Newton’s method in particular, have analogues for

2Here, the subscript denotes the iteration number, not the component. In n dimensions,
iterate xk has components xk = (xk1, . . . , xkn).
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higher dimensional problems. Others, such as bisection, are strictly one dimen-
sional. Algorithms for one dimensional problems are components for algorithms
for higher dimensional problems.

6.2.1 Bisection

The bisection algorithm, or bisection search, is the simplest and most robust
way to find a zero of a function on one variable. It does not require f(x) to
be differentiable, but merely continuous. It is based on a simple topological
fact called the intermediate value theorem: if f(x) is a continuous real-valued
function of x on the interval a ≤ x ≤ b and f(a) < 0 < f(b), then there is at
least one x∗ ∈ (a, b) with f(x∗) = 0. A similar theorem applies in the case b < a
or f(a) > 0 > f(b).

The bisection search algorithm consists of repeatedly bisecting an interval in
which a root is known to lie. Suppose we have an interval3 [a, b] with f(a) < 0
and f(b) > 0. The intermediate value theorem tells us that there is a root of f
in [a, b]. The uncertainty is the location of this root is the length of the interval∣∣b− a∣∣. To cut that uncertainty in half, we bisect the interval. The midpoint
is c =

(
a+ b

)
/2. We determine the sign of f(c), probably by evaluating it. If

f(c) > 0 then we know there is a root of f in the sub interval [a, c]. In this case,
we take the new interval to be [a′, b′], with a′ = a and b′ = c. In the other case,
f(c) < 0, we take a′ = c and b′ = b. In either case, f changes sign over the half
size interval [a′, b′].

To start the bisection algorithm, we need an initial interval [a0, b0] over which
f changes sign. Running the bisection procedure then produces intervals [ak, bk]
whose size decreases at an exponential rate:

|bk − ak| = 2−k |b0 − a0| .

To get a feeling for the convergence rate, use the approximate formula 210 = 103.
This tells us that we get three decimal digits of accuracy for each ten iter-
ations. This may seem good, but Newton’s method is much faster, when it
works. Moreover, Newton’s method generalizes to more than one dimension
while there is no useful multidimensional analogue of bisection search. Ex-
ponential convergence often is called linear convergence because of the linear
relationship |bk+1 − ak+1| = 1

2 |bk − ak|. Newton’s method is faster than this.
Although the bisection algorithm is robust, it can fail if the computed ap-

proximation to f(x) has the wrong sign. If f is not evaluated exactly, the
computed approximation may not be continuous on a fine scale. A bisection
code should take this possibility into account, either by refusing to bisect be-
yond a certain point, or by checking for consistency among the reported signs
of f , or by making explicit use of an error estimate for computed f values.

3The interval notation [a, b] used here is not intended to imply that a < b. For example,
the interval [5, 2] consists of all numbers between 5 and 2, endpoints included.
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6.2.2 Newton’s method for a nonlinear equation

As in the previous section, we want to find a value, x∗, that solves a single
nonlinear equation f(x∗) = 0. We have procedures that return f(x) and f ′(x)
for any given x. At each iteration, we have a current iterate, x and we want to
find an x′ that is closer to x∗. Suppose that x is close to x∗. The values f(x)
and f ′(x) determine the tangent line to the graph of f(x) at the point x. The
new iterate, x′, is the point where this tangent line crosses the x axis. If f(x) is
close to zero, then x′ should be close to x and the tangent line approximation
should be close to f at x′, which suggests that f(x′) should be small.

More analytically, the tangent line approximation (See Section 3.1) is

f(x) ≈ F (1)(x) = f(x) + f ′(x) · (x− x) . (6.1)

Finding where the line crosses the x axis is the same as setting F (1)(x) = 0 and
solving for x′:

x′ = x− f ′(x)−1f(x) . (6.2)

This is the basic Newton method.
The local convergence rate of Newton’s method is governed by the error

in the approximation (6.1). The analysis assumes that the root x∗ is non-
degenerate, which means that f ′(x∗) 6= 0. The convergence for degenerate roots
is different, see Exercise 1. For a non-degenerate root, we will have f ′(x) 6= 0
for x close enough to x∗. Assuming this, (6.2) implies that |x′ − x| = O(|f(x)|).
This, together with the Taylor series error bound

f(x′)− F (1)(x′) = O
(
|x′ − x|2

)
,

and the Newton equation F (1)(x′) = 0, implies that

|f(x′)| = O
(
|f(x)|2

)
.

This means that there is a C > 0 so that

|f(x′)| ≤ C · |f(x)|2 . (6.3)

This manifestation of local quadratic convergence says that the residual at the
next iteration is roughly proportional4 to the square of the residual at the current
iterate.

Quadratic convergence is very fast. In a typical problem, once xk − x∗ is
moderately small, the residual will be at roundoff levels in a few more iterations.
For example, suppose that5 C = 1 in (6.3) and that |xk − x∗| = .1. Then
|xk+1 − x∗| ≤ .01, |xk+2 − x∗| ≤ 10−4, and |xk+4 − x∗| ≤ 10−16. The number

4Strictly speaking, (6.3) is just a bound, not an estimate. However, Exercise 2 shows that
f(x′) really is approximately proportional to f(x)2.

5This does not make sense on dimensional grounds. It would be more accurate and more
cumbersome to describe this stuff in terms of relative error.
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of correct digits doubles at each iteration. By contrast, a linearly convergent
iteration with |xk+1 − x∗| ≤ .1·|xk − x∗| gains one digit of accuracy per iteration
and takes 15 iterations rather than 4 to go from .1 to 10−16 Bisection search
needs about 50 iterations to reduce the error by a factor of 1015 (1015 =

(
103
)5 ≈(

210
)5 = 250).

Unfortunately, the quadratic convergence of Newton’s method is local. There
is no guarantee that xk → x∗ as k → ∞ if the initial guess is not close to x∗.
A program for finding x∗ must take this possibility into account. See Section
3.7.3 for some ideas on how to do this.

6.3 Newton’s method in more than one dimen-
sion

Newton’s method applies also to solving systems of nonlinear equations. The
linear approximation (6.1) applies in dimensions n > 1 if f ′(x) is the Jacobian
matrix evaluated at x, and f and (x − x) are column vectors. We write the
Newton step as x′ − x = z, so x′ = x + z. Newton’s method determines z by
replacing the nonlinear equations, f(x+ z) = 0, with the linear approximation,

0 = f(x) + f ′(x)z . (6.4)

To carry out one step of Newton’s method, we must evaluate the function f(x),
the Jacobian, f ′(x), then solve the linear system of equations (6.4). We may
write this as

z = −
(
f ′(x)

)−1
f(x) , (6.5)

which is a natural generalization of the one dimensional formula (6.2). In compu-
tational practice (see Exercise 1) it usually is more expensive to form

(
f ′)x)

)−1

than to solve (6.4).
Newton’s method for systems of equations also has quadratic (very fast)

local convergence to a non-degenerate solution x∗. As for the one dimensional
case, this is because of the error bound in the linear approximation (6.1). For
n > 1, we write the Taylor approximation error bound in terms of norms:∥∥∥f(x+ z)− F (1)

∥∥∥ =
∥∥∥f(x+ z)−

{
f(x) + f ′(x)z

}∥∥∥ = O
(
‖z‖2

)
.

We see from (6.5) that6

‖z‖ ≤ C ‖f(x)‖ .

Together, these inequalities imply that if x− x∗ is small enough then

‖f(x′)‖ = ‖f(x+ z)‖ ≤ C ‖f(x)‖2 ,

6The definition of a non-degenerate solution is that f ′(x∗) is nonsingular. If x is close
enough to x∗, then f ′(x) will be close enough to f ′(x∗) that it also will be nonsingular (See

(4.17)). Therefore ‖z‖ ≤
∥∥∥(f ′(x)

)−1
∥∥∥ ‖f(x)‖ ≤ C ‖f(x)‖.
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which is quadratic convergence, exactly as in the one dimensional case.
In practice, Newton’s method can be frustrating for its lack of robustness.

The user may need some ingenuity to find an x0 close enough to x∗ to get
convergence. In fact, it often is hard to know whether a system of nonlinear
equations has a solution at all. There is nothing as useful as the intermediate
value theorem from the one dimensional case, and there is no multi-dimensional
analogue of the robust but slow bisection method in one dimension.

While Newton’s method can suffer from extreme ill conditioning, it has a
certain robustness against ill conditioning that comes from its affine invariance.
Affine invariance states Newton’s method is invariant under affine transforma-
tions. An affine transformation is a mapping x → Ax + b (it would be linear
without the b). An affine transformation7 of f(x) is g(y) = Af(By), where A
and B are invertible n × n matrices. The affine invariance is that if we start
from corresponding initial guesses: x0 = By0, and create iterates yk by applying
Newton’s method to g(y) and xk by applying Newton’s method to f(x), then
the iterates also correspond: xk = Byk. This means that Newton’s method
works exactly as well on the original equations f(x) = 0 as on the transformed
equations g(y) = 0. For example, we can imagine changing from x to variables
y in order to give each of the unknowns the same units. If g(y) = 0 is the best
possible rescaling of the original equations f(x) = 0, then applying Newton’s
method to f(x) = 0 gives equivalent iterates.

This argument can be restated informally as saying that Newton’s method
makes sense on dimensional grounds and therefore is natural. The variables
x1, . . . , xn may have different units, as may the functions f1, . . . , fn. The n2

entries f ′(x) all may have different units, as may the entries of (f ′)−1. The
matrix vector product that determines the components of the Newton step (see
(6.4)), z = − (f ′)−1

f(x), involves adding a number of contributions (entries in
the matrix (f ′)−1 multiplying components of f) that might seem likely to have
a variety of units. Nevertheless, each of the n terms in the sum implicit in the
matrix-vector product (6.5) defining a component zj has the same units as the
corresponding component, xj . See Section 6.6 for a more detailed discussion of
this point.

6.3.1 Quasi-Newton methods

Local quadratic convergence is the incentive for evaluating the Jacobian matrix.
Evaluating the Jacobian matrix may not be so expensive if much of the work in
evaluating f can be re-used in calculating f ′. There are other situations where
the Jacobian is nearly impossible to evaluate analytically. One possibility would
be to estimate f ′ using finite differences. Column k of f ′(x) is ∂xkf(x). The
cheapest and least accurate approximation to this is the first-order one-sided
difference formula (ek is the unit vector in the xk direction and ∆xk is a step
size in that direction. Different components of x may have different units and

7Actually, this is a linear transformation. It is traditional to call it affine though the
constant terms are missing.
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therefore require different step sizes.): (f(x+ ∆xkex)− f(x))/∆xk. Evaluating
all of f ′ in this way would take n extra evaluations of f per iteration, which
may be so expensive that it outweighs the fast local convergence.

Quasi Newton methods replace the true f ′(x) in the Newton equations (6.4)
by estimates of f ′(x) built up from function values over a sequence of iterations.
If we call this approximate Jacobian Ak, the quasi Newton equations are

0 = f(xk) +Akzk . (6.6)

The simplest such method is the secant method for one-dimensional root find-
ing. Using the current xk and f(xk), and the previous xk−1 and f(xk−1), We
use the slope of the line connecting the current (xk, f(xk)) to the previous
(xk−1, f(xk−1)) to estimate the slope of the tangent line at xk. The result is

Ak =
f(xk)− f(xk−1)

xk − xk−1
, xk+1 = xk − f(xk)/Ak . (6.7)

The local convergence rate of the secant method (6.7) is better than linear
(|xk+1 − x∗| ≤ C |xk − x∗|) and worse than quadratic.

Most multidimensional quasi-Newton methods work by updating Ak at each
iteration so that Ak+1zk = f(xk+1)− f(xk). In multidimensions, this does not
determine Ak+1 completely because it represents n equations for the n2 elements
of Ak+1. The references give several suggestions for update formulas. The good
ones have the property that if you you apply them to linear equations, you find
the exact A = f ′ in n steps. It is not clear that such a property makes quasi
Newton methods better than ordinary Newton’s method with finite difference
approximations to the elements of the Jacobian.

6.4 One variable optimization

Suppose n = 1 and we wish to find the minimum of the function of a single
variable, V (x). Please bear with the following long list of definitions. We
say that x∗ is a local minimum of V if there is an R > 0 so that V (x∗) ≤
V (x) whenever |x− x∗| ≤ R. We say that x∗ is a strict local minimum if
V (x) > V (x∗) whenever x 6= x∗ and |x− x∗| ≤ R. We say that x∗ is a global
minimum if V (x∗) ≤ V (x) for all x for which V (x) is defined, and a strict global
minimum if V (x∗) < V (x) for all x 6= x∗ for which V is defined. Finally, x∗
is a nondegenerate local minimum if V ′′(x∗) > 0. The Taylor series remainder
theorem implies that if V ′(x∗) = 0 and V ′′(x∗) > 0, then x∗ is at least a strict
local minimum. The function V (x) is convex if 8 αV (x) + βV (y) > V (αx+ βy)
whenever α ≥ 0, β ≥ 0, and α + β = 1. The function is strictly convex if
V ′′(x) > 0 for all x. A strictly convex function is convex, but the function
V (x) = x4 is not strictly convex, because V ′′(0) = 0. This function has a strict
but degenerate global minimum at x∗ = 0.

8The reader should check that this is the same as the geometric condition that the line
segment connecting the points (x, V (x)) and (y, V (y)) lies above the graph of V .
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For the curious, there is an analogue of bisection search in one variable
optimization called golden section search. It applies to any continuous function
that is unimodal, meaning that V has a single global minimum and no local
minima. The golden mean9 is r = (1 +

√
5)/2 ≈ 1.62. At each stage of bisection

search we have an interval [a, b] in which there must be at least one root. At
each stage of golden section search we have an interval [a, c] and a third point
b ∈ [a, c] with

|a− c| = r
∣∣a− b∣∣ . (6.8)

As with our discussion of bisection search, the notation [a, c] does not imply
that a < c. In bisection, we assume that f(a) · f(b) < 0. Here, we assume
that f(b) < f(a) and f(b) < f(c), so that there must be a local minimum
within [a, c]. Now (this is the clever part), consider a fourth point in the larger
subinterval, d = (1 − 1

r )a + 1
r b. Evaluate f(d). If f(d) < f(b), take a′ = a,

b′ = d, and c′ = b. Otherwise, take a′ = c, b′ = b, and c′ = d, reversing the
sense of the interval. In either case, |a′ − c′| = r |a′ − b′|, and f(b′) < f(a′) and
f(b′) < f(c′), so the iteration can continue. Each stage reduces the uncertainty
in the minimizer by a factor of 1

r , since |a′ − c′| = 1
r |a− c|.

6.5 Newton’s method for local optimization

Most of the properties listed in Section 6.4 are the same for multi-variable
optimization. We denote the gradient as g(x) = ∇V (x), and the Hessian matrix
of second partials as H(x). An x∗ with g(x∗) = 0 and H(x∗) positive definite
(see Section 5.3 and Exercise 2) is called non-degenerate, a natural generalization
of the condition V ′′ for one variable problems. Such a point is at least a local
minimum because the Taylor series with error bound is

V (x∗ + z)− V (x∗) =
1
2
z∗H(x∗)z +O(‖z‖3) .

Exercise 2 shows that the first term on the right is positive and larger than the
second if H(x∗) is positive definite and ‖z‖ is small enough. If H(x∗) is negative
definite (obvious definition), the same argument shows that x∗ is at least a local
maximum. If H(x∗) has some positive and some negative eigenvalues (and
g(x∗) = 0) then x∗ is neither a local minimum nor a local maximum, but is
called a saddle point. In any case, a local minimum must satisfy g(x∗) = 0 if V
is differentiable.

We can use Newton’s method from Section 6.3 to seek a local minimum by
solving the equations g(x) = 0, but we must pay attention to the difference
between row and column vectors. We have been considering x, the Newton
step, z, etc. to be column vectors while ∇V (x) = g(x) is a row vector. For

9This number comes up in many ways. From fibonacci numbers it is r = limk→∞ fk+1/fk.
If (α + β)/α = α/β and α > β, then α/β = r. This has the geometric intertretation that
if we remove an α × α square from one end of an α × (α + β) rectangle, then the remaining
smaller β×α rectangle has the same aspect ratio as the original α× (α+β) rectangle. Either
of these leads to the equation r2 = r + 1.
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this reason, we consider applying Newton’s method to the column vector of
equations g∗(x) = 0. The Jacobian matrix of the column vector function g∗(x)
is the Hessian H (check this). Therefore, the locally convergent Newton method
is

x′ = x+ z ,

where the step z is given by the Newton equations

H(x)z = −g∗(x) . (6.9)

Because it is a special case of Newton’s method, it has local quadratic conver-
gence to x∗ if x∗ is a local non-degenerate local minimum.

Another point of view for the local Newton method is that each iteration
minimizes a quadratic model of the function V (x + z). The three term Taylor
series approximation to V about x is

V (x+ z) ≈ V (2)(x, z) = V (x) +∇V (x)z +
1
2
z∗H(x)z . (6.10)

If we minimize V (2)(x, z) over z, the result is z = −H(x)−1∇V (x)∗, which is the
same as (6.9). As for Newton’s method for nonlinear equations, the intuition
is that V (2)(x, z) will be close to V (x + z) for small z. This should make the
minimum of V (2)(x, z) close to the minimizer of V , which is x∗.

Unfortunately, this simple local method cannot distinguish between between
a local minimum, a local maximum, or even a saddle point. If x∗ has∇V (x∗) = 0
(so x∗ is a stationary point) and H(x∗) is nonsingular, then the iterates xk+1 =
xk−H(xk)−1g∗(xk) will happily converge to to x∗ if ‖x0 − x∗‖ is small enough.
This could be a local maximum or a saddle point. Moreover, if ‖x0 − x∗‖ is not
small, we have no idea whether the iterates will converge to anything at all.

The main difference between the unsafeguarded Newton method optimiza-
tion problem and general systems of nonlinear equations is that the Hessian
is symmetric and (close enough to a non-degenerate local minimum) positive
definite. The Jacobian f ′ need not be symmetric. The Choleski decomposition
requires about storage for the roughly 1

2n
2 distinct elements of H and about 1

6n
3

floating points to compute L. This is about half the storage and work required
for a general non-symmetric linear system using the LU factorization.

6.6 Safeguards and global optimization

The real difference between minimization and general systems of equations
comes from the possibility of evaluating V (x) and forcing it to decrease from
iteration to iteration. It is remarkable that two simple safeguards turn the unre-
liable Newton’s method into a much more robust (though not perfect) method
that converges to a local minimum from almost any initial guess. These are (i)
finding a descent direction by modifying H(x) if necessary, and (ii) using a one
dimensional line search to prevent wild steps. Both of the safeguards have the
purpose of guaranteeing descent, that V (x′) < V (x).



6.6. SAFEGUARDS AND GLOBAL OPTIMIZATION 123

In principle, this would allow the xk to converge to a saddle point, but this
is extremely unlikely in practice because saddle points are unstable for this
process.

The safeguarded methods use the formulation of the search directions, p and
the step size, t > 0. One iteration will take the form x′ = x+ z, where the step
is z = tp. We define the search direction to be a descent direction if

d

dt
V (x+ tp)

∣∣∣
t=0

= g(x) · p < 0 . (6.11)

This guarantees that if t > 0 is small enough, then V (x + tp) < V (x). Then
we find a step size, t, that actually achieves this property. If we prevent t from
becoming too small, it will be impossible for the iterates to converge except to
a stationary point.

We find the search direction by solving a modified Newton equation

H̃p = −g∗(x) . (6.12)

Putting this into (6.11) gives

d

dt
V (x+ tp)

∣∣∣
t=0

= −g(x)H̃g(x)∗ .

This is negative if H̃ is positive definite (the right hand side is a 1 × 1 matrix
(a number) because g is a row vector). One algorithm for finding a descent
direction would be to apply the Choleski decomposition algorithm (see Section
5.3). If the algorithm finds L with LL∗ = H(x), use this L to solve the Newton
equation (6.12) with H̃ = H(x) = LL∗. If the Choleski algorithm fails to find L,
then H(x) is not positive definite. A possible substitute (but poor in practice,
see below) is H̃ = I, which turns Newton’s method into gradient descent.

A better choice for H̃ comes from the modified Choleski algorithm. This
simply replaces the equation

lkk =
(
Hkk − l2k1 + · · ·+ l2k,k−1

)1/2
with the modified equation using the absolute value

lkk =
∣∣Hkk − l2k1 + · · ·+ l2k,k−1

∣∣1/2 . (6.13)

Here, Hkk is the (k, k) entry ofH(x). This modified Choleski algorithm produces
L with LL∗ = H(x) if and only if H(x) is positive definite. In any case, we
take H̃ = LL∗, which is positive definite. Using these non-Choleski factors, the
Newton equations become:

LL∗p = −g(x)∗ . (6.14)

It is not entirely clear why the more complicated modified Choleski algorithm
is more effective than simply taking H̃ = I when H(x) is not positive definite.
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One possible explanation has to do with units. Let us suppose that Uk represents
the units of xk, such as seconds, dollars, kilograms, etc. Let us also suppose
that V (x) is dimensionless. In this case the units of Hjk = ∂xj∂xkV are [Hjk] =
1/UjUk. We can verify by studying the Choleski decomposition equations from
Section ?? that the entries of L have units [ljk] = 1/Uj , whether we use the
actual equations or the modification (6.13). We solve (??) in two stages, first
Lq = −∇V ∗, then L∗p = q. Looking at units, it is clear that all the elements
of q are dimensionless and that the elements of p have units [pk] = Uk. Thus,
the modified Choleski algorithm produces a search direction that component by
component has the same units as x. This allows the update formula x′ = x+ tp
to make sense with a dimensionless t. The reader should check that the choice
H̃ = I does not have this property in general, even if we allow t to have units,
if the Uk are different.

The second safeguard is a limited line search. In general, line search means
minimizing the function φ(t) = V (x+ tp) over the single variable t. This could
be done using golden section search, but a much more rudimentary binary search
process suffices as a safeguard. In this binary search, we evaluate φ(0) = V (x)
and φ(1) = V (x+ p). If φ(1) > φ(0), the step size is too large. In that case, we
keep reducing t by a factor of 2 (t = t/2;) until φ(t) < φ(0), or we give up.
If p is a search direction, we will have φ(t) < φ(0) for small enough t and this
bisection process will halt after finitely many reductions of t. If φ(1) < φ(0), we
enter a greedy process of increasing t by factors of 2 until φ(2t) > φ(t). This
process will halt after finitely many doublings if the set of x with V (x) < V (x)
is bounded.

A desirable feature is that the safeguarded algorithm gives the ordinary
Newton step, and rapid (quadratic) local convergence, if x is close enough to
a nondegenerate local minimum. The modified Hessian will correspond to the
actual Hessian if H(x∗) is positive definite and x is close enough to x∗. The step
size will be the default t = 1 if x is close enough to x∗ because the quadratic
model (6.10) will be accurate. The quadratic model has V (2)(x, 2z) > V (2)(x, z),
because z is the minimizer of V (2).

6.7 Gradient descent and iterative methods

The gradient descent optimization algorithm uses the identity matrix as the
approximate Hessian, H̃ = I, so the (negative of the) gradient becomes the
search direction: p = −∇V (x)∗. This seems to make sense geometrically, as
the negative gradient is the steepest downhill direction (leading to the name
method of steepest descent). With a proper line search, gradient descent has
the theoretical global robustness properties of the more sophisticated Newton
method with the modified Choleski approximate Hessian. But much of the
research in sophisticated optimization methods is motivated by the fact that
simple gradient descent converges slowly in many applications.

One indication of trouble with gradient descent is that the formula,

x′ = x− t∇V (x)∗ , (6.15)
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does not make dimensional sense in general, see Section 6.6. Written in compo-
nents, (6.15) is x′k = xk − t∂xkV (x). Applied for k = 1, this makes dimensional
sense if the units of t satisfy [t] = [x2

1]/[V ]. If the units of x2 are different from
those of x1, the x2 equation forces units of t inconsistent with those from the
x1 equation.

We can understand the slow convergence of gradient descent by studying
how it works on the model problem V (x) = 1

2x
∗Hx, with a symmetric and

positive definite H. This is the same as assuming that the local minimum is
nondegenerate and the local approximation (6.10) is exact10. In this case the
gradient satisfies g(x)∗ = ∇V (x)∗ = Hx, so solving the Newton equations (6.9)
gives the exact solution in one iteration. We study the gradient method with a
fixed step size11, t, which implies xk+1 = xk − tHxk. We write this as

xk+1 = Mxk , (6.16)

where
M = I − tH . (6.17)

The convergence rate of gradient descent in this case is the rate at which xk → 0
in the iteration (6.16).

This, in turn, is related to the eigenvalues of M . Since H and M are
symmetric, we may choose an orthonormal basis in which both are diagonal:
H = diag(λ1, . . . λn), and M = diag(µ1, . . . µn). The λj and positive, so we may
assume that 0 < λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax The formula (6.17) implies
that

µj = 1− tλj . (6.18)

After k iterations of (6.16), we have xkj = µkjx0j , where xkj component j of the
iterate xk. Clearly, the rate at which xk → 0 depends on the spectral gap,

ρ = 1−max
j
|µj‖ ,

in the sense that the estimate

‖xk‖ ≤ (1− ρ)k ‖x0‖

is sharp (take x0 = e1 or x0 = en). The optimal step size, t is the one that
maximizes ρ, which leads to (see (6.18)

1− ρ = µmax = 1− tλmin

ρ− 1 = µmin = 1− tλmax .

Solving these gives the optimizing value t = 2/(λmin + λmin) and

ρ = 2 · λmin

λmax
≈ 2
κ(H)

. (6.19)

10We simplified the problem but not lost generality by taking x∗ = 0 here.
11See Exercise 7 for an example showing that line search does not improve the situation

very much.
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If we take k = 2/ρ ≈ κ(H) iterations, and H is ill conditioned so that k is large,
the error is reduced roughly by a factor of

(1− ρ)k =
(

1− 2
k

)k
≈ e−2 .

This justifies what we said in the Introduction, that it takes k = κ(H) iterations
to reduce the error by a fixed factor.

6.7.1 Gauss Seidel iteration

The Gauss-Seidel iteration strategy makes use of the fact that optimizing over
one variable is easier than optimizing over several. It goes from x to x′ in
n steps. Step j optimizes V (x) over the single component xj with all other
components fixed. We write the n intermediate stages as x(j) with components
x(j) = (x(j)

1 , . . . , x
(j)
n ). Starting with x(0) = x, we go from x(j−1) to x(j) by

optimizing over component j. That is x(j−1)
m = x

(j)
m if m 6= j, and we get x(j)

j

by solving
min
ξ

V
(
(x(j−1)

1 , . . . , x
(j−1)
j−1 , ξ, x

(j−1)
j+1 , . . . , x(j−1)

n )
)
.

6.8 Resources and further reading

The book by Ortega and Reinbolt has a more detailed discussion of Newton’s
method for solving systems of nonlinear equations. The bookPractical Opti-
mization by Phillip Gill, Walter Murray, and my colleague Margaret Wright,
has much more on nonlinear optimization including methods for constrained
optimization problems. There is much public domain software for smooth opti-
mization problems, but I don’t think much of it is useful.

The set of initial guesses x0 so that kk → x∗ as t → ∞ is the basin of
attraction of x∗. If the method is locally convergent, the basin of attraction
contains a ball of radius R about x∗. The boundary of the basin of attraction
can be a beatiful fractal set. The picture book Fractals by Benoit Mandelbrot,
some of the most attractive fractals arise in this way.

6.9 Exercises

1. Study the convergence of Newton’s method applied to solving the equation
f(x) = x2 = 0. Show that the root x∗ = 0 is degenerate in that f ′(x∗) = 0.
The Newton iterates are xk satisfying xk+1 = xk − f(xk)/f ′(xk). Show
that the local convergence in this case is linear, which means that there
is an α < 1 with |xk+1 − x∗| ≈ α |xk − x∗|. Note that so called linear
convergence still implies that xk − x∗ → 0 exponentially. Nevertheless,
contrast this linear local convergence with the quadratic local convergence
for a nondegenerate problem.
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2. Use the Taylor expansion to second order to derive the approximation

f(x′) ≈ C(x)f(x)2 =
1
2
f ′′(x)
f ′(x)2

· f(x)2 . (6.20)

Derive a similar expression that shows that (x′ − x∗) is approproximately
proportional to (x − x∗)2. Use (6.20) to predict that applying Newton’s
method to finding solving the equation sin(x) = 0 will have superquadratic
convergence. What makes C(x) large, and the convergence slow, is (i)
small f ′(x) (a nearly degenerate problem), and (ii) large f ′′(x) (a highly
nonlinear problem).

3. The function f(x) = x/
√

1 + x2 has a unique root: f(x) = 0 only for
x = 0. Show that the unsafeguarded Newton method gives xk+1 = x3

k.
Conclude that the method succeeds if and only if |x0| < 1. Draw graphs
to illustrate the first few iterates when x0 = .5 and x0 = 1.5. Note that
Newton’s method for this problem has local cubic convergence, which is
even faster than the more typical local quadratic convergence. The formula
(6.20) explains why.

4. Suppose n = 2 and x1 has units of (electric) charge, x2 has units of mass,
f1(x1, x2) has units of length, and f2(x1, x2) has units of time. Find the
units of each of the four entries of (f ′)−1. Verify the claims about the
units of the step, z, at the end of Section 6.3.

5. Suppose x∗ satisfies f(x∗) = 0. The basin of attraction of x∗ is the set of
x so that if x0 = x then xk → x∗ as k →∞. If f ′(x∗) is non-singular, the
basin of attraction of x∗ under unsafeguarded Newton’s method includes at
least a neighborhood of x∗, because Newton’s method is locally convergent.
Exercise 3 has an example in one dimension where the basin of attraction of
x∗ = 0 is the open interval (endpoints not included) (−1, 1). Now consider
the two dimensional problem of finding roots of f(z) = z2 − 1, where
z = x+iy. Written out in its real components, f(x, y) = (x2−y2−1, 2xy).
The basin of attraction of the solution z∗ = 1 ((x∗, y∗) = (1, 0)) includes
a neighborhood of z = 1 but surprisingly many many other points in the
complex plane. This Mandlebrot set is one of the most beautiful examples
of a two dimensional fractal. The purpose of this exercise is to make a
pretty picture, not to learn about scientific computing.

(a) Show that Newton iteration is zk+1 = zk − z2k−1
2zk

.

(b) Set zk = 1 + wk and show that wk+1 = 3
2w

2
k/(1 + wk).

(c) Use this to show that if |wk| < 1
4 , then |wk+1| < 1

2 |wk|. Hint: Show
|1 + wk| > 3

4 . Argue that this implies that the basin of attraction
of z∗ = 1 includes at least a disk of radius 1

4 about z∗, which is a
quantitative form of local convergence.

(d) Show that if |zk − 1| < 1
4 for some k, then z0 is in the basin of

attraction of z∗ = 1. (This is the point of parts (b) and (c).)
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(e) Use part (d) to make a picture of the Mandlebrot set. Hint: Divide
the rectangle |x| < Rx, 0 ≤ y ≤ Ry into a regular grid of small cells
of size ∆x×∆y. Start Newton’s method from the center of each cell.
Color the cell if |zk − 1| < 1

4 for some k ≤ N . See how the picture
depends on the parameters ∆x, ∆y, Rx, Ry, and N .

6. A saddle point12 is an x so that ∇V (x) = 0 and the Hessian, H(x), is
nonsingular and has at least one negative eigenvalue. We do not want the
iterates to converge to a saddle point, but most Newton type optimization
algorithms seem to have that potential. All the safeguarded optimization
methods we discussed have Φ(x) = x if x is a saddle point because they
all find the search direction by solving H̃p = −∇V (x).

(a) Let V (x) = x2
1 − x2

2 and suppose x is on the x1 axis. Show that
with the modified Choleski, x′ also is on the x1 axis, so the iterates
converge to the saddle point, x = 0. Hint: H̃ has a simple form in
this case.

(b) Show that if x2 6= 0, and t > 0 is the step size, and we use the
bisection search that increases the step size until φ(t) = V ((x) + tp)
satisfies φ(2t) > φ(t), then one of the following occurs:

i. The bisection search does not terminate, t → ∞, and φ(t) →
−∞. This would be considered good, since the minimum of V is
−∞.

ii. The line search terminates with t satisfying φ(t) = V (x′) < 0.
In this case, subsequent iterates cannot converge to x = 0 be-
cause that would force V to converge to zero, while our modified
Newton strategy guarantees that V decreases at each iteration.

(c) Nonlinear least squares means finding x ∈ Rm to minimize V (x) =
‖f(x)− b‖2l2 , where f(x) = (f1(x), . . . , fn(x))∗ is a column vector of
n nonlinear functions of the m unknowns, and b ∈ Rn is a vector we
are trying to approximate. If f(x) is linear (there is an n×m matrix
A with f(x) = Ax), then minimizing V (x) is a linear least squares
problem. The Marquart Levenberg iterative algorithm solves a linear
least squares problem at each iteration. If the current iterate is x, let
the linearization of f be the n ×m Jacobian matrix A with entries
aij = ∂xjfi(x). Calculate the step, p, by solving

min
p
‖Ap− (b− f(x))‖l2 . (6.21)

Then take the next iterate to be x′ = x+ p.
i. Show that this algorithm has local quadratic convergence if the

residual at the solution has zero residual: r(x∗) = f(x∗)− b = 0,
but not otherwise (in general).

12The usual definition of saddle point is that H should have at least one positive and
one negative eigenvalue and no zero eigenvalues. The simpler criterion here suffices for this
application.
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ii. Show that p is a descent direction.
iii. Describe a safeguarded algorithm that probably will converge to

at least a local minimum or diverge.

7. This exercise shows a connection between the slowness of gradient de-
scent and the condition number of H in one very special case. Con-
sider minimizing the model quadratic function in two dimensions V (x) =
1
2

(
λ1x

2
1 + λ2x

2
2

)
using gradient descent. Suppose the line search is done

exactly, choosing t to minimize φ(t) = V (x + tp), where p = ∇V (x). In
general it is hard to describe the effect of many minimization steps be-
cause the iteration x→ x′ is nonlinear. Nevertheless, there is one case we
can understand.

(a) Show that for any V , gradient descent with exact line search has pk+1

orthogonal to pk. Hint: otherwise, the step size tk was not optimal.

(b) In the two dimensional quadratic optimization problem at hand, show
that if pk is in the direction of (−1,−1)∗, then pk+1 is in the direction
of (−1, 1)∗.

(c) Show that pk is in the direction of (−1,−1)∗ if and only if (x1, x2) =
r(λ2, λ1), for some r,

(d) Since the optimum is x∗ = (0, 0)∗, the error is ‖(x1, x2)‖. Show that
if p0 is in the direction of (−1,−1), then the error decreases exactly
by a factor of ρ = (λ1 − λ2)/(λ1 + λ2) if λ1 ≥ λ2 (including the case
λ1 = λ2).

(e) Show that if λ1 � λ2, then ρ ≈ 1 − 2λ2/λ1 = 1 − 2/κ(H), where
κ(H) is the linear systems condition number of H.

(f) Still supposing λ1 � λ2, show that it takes roughly n = 1/κ(H)
iterations to reduce the error by a factor of e2.

8. This exercise walks you through construction of a robust optimizer. It is
as much an exercise in constructing scientific software as in optimization
techniques. You will apply it to finding the minimum of the two variable
function

V (x, y) =
ψ(x, y)√

1 + ψ(x, y)2
, ψ(x, y) = ψ0 + wx2 +

(
y − a sin(x)

)2
.

Hand in output documenting what you for each of the of the parts below.

(a) Write procedures that evaluate V (x, y), g(x, y), and H(x, y) analyt-
ically. Write a tester that uses finite differences to verify that g and
H are correct.

(b) Implement a local Newton’s method without safeguards as in Section
6.5. Use the Choleski decomposition code from Exercise 3. Report
failure if H is not positive definite. Include a stoping criterion and a
maximum iteration count, neither hard wired. Verify local quadratic
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convergence starting from initial guess (x0, y0) = (.3, .3) with param-
eters ψ0 = .5, w = .5, and a = .5. Find an initial condition from
which the unsafeguarded method fails.

(c) Modify the Choleski decomposition code Exercise 5.3 to do the mod-
ified Choleski decomposition described in Section 6.6. This should
require you to change a single line of code.

(d) Write a procedure that implements the limited line search strategy
described in Section 6.6. This also should have a maximum iteration
count that is not hard wired. Write the procedure so that it sees only
a scalar function φ(t). Test on:

i. φ(t) = (t− .9)2 (should succeed with t = 1).
ii. φ(t) = (t − .01)2 (should succeed after several step size reduc-

tions).
iii. φ(t) = (t − 100)2 (should succeed after several step size dou-

blings).
iv. φ(t) = t (should fail after too many step size reductions).
v. φ(t) = −t (should fail after too many doublings).

(e) Combine the procedures from parts (c) and (d) to create a robust
global optimization code. Try the code on our test problem with
(x0, y0) = (10, 10) and parameters ψ0 = .5, w = .02, and a = 1.
Make plot that shows contour lines of V and all the iterates.
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Scientific computing often calls for representing or approximating a general
function, f(x). That is, we seek a f̃ in a certain class of functions so that1

f̃ ≈ f in some sense. For example, we might know the values fk = f(xk) (for
some set of points x0, x1, . . .) and wish to find an interpolating function so that
f(xk) = fk. In general there

This chapter discusses two related problems. One is finding simple approx-
imate representations for known functions. The other is interpolation and ex-
trapolation, estimating unknown function values from known values at nearby
points. On one hand, interpolation of smooth functions gives accurate approx-
imations. On the other hand, we can interpolate and extrapolate using our
approximating functions.

Some useful interpolating functions are polynomials, splines, and trigono-
metric polynomials. Interpolation by low order polynomials is simple and ubiq-
uitous in scientific computing. Ideas from Chapters 3 and 4 will let us un-
derstand its accuracy. Some simple tricks for polynomial interpolation are the
Newton form of the interpolating polynomial and Horner’s rule for evaluating
polynomials.

Local polynomial interpolation gives different approximating functions in
different intervals. A spline interpolant is a single globally defined function that
has many of the approximation properties of local polynomial interpolation.
Computing the interpolating spline from n data points requires us to solve a
linear system of equations involving a symmetric banded matrix, so the work is
proportional to n.

The order of accuracy of polynomial or spline interpolation is p + 1, where
p is the degree of polynomials used. This suggests that we could get very accu-
rate approximations using high degree polynomials. Unfortunately, high degree
polynomial interpolation on uniformly spaced points leads to linear systems of
equations that are exponentially ill conditioned, κ ∼ ecp, where p is the degree
and κ is the condition number. The condition number grows moderately as
p → ∞ only if the interpolation points cluster at the ends of the interval in a
very specific way.

High accuracy interpolation on uniformly spaced points can by done using
trigonometric polynomial interpolation, also called Fourier interpolation. More
generally, Fourier analysis for functions defined at n uniformly spaced points
can be done using the discrete Fourier transform, or DFT. The fast Fourier
transform, or FFT, is an algorithm that computes the DFT of n values in
O(n log(n)) time. Besides trigonometric interpolation, the FFT gives highly
accurate solutions to certain linear partial differential equations and allows us
to compute large discrete convolutions, including the convolution that defines
the time lag covariance function for a time series.

1In Chapters 2 and 3 we used the hat or caret notation of statisticians to denote approxi-

mation: Q̂ ≈ Q. In this chapter, the hat refers to Fourier coefficients and the tilde represents
approximation.
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7.1 Polynomial interpolation

Given points x0, . . . , xd and values f0, . . . , fd, there is a unique interpolating
polynomial of degree d,

p(x) = p0 + p1x+ · · ·+ pdx
d , (7.1)

so that
p(xk) = fk for k = 0, 1, . . . , d. (7.2)

We give three proofs of this, each one illustrating a different aspect of polynomial
interpolation.

We distinguish between low order or local interpolation and high order or
global interpolation. In low order interpolation, we have a small number (at
least two and probably not much more than five) of nearby points and we seek
an interpolating polynomial that should be valid near these points. This leads
to approximations of order d+ 1 for degree d interpolation. For example, local
linear interpolation (degree d = 1) is second order accurate. See Exercise ??.

7.1.1 Vandermonde theory

The most direct approach to interpolation uses the Vandermonde matrix. The
equations (7.22) and (7.2) form a set of linear equations that determine the
d + 1 unknown coefficients, pj , from the d + 1 given function values, fk. The
kth equation is

p0 + xkp1 + x2
kp2 + · · ·+ xdkpd = fk ,

which we write abstractly as
V p = f , (7.3)

where

V =


1 x0 . . . xd0
1 x1 . . . xd1
...

...
...

1 xd . . . xdd

 , (7.4)

p = (p0, . . . , pd)∗, and f = (f0, . . . , fd)∗. The equations (7.3) have a unique
solution if and only if det(V ) 6= 0. We show det(V ) 6= 0 using the following
famous formula:

Theorem 2 Define D(x0, . . . , xd) = det(V ) as in (7.4). Then

D(x0, . . . , xd) =
∏
j<k

(xk − xj) . (7.5)

The reader should verify directly that D(x0, x1, x2) = (x2−x0)(x1−x0)(x2−
x1). It is clear that D = 0 whenever xj = xk for some j 6= k because xj = xk
makes row j and row k equal to each other. The formula (7.5) says that D is a
product of factors coming from these facts.
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Proof: The proof uses three basic properties of determinants. The first is that
the determinant does not change if we perform an elimination operation on rows
or columns. If we subtract a multiple of row j from row k or of column j from
column k, the determinant does not change. The second is that if row k or
column k has a common factor, we can pull that factor out of the determinant.
The third is that if the first column is (1, 0 . . . , 0)∗, then the determinant is the
determinant of the d× d matrix got by deleting the top row and first column.

We work by induction on the number of points. For d = 1 (7.5) isD(x0, x1) =
x1 − x0, which is easy to verify. The induction step is the formula

D(x0, . . . , xd) =

(
d∏
k=1

(xk − x0)

)
·D(x1, . . . , xd) . (7.6)

We use the easily checked formula

xk − yk = (x− y)(xk−1 + xk−2y + · · ·+ yk−1) . (7.7)

To compute the determinant of V in (7.4), we use Gauss elimination to set all
but the top entry of the first column of V to zero. This means that we replace
row j by row j minus row 1. Next we find common factors in the columns.
Finally we perform column operations to put the d × d matrix back into the
form of a vanderMonde matrix for x1, . . . , xd, which will prove (7.6).

Rather than giving the argument in general, we give it for d = 2 and d = 3.
The general case will be clear from this. For d = 2 we have

det

 1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

 = det

 1 x0 x2
0

0 x1 − x0 x2
1 − x2

0

0 x2 − x0 x2
2 − x2

0


= det

(
x1 − x0 x2

1 − x2
0

x2 − x0 x2
2 − x2

0

)
.

The formula (7.7) with k = 2 gives x2
1 − x2

0 = (x1 − x0)(x1 + x0), so (x1 − x0)
is a common factor in the top row. Similarly, (x2 − x0) is a common factor of
the bottom row. Thus:

det
(
x1 − x0 x2

1 − x2
0

x2 − x0 x2
2 − x2

0

)
= det

(
x1 − x0 (x1 − x0)(x1 + x0)
x2 − x0 x2

2 − x2
0

)
= (x1 − x0) det

(
1 (x1 + x0)

x2 − x0 x2
2 − x2

0

)
= (x1 − x0)(x2 − x0) det

(
1 x1 + x0

1 x2 + x0

)
.

The final step is to subtract x0 times the first column from the second column,
which does not change the determinant:

det
(

1 x1 + x0

1 x2 + x0

)
= det

(
1 x1 + x0 − x0 ∗ 1
1 x2 + x0 − x0 ∗ 1

)
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= det
(

1 x1

1 x2

)
= D(x1, x2) .

This proves (7.6) for d = 2.
For d = 3 there is one more step. If we subtract row 1 from row k for k > 1

and do the factoring using (7.7) for k = 2 and x = 3, we get

det


1 x0 x2

0 x3
0

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

 =

(x1 − x0)(x2 − x0)(x3 − x0) det

 1 x1 + x0 x2
1 + x1x0 + x2

0

1 x2 + x0 x2
2 + x2x0 + x2

0

1 x3 + x0 x2
3 + x3x0 + x2

0

 .

We complete the proof of (7.6) in this case by showing that

det

 1 x1 + x0 x2
1 + x1x0 + x2

0

1 x2 + x0 x2
2 + x2x0 + x2

0

1 x3 + x0 x2
3 + x3x0 + x2

0

 = det

 1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 .

For this we first subtract x0 times the first column from the second column,
then subtract x2

0 times the first column from the third column, then subtract
x0 times the second column from the third column. This completes the proof
of Theorem 2 and shows that one can find the coefficients of the interpolating
polynomial by solving a linear system of equations involving the vanderMonde
matrix.

7.1.2 Newton interpolation formula

The Newton interpolation formula is a simple and insightful way to express the
interpolating polynomial. It is based on repeated divided differences, done in
a way to expose the leading terms of polynomials. These are combined with a
specific basis for the vector space of polynomials of degree k so that in the end
the interpolation property is obvious. In some sense, the Newton interpolation
formula provides a formula for the inverse of the vanderMonde matrix.

We begin with the problem of estimating derivatives of f(x) using a number
of function values. Given nearby points, x1 and x0, we have

f ′ ≈ f(x1)− f(x0)
x1 − x0

.

We know that the divided difference is particularly close to the derivative at the
center of the interval, so we write

f ′
(
x1 + x0

2

)
≈ f(x1)− f(x0)

x1 − x0
, (7.8)



136 CHAPTER 7. APPROXIMATING FUNCTIONS

with an error that is O
(
|x1 − x0|2

)
. If we have three points that might not be

uniformly spaced, the second derivative estimate using (7.8) could be

f ′′ ≈
f ′
(
x2+x1

2

)
− f ′

(
x1+x0

2

)
x2 + x1

2
− x1 + x0

2

f ′′ ≈

f(x2)− f(x1)
x2 − x1

− f(x1)− f(x0)
x1 − x0

1
2 (x2 − x0)

. (7.9)

As we saw in Chapter 3, the approximation (7.9) is consistent (converges to the
exact answer as x2 → x, x1 → x, and x0 → x) if it is exact for quadratics,
f(x) = ax2 + bx + c. Some algebra shows that both sides of (7.9) are equal to
2a.

The formula (7.9) suggests the right way to do repeated divided differences.
Suppose we have d + 1 points2 x0, . . . , xd, we define f [xk] = f(xk) (exchange
round parentheses for square brackets), and the first order divided difference is:

f [xk, xk+1] =
f [xk+1]− f [xk]
xk+1 − xk

.

More generally, the Newton divided difference of order k+1 is a divided difference
of divided differences of order k:

f [xj , · · · , xk+1] =
f [xj+1, · · · , xk+1]− f [xj , · · · , xk]

xk+1 − xj
. (7.10)

The denominator in (7.10) is the difference between the extremal x values, as
(7.9) suggests it should be. If instead of a function f(x) we just have values
f0, . . . , fd, we define

[fj , · · · , fk+1] =
[fj+1, · · · , fk+1]− [fj , · · · , fk]

xk+1 − xj
. (7.11)

It may be convenient to use the alternative notation

Dk(f) = f [x0, · · · , xk] .

If r(x) = rkx
k+· · ·+r0 is a polynomial of degree k, we will see that Dkr = k!·rk.

We verified this already for k = 1 and k = 2.
The interpolation problem is to find a polynomial of degree d that satisfies

the interpolation conditions (7.2). The formula (7.1) expresses the interpolating
polynomial as a linear combination of pure monomials xk. Using the monomials
as a basis for the vector space of polynomials of degree d leads to the vander-
Monde matrix (7.4). Here we use a different basis, which might be called the

2The xk must be distinct but they need not be in order. Nevertheless, it helps the intuition
to think that x0 < x1 < · · · < xd.
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Newton monomials of degree k (although they strictly speaking are not mono-
mials), q0(x) = 1, q1(x) = x− x0, q2(x) = (x− x1)(x− x0), and generally,

qk(x) = (x− xk−1) · · · · · (x− x0) . (7.12)

It is easy to see that qk(x) is a polynomial of degree k in x with leading coefficient
equal to one:

qk(x) = xk + ak−1x
k−1 + · · · .

Since this also holds for qk−1, we may subtract to get:

qk(x)− ak−1qk−1(x) = xk + bk−2x
k−2 + · · · .

Continuing in this way, we express xk in terms of Newton monomials:

xk = qk(x)− ak,k−1qk−1(x)− bk,k−2 − · · · . (7.13)

This shows that the qk(x) are linearly independent and span the same space as
the monomial basis.

The connection between repeated divided differences (7.10) and Newton
monomials (7.12) is

Dkqj = δkj . (7.14)

The intuition is that Dkf plays the role 1
k!∂

k
xf(0) and qj(x) plays the role of

xj . For k > j, ∂kxj = 0 because differentiation lowers the order of a monomial.
For k < j, ∂kxx

j = 0 when evaluated at x = 0 because monomials vanish when
x = 0. The remaining case is the interesting one, 1

k!∂
k
xx

k = 1.
We verify (7.14) by induction on k. We suppose that (7.14) holds for all

k < d and all j and use that to prove it for k = d and all j, treating the cases
j = d, j < d, and j > d separately. The base case k = 1 explains the ideas. For
j = 1 we have

D1q1(x) =
q1(x1)− q1(x0)

x1 − x0
=

(x1 − x0)− (x0 − x0)
x1 − x0

= 1 , (7.15)

as claimed. More generally, any first order divided difference of q1 is equal to
one,

q1[xk+1, xk] =
q1(xk+1)− q1(xk)

xk+1 − xk
= 1 ,

which implies that higher order divided differences of q1 are zero. For example,

q1[x2, x3, x4] =
q1[x3, x4]− q1[x2, x3]

x4 − x2
=

1− 1
x4 − x2

= 0 .

This proves the base case, k = 1 and all j.
The induction step has the same three cases. For j > d it is clear that

Ddqj = qj [x0, . . . , xd] = 0 because qj(xk) = 0 for all the xk that are used in
qj [x0, . . . , xd]. The interesting case is qk[x0, . . . , xk] = 1. From (7.10) we have
that

qk[x0, . . . , xk] =
qk[x1, . . . , xk]− qk[x0, . . . , xk−1]

xk − x0
=
qk[x1, . . . , xk]
xk − x0

,
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because qk[x0, . . . , xk−1] = 0 (it involves all zeros). The same reasoning gives
qk[x1, . . . , xk−1] = 0 and

qk[x1, . . . , xk] =
qk[x2, . . . , xk]− qk[x1, . . . , xk−1]

xk − x1
=
qk[x2, . . . , xk]
xk − x1

.

Combining these gives

qk[x0, . . . , xk] =
qk[x1, . . . , xk]
xk − x0

=
qk[x2, . . . , xk]

(xk − x0)(xk − x1)
,

and eventually, using the definition (7.12), to

qk[x0, . . . , xk] =
qk(xk)

(xk − x0) · · · · · (xk − xk−1)
=

(xk − x0) · · · · · (xk − xk−1)
(xk − x0) · · · · · (xk − xk−1)

= 1 ,

as claimed. Now, using (7.13) we see that

Dkx
k = Dk

(
qk − ak,k−1qk−1 − · · ·

)
= Dkqk = 1 ,

for any collection of distinct points xj . This, in turn, implies that

qk[xm+k, . . . , xm] = 1 .

which, as in (7.15), implies that Dk+1qk = 0. This completes the induction
step.

The formula (7.14) allows us to verify the Newton interpolation formula,
which states that

p(x) =
d∑
k=0

[f0, . . . , fk]qk(x) , (7.16)

satisfies the interpolation conditions (7.2). We see that p(x0) = f0 because each
term on the right k = 0 vanishes when x = x0. The formula (7.14) also implies
that D1p = D1f . This involves the values p(x1) and p(x0). Since we already
know p(x0) is correct, this implies that p(x1) also is correct. Continuing in this
way verifies all the interpolation conditions.

7.1.3 Lagrange interpolation formula

The Lagrange approach to polynomial interpolation is simpler mathematically
but less useful than the others. For each k, define the polynomial3 of degree d

lk(x) =

∏
j 6=k (x− xj)∏
j 6=k (xk − xj)

. (7.17)

3We do not call these Lagrange polynomials because that term means something else.
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For example, for d = 2, x0 = 0, x1 = 2, x2 = 3 we have

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 2)(x− 3)
(−2)(−3)

=
1
6
(
x2 − 5x+ 6

)
l1(x) =

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

=
(x− 0)(x− 3)

(1)(−1)
= x2 − 3x

l2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 0)(x− 2)
(3)(1)

=
1
3
(
x2 − 2x

)
,

If j = k, the numerator and denominator in (7.17) are equal. If j 6= k, then
l(k(xj) = 0 because (xj − xj) = 0 is one of the factors in the numerator.
Therefore

lk(xj) = δjk =
{

1 if j = k
0 if j 6= k

(7.18)

The Lagrange interpolation formula is

p(x) =
d∑
k=0

fklk(x) . (7.19)

The right side is a polynomial of degree d. This satisfies the interpolation
conditions (7.2) because of (7.18).

7.2 Discrete Fourier transform

The Fourier transform is one of the most powerful methods of applied mathe-
matics. Its finite dimensional anologue, the discrete Fourier transform, or DFT,
is just as useful in scientific computing. The DFT allows direct algebraic solu-
tion of certain differential and integral equations. It is the basis of computations
with time series data and for digital signal processing and control. It leads to
computational methods that have an infinite order of accuracy (which is not the
same as being exact).

The drawback of DFT based methods is their geometric inflexibility. They
can be hard to apply to data that are not sampled at uniformly spaced points.
The multidimensional DFT is essentially a product of one dimensional DFTs.
Therefore is it hard to apply DFT methods to problems in more than one
dimension unless the computational domain has a simple shape. Even in one
dimension, applying the DFT depends on boundary conditions.

7.2.1 Fourier modes

The simplest Fourier analysis is for periodic functions of one variable. We say
f(x) is periodic with period p if f(x + p) = f(x) for all x. If α is an integer,
then the Fourier mode

wα(x) = e2πiαx/p (7.20)
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is such a periodic function. Fourier analysis starts with the fact that Fourier
modes form a basis for the vector space of periodic functions. That means that
if f has period p, then there are Fourier coefficients, f̂α, so that

f(x) =
∞∑

α=−∞
f̂αe

2πiαx/p . (7.21)

More precisely, let Vp be the vector space of complex valued periodic func-
tions so that

‖f‖2L2 =
∫ p

0

|f(x)|2 dx <∞ .

This vector space has an inner product that has the properties discussed in
Section 4.2.2. The definition is

〈f, g〉 =
∫ p

0

f(x)g(x)dx . (7.22)

Clearly, ‖f‖2L2 = 〈f, f〉 > 0 unless f ≡ 0. The inner product is linear in the g
variable:

〈f, ag1 + bg2〉 = a〈f, g1〉+ b〈f, g2〉 ,

and antilinear in the f variable:

〈af1 + bf2, g〉 = a〈f1, g〉+ b〈f2, g〉 .

Functions f and g are orthogonal if 〈f, g〉 = 0. A set of functions is orthogonal
if any two of them are orthogonal and none of them is zero. The Fourier modes
(7.20) have this property: if α 6= β are two integers, then 〈wα, wβ〉 = 0 (check
this).

Any orthogonal system of functions is linearly independent. Linear indepen-
dence means that if

f(x) =
∑
α

f̂αwα(x) =
∞∑

α=−∞
f̂αe

2πiαx/p , (7.23)

then the f̂α are uniquely determined. For orthogonal functions, we show this by
taking the inner product of wβ with f and use the linearity of the inner product
to get

〈wβ , f〉 =
∑
α

f̂α〈wβ , wα〉 = f̂β〈wβ , wβ〉 ,

so

f̂β =
〈wβ , f〉
‖wβ‖2

. (7.24)

This formula shows that the coefficients are uniquely determined. Written more
explicitly for the Fourier modes, (7.24) is

f̂α =
1
p

∫ p

x=0

e−2πiαx/pf(x)dx . (7.25)
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An orthogonal family, wα, is complete if any f has a representation in terms
of them as a linear combination (7.23). An orthogonal family need not be
complete. Fourier conjectured that the Fourier modes (7.20) are complete, but
this was first proven several decades later.

Much of the usefulness of Fourier series comes from the relationship between
the series for f and for derivatives f ′, f ′′, etc. When we differentiate (7.23) with
respect to x and differentiate under the summation on the right side, we get

f ′(x) =
2πi
p

∑
α

αf̂αe
2πiαx/p .

This shows that the α Fourier coefficient of f ′ is

f̂ ′α =
2πiα
p

f̂α . (7.26)

Formulas like these allow us to express the solutions to certain ordinary and
partial differential equations in terms of Fourier series. See Exercise 4 for one
example.

We will see that the differentiation formula (7.26) also contains important
information about the Fourier coefficients of smooth functions, that they are
very small for large α. This implies that approximations

f(x) ≈
∑
|α|≤R

f̂αwα(x)

are very accurate if f is smooth. It also implies that the DFT coefficients (see
Section 7.2.2) are very accurate approximations of f̂α. Both of these make DFT
based computational methods very attractive (when they apply) for application
to problems with smooth solutions.

We start to see this decay by rewriting (7.26) as

f̂α =
pf̂ ′α
2πi

· 1
α
. (7.27)

The integral formula

f̂ ′α =
1
p

∫ p

0

wα(x)f ′(x)dx

shows that the Fourier coefficients f̂ ′α are bounded if f ′ is bounded, since (for
some real θ) |wα(x)| =

∣∣eiθ∣∣ = 1. This, and (7.27) shows that∣∣∣f̂α∣∣∣ ≤ C · 1
|α|

.

We can go further by applying (7.27) to f ′ and f ′′ to get

f̂α =
p2f̂ ′′α
−4π2

· 1
α2

,
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so that if f ′′ is bounded, then ∣∣∣f̂α∣∣∣ ≤ C · 1
|α2|

,

which is faster decay (1/α2 � 1/α for large α). Continuing in this way, we can
see that if f has N bounded derivatives then∣∣∣f̂α∣∣∣ ≤ CN · 1

|αN |
. (7.28)

This shows, as we said, that the Fourier coefficients of smooth functions decay
rapidly.

It is helpful in real applications to use real Fourier modes, particularly when
f(x) is real. The real modes are sines and cosines:

uα(x) = cos(2παx/p) , vα(x) = sin(2παx/p) . (7.29)

The uα are defined for α ≥ 0 and the vα for α ≥ 1. The special value α = 0
corresponds to u0(x) = 1 (and v0(x) = 0). Exercise 3 shows that the uα for
α = 0, 1, . . . and vα for α = 1, 2, . . . form an orthogonal family. The real Fourier
series representation expresses f as a superposition of these functions:

f(x) =
∞∑
α=0

aα cos(2παx/p) +
∞∑
α=1

bα sin(2παx/p) . (7.30)

The reasoning that led to (7.25), and the normalization formulas of Exercise ??
below, (7.41), gives

aα =
2
p

∫ p

0

cos(2παx/p)f(x)dx (α ≥ 1),

bα =
2
p

∫ p

0

sin(2παx/p)f(x)dx (α ≥ 1),

a0 =
1
p

∫ p

0

f(x)dx .


(7.31)

This real Fourier (7.30) is basically the same as the complex Fourier series

(7.23) when f(x) is real. If f is real, then (7.25) shows that4 f̂−α = f̂α. This
determines the α < 0 Fourier coefficients from the α ≥ 0 coefficients. If α > 0
and f̂α = gα + ihα (gα and hα being real and imaginary parts), then (using
eiθ = cos(θ) + i sin(θ)), we have

f̂αe
2πiαx/p + f̂−αe

−2πiαx/p

= (gα + ihα)
(
cos(·) + i sin(·)) + (gα − ihα)

(
cos(·)− i sin(·)

)
= 2gα cos(·)− 2hα sin(·) .

4This also shows that the full Fourier series sum over positive and negative α is somewhat
redundant for real f . This is another motivation for using the version with cosines and sines.
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Moreover, when f is real,

gα =
1
p

Re
[∫ p

0

e−2πiαx/pf(x)dx
]

=
1
p

∫ p

0

cos(2πiαx/p)f(x)dx

=
1
2
aα .

Similarly, hα = −1
2 bα. This shows that the real Fourier series relations (7.23)

and (7.25) directly follow from the complex Fourier series relations (7.30) and
(7.31) without using Exercise 3.

7.2.2 The DFT

The DFT is a discrete anologue of Fourier analysis. The vector space Vp is
replaced by sequences with period n: fj+n = fj . A periodic sequence is de-
termined by the n entries5: f = (f0, . . . , fn−1)∗, and the vector space of such
sequences is Cn. Sampling a periodic function of x is one way to create an ele-
ment of Cn. Choose ∆x = p/n, take sample points, xj = j∆x, then the samples
are fj = f(xj). If the continuous f has period p, then the discrete sampled f
has period n, because fj+n = f(xj+n), and xj+n = (j + n)∆x, and n∆x = p.

The DFT modes come from sampling the continuous Fourier modes (7.20)
in this way. That is

wα,j = wα(xj) = exp(2πiαxj/p) .

Since xj = jp/n, this gives

wα,j = exp(2πiαj/n) = wαj , (7.32)

where w is a primitive root of unity6

w = e2πi/n . (7.33)

Aliasing is a difference between continuous and discrete Fourier analysis. If
β = α+ n then the samplings of wβ and wα are the same, wβ(xj) = wα(xj) for
all j, even though wβ and wα are different functions of x. Figure 7.1 illustrates
this with sine functions instead of complex exponentials. Aliasing implies that
the discrete sampled vectors wα ∈ Cn with components given by (7.32) are not
all different. In fact, the n vectors wα for 0 ≤ α < n are distinct. After that
they repeat: wα+n = wα (this being an equality between two vectors in Cn).

These n discrete sampled modes form a basis, the DFT basis, for Cn. If f
and g are two elements of Cn, the discrete inner product is

〈f, g〉 =
n−1∑
j=0

f jgj .

5The ∗ in (f0, . . . , fn−1)∗ indicates that we think of f as a column vector in Cn.
6Unity means the number 1. An nth root of x is a y with yn = x. An nth root of unity is

primitive if wn = 1 but wk 6= 1 for 0 ≤ k ≤ n.
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Figure 7.1: An illustration of aliasing with n = 7 sampling points and period
p = 2π, with modes α = 2 and β = α + n = 9. The continuous curves are
sin(2x) and sin(9x). The circles are these curves sampled at the sample points
xj = 2πj/n. The sampled values are identical even though the functions sin(2x)
and sin(9x) are not.

This is the usual inner product on Cn and leads to the usual l2 norm 〈f, f〉 =
‖f‖2l2 . We show that the discrete modes form an orthogonal family, but only as
far as is allowed by aliasing. That is, if 0 ≤ α < n and 0 ≤ β < n, and α 6= β,
then 〈wα, wβ〉 = 0.

Recall that for any complex number, z, S(z) =
∑n−1
j=0 z

j has S = n if z = 1
and S = (zn − 1)/(z − 1) if z 6= 1. Also,

wα,j = e2πiαj/n = e−2πiαj/n = w−αj ,

so we can calculate

〈wα, wβ〉 =
n−1∑
j=0

w−αjwβj

=
n−1∑
j=0

w(β−α)j

=
n−1∑
j=0

(
wβ−α

)j
Under our assumptions (α 6= β but 0 ≤ α < n, 0 ≤ β < n) we have 0 <
|β − α| < n, and z = wβ−α 6= 1 (using the fact that w is a primitive root of
unity). This gives

〈wα, wβ〉 =
wn(β−α) − 1
wβ−α − 1

.

Also,

wn(β−α) =
(
wn
)β−α

= 1β−α = 1 ,

because w is an nth root of unity. This shows 〈wα, wβ〉 = 0. We also can
calculate that ‖wα‖2 =

∑n
j=1 |wα,j |

2 = n.
Since the n vectors wα for 0 ≤ α < n are linearly independent, they form a

basis of Cn. That is, any f ∈ Cn may be written as a linear combination of the
wα:

f =
n−1∑
α=0

f̂αwα .

By the arguments we gave for Fourier series above, the DFT coefficients are

f̂α =
1
n
〈wα, f〉 .
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Expressed explicitly in terms of sums, these relations are

f̂α =
1
n

n−1∑
j=0

w−αjfj , (7.34)

and

fj =
n−1∑
α=0

f̂αw
αj . (7.35)

These are the (forward) DFT and inverse DFT respectively. Either formula
implies the other. If we start with the fj and calculate the f̂α using (7.34), then
we can use (7.35) to recover the fj from the f̂α, and the other way around. These
formulas are more similar to each other than are the corresponding formulas
(7.25) and (7.21). Both are sums rather than one being a sum and the other an
integral.

There are many other slightly different definitions of the DFT relations.
Some people define the discrete Fourier coefficients using a variant of (7.34),
such as

f̂α =
n−1∑
j=0

wαjfj .

This particular version changes (7.35) to

fj =
1
n

n−1∑
α=0

w−αj f̂α .

Still another way to express these relations is to use the DFT matrix, W , which
is an orthogonal matrix whose (α, j) entry is

wα,j =
1√
n
w−αj .

The adjoint of W has entries

w∗j,α = wα,j =
1√
n
wαj .

The DFT relations are equivalent to W ∗W = I. In vector notation, this f̂ = Wf
transform differs from (7.34) by a factor of

√
n:

f̂α =
1√
n

n−1∑
j=0

w−αjfj .

It has the advantage of making the direct and inverse DFT as similar as possible,
with a factor 1/

√
n in both.

As for continuous Fourier series, there is a real discrete cosine and sine
transform for real f . The complex coefficients f̂α, determine the real coefficients
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aα and bα as before. Aliasing is more complicated for the discrete sine and cosine
transform, and depends on whether n is even or odd. The cosine and sine sums
corresponding to (7.30) run from α = 0 or α = 1 roughly to α = n/2.

We can estimate the Fourier coefficients of a continuous function by taking
the DFT of its sampled values. We call the vector of samples f (n). It has
components f (n)

j = f(xj), where xj = j∆x and ∆x = p/n. The DFT coefficients

f̂
(n)
α defined by (7.34) are rectangle rule approximations to the Fourier series

coefficients (7.25). This follows from (7.32) and 1
p∆x = 1

n , since αj/n = αxj/p
and

f̂ (n)
α =

1
n

n−1∑
j=0

w−αjf
(n)
j (7.36)

=
1
p

∆x
n−1∑
j=0

e−2πiαxj/nf(xj) .

There is a simple aliasing formula for the Fourier coefficients of f (n) in
terms of those of f . It depends on aliasing when we put the continuous Fourier
representation (7.25) into the discrete Fourier coefficient formula (7.37). If we
rewrite (7.25) with β instead of α as the summation index, substitute into (7.37),
and change the order of summation, we find

f̂ (n)
α =

∞∑
β=−∞

f̂β
∆x
p

n−1∑
j=0

exp [2πi (β − α)xj/n] .

We have shown that the inner sum is equal to zero unless mode β aliases to mode
α on the grid, which means β = α + kn for some integer k. We also showed
that if mode β does alias to mode α on the grid, then each of the summands is
equal to one. Since ∆x/p = 1/n, this implies that

f̂ (n)
α =

∞∑
k=−∞

f̂α+kn . (7.37)

This shows that the discrete Fourier coefficient is equal to the continuous Fourier
coefficient (the k = 0 term on the right) plus all the coefficients that alias to it
(the terms k 6= 0).

You might worry that the continuous function has Fourier coefficients with
both positive and negative α while the DFT computes coefficients for α =
0, 1, . . . , n − 1. The answer to this is aliasing. We find approximations to the
negative α Fourier coefficients using f̂

(n)
−α = f̂

(n)
n−α. It may be more helpful to

think of the DFT coefficients as being defined for α ≈ −n2 to α ≈ n
2 (the

exact range depending on whether n is even or odd) rather than from α = 0 to
α = n − 1. The aliasing formula shows that if f is smooth, then f̂

(n)
α is a very

good approximation to f̂α.
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7.2.3 FFT algorithm

It takes n2 multiplies to carry out all the sums in (7.34) directly (n terms in
each of n sums). The Fast Fourier Transform, or FFT, is an algorithm that
calculates the n components of f̂ from the n components of f using O(n log(n))
operations, which is much less for large n.

The idea behind FFT algorithms is clearest when n = 2m. A single DFT
of size n = 2m is reduced to two DFT calculations of size m = n/2 followed
by O(n) work. If m = 2r, this process can be continued to reduct the two size
m DFT operations to four size r DFT operations followed by 2 · O(m) = O(n)
operations. If n = 2p, this process can be continued p times, where we arrive at
2p = n trivial DFT calculations of size one each. The total work for the p levels
is p ·O(n) = O(n log2(n)).

There is a variety of related methods to handle cases where n is not a power
of 2, and the O(n log(n)) work count holds for all n. The algorithm is simpler
and faster for n = 2p. For example, an FFT with n = 220 = 1, 048, 576 should
be significantly faster than with n = 1, 048, 573, which is a prime number.

Let Wn×n be the complex n× n matrix7 whose (α, j) entry is wα,j = w−αj ,
where w is a primitive nth root of unity. The DFT (7.34), but for the factor of 1

n ,
is the matrix product f̃ = Wn×nf . If n = 2m, then w2 is a primitive mth root
of unity and an m ×m DFT involves the matrix product g̃ = Wm×mg, where
the (α, k) entry of Wm×m is (w2)−αk = w−2αk. The reduction splits f ∈ Cn
into g ∈ Cm and h ∈ Cm, then computes g̃ = Wm×mg and h̃ = Wm×mh, then
combines g̃ and h̃ to form f̃ .

The elements of f̃ are given by the sums

f̃α =
n−1∑
j=0

w−αjfj .

We split these into even and odd parts, with j = 2k and j = 2k+1 respectively.
Both of these have k ranging from 0 to n

2 − 1 = m − 1. For these sums,
−αj = −α(2k) = −2αk (even), and −αj = −α(2k + 1) = −2αk − α (odd)
respectively. Thus

f̃α =
m−1∑
k=0

w−2αkf2k + w−α
m−1∑
k=0

w−2αkf2k+1 . (7.38)

Now define g ∈ Cm and h ∈ Cm to have the even and odd components of f
respectively:

gk = f2k , hk = f2k+1 .

The m×m operations g̃ = Wm×mg and h̃ = Wm×mh, written out, are

g̃α =
n−1∑
k=0

(
w2
)−αk

gk ,

7This definition of W differs from that of Section 7.2 by a factor of
√
n.
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and

h̃α =
n−1∑
k=0

(
w2
)−αk

hk .

Then (7.38) may be written

f̃α = g̃α + w−αh̃α . (7.39)

This is the last step, which reassembles f̃ from g̃ and h̃. We must apply (7.39)
for n values of α ranging from α = 0 to α = n − 1. The computed g̃ and h̃
have period m (g̃α+m = g̃α, etc.), but the factor w−α in front of h̃ makes f̃ have
period n = 2m instead.

To summarize, an order n FFT requires first n copying to form g and h, then
two order n/2 FFT operations, then order n copying, adding, and multiplying.
Of course, the order n/2 FFT operations themselves boil down to copying and
simple arithmetic. As explained in Section 5.7, the copying and memory access-
ing can take more computer time than the arithmetic. High performance FFT
software needs to be chip specific to take full advantage of cache.

7.2.4 Trigonometric interpolation

Interpolating f(x) at points xj , j = 1, . . . , n, means finding another function
F (x) so that F (xj) = f(xj) for j = 1, . . . , n. In polynomial interpolation,
F (x) is a polynomial of degree n− 1. In trigonometric interpolation, F (x) is a
trigonometric polynomial with n terms. Because we are interested in values of
F (x) off the grid, do should not take advantage of aliasing to simplify notation.
Instead, we let Zn be a set of integers as symmetric about α = 0 as possible.
This depends on whether n is even or odd

Zn =
{
{−m,−m+ 1, . . . ,m} if n = 2m+ 1 (i.e. n is odd)
{−m+ 1, . . . ,m} if n = 2m (i.e. n is even) (7.40)

With this notation, an n term trigonometric polynomial may be written

F (x) =
∑
α∈Zn

cαe
2πiαx/p .

The DFT provides coefficients cα of the trigonometric interpolating polynomial
at n uniformly spaced points.

The high accuracy of DFT based methods comes from the fact that trigono-
metric polynomials are very efficient approximations for smooth periodic func-
tions. This, in turn, follows from the rapid decay of Fourier coefficients of
smooth periodic functions. Suppose, for example, that f(x) is a periodic func-
tion that has N bounded derivatives. Let be the n term trigonometric polyno-
mial consisting of n terms of the Fourier sum:

F (n)(x) =
∑
α∈Zn

f̂αe
2πiαx/p .
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Note that for large m,∑
α≥m

1
αN
≈
∫ ∞
α=m

1
αN

dα =
1

N − 1
1

αN−1
.

The rapid decay inequality (7.28) gives a simple error bound

∣∣∣f(x)− F (n)(x)
∣∣∣ =

∣∣∣∣∣∣
∑
α/∈Zn

f̂αe
2πiαx/p

∣∣∣∣∣∣
≤ C

∑
α≥n/2

1
αN

+ C
∑

α≤−n/2

1

|α|N

≤ C · 1
nN−1

Thus, the smoother f is, the more accurate is the partial Fourier sum approxi-
mation.

7.3 Software

Performance tools.

7.4 References and Resources

The classical books on numerical analysis (Dahlquist and Björck, Isaacson and
Keller, etc.) discuss the various facts and forms of polynomial interpolation.
There are many good books on Fourier analysis. One of my favorites is by
Harry Dym and my colleague Henry McKean8 I learned the aliasing formula
(7.37) from a paper by Heinz Kreiss and Joseph Oliger.

7.5 Exercises

1. Verify that both sides of (7.9) are equal to 2a when f(x) = ax2 + bx+ c.

2. One way to estimate the derivative or integral from function values is to
differentiate or integrate the interpolating polynomial.

3. Show that the real Fourier modes (7.29) form an orthogonal family. This
means that

(a) 〈uα, uβ〉 = 0 if α 6= β.

(b) 〈vα, vβ〉 = 0 if α 6= β.

(c) 〈uα, vβ〉 = 0 for any α and β.

8He pronounces McKean as one would Senator McCain.
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In (a), α or β may be zero. In (b), α and β start with one. In (c), α starts
with zero and β starts with one. It is easy to verify these relations using
complex exponentials and the formula eiθ = cos(θ) + i sin(θ). For exam-
ple, we can write cos(θ) = 1

2

(
eiθ + e−iθ

)
, so that uα = 1

2 (wα + w−α).
Therefore

〈uα, uβ〉 =
1
4

(
〈wα, wβ〉+ 〈w−α, wβ〉+ 〈wα, w−β〉+ 〈w−α, w−β〉

)
.

You can check that if α ≥ 0 and β ≥ 0 and α 6= β, then all four terms
on the right side are zero because the wα are an orthogonal family. Also
check this way that

‖uα‖2L2 = 〈uα, uα〉 = ‖vα‖2L2 =
p

2
, (7.41)

if α ≥ 1, and ‖u0‖2L2 = p.

4. We wish to use Fourier series to solve the boundary value problem from
4.11.

(a) Show that the solution to (4.44) and (4.45) can be written as a Fourier
sine series

u(x) =
n−1∑
α=1

cα sin(παx) . (7.42)

One way to do this is to define new functions also called u and f ,
that extend the given ones in a special way to satisfy the boundary
conditions. For 1 ≤ x ≤ 2, we define f(x) = −f(x− 1). This defines
f in the interval [0, 2] in a way that makes it antisymmetric about
x = 1. Next if x /∈ [0, 2] there is a k so that x − 2k ∈ [0, 2]. Define
f(x) = f(x − 2k) in that case. This makes f a periodic function
with period p = 2 that is antisymmetric about any of the integer
points x = 0, x = 1, etc. Draw a picture to make this two step
extension clear. If we express this extended f as a real cosine and
sine series, the coefficients of all the cosine terms are zero (why?), so
f(x) =

∑
α>0 bα sin(παx). (Why π instead of 2π?) Now determine

the cα in terms of the bα so that u satisfies (4.44). Use the sine series
for u to show that u = 0 for x = 0 and x = 1.

(b) Write a program in Matlab that uses the Matlab fft function to
calculate the discrete sine coefficients bα for a sampled function f (n).
The simplest way to program this is to extend f to the interval [0, 2]
as described, sample this extended f at 2n+1 uniformly spaced points
in the interval [0, 2], compute the complex DFT of these samples, then
extract the sine coefficients as described in Section 7.2.1.

(c) Write a Matlab program that takes the bα and computes f̃(x) =∑n−1
α=1 bα sin(παx) for an arbitrary x value. On one graph, make

a plot of f(x) and f̃(x) for x ∈ [0, 1]. On another plot the error
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f(x)− f̃(x). Check that the error is zero at the sampling points, as
it should be. For plotting, you will have to evaluate f(x) and f̃(x)
at many more than the sampling points. Do this for n = 5, 20, 100
and f(x) = x2 and f(x) = sin(3 sin(x)). Comment on the accuracy
in the two cases.

(d) Use the relation between bα and cα to calculate the solution to (4.44)
and (4.45) for the two functions f in part (c). Comment on the
difference in accuracy.

(e) Show that the eigenvectors of the matrix A in Exercise 4.11 are dis-
crete sine modes. Use this to describe an algorithm to express any
vector, F , in terms as a linear combination of eigenvectors of A. This
is more or less what part (a) does, only stated in a different way.

(f) Use part (e) to develop a fast algorithm (i.e. as fast as the FFT rather
than the direct method) to solve Au = F . Write a Matlab code to
do this. Compare the accuracy of the second order method from
Exercise 4.11 to the DFT based algorithm of part (c).
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Many dynamical systems are modeled by first order systems of differential
equations. An n component vector x(t) = (x1(t), . . . , xn(t)), models the state
of the system at time t. The dynamics are modelled by

dx

dt
= ẋ(t) = f(x(t), t) , (8.1)

where f(x, t) is an n component function, f(x, t) = f1(x, t), . . . , fn(x, t)). The
system is autonomous if f = f(x), i.e., if f is independent of t. A trajectory
is a function, x(t), that satisfies (8.1). The initial value problem is to find a
trajectory that satisfies the initial condition1

x(0) = x0 , (8.2)

with x0 being the initial data. In practice we often want to specify initial data
at some time other than t0 = 0. We set t0 = 0 for convenience of discussion. If
f(x, t) is a differentiable function of x and t, then the initial value problem has
a solution trajectory defined at least for t close enough to t0. The solution is
unique as long as it exists.2.

Some problems can be reformulated into the form (8.1), (8.2). For example,
suppose F (r) is the force on an object of mass m if the position of the object is
r ∈ R3. Newton’s equation of motion: F = ma is

m
d2r

dt2
= F (r) . (8.3)

This is a system of three second order differential equations. The velocity at
time t is v(t) = ṙ(t). The trajectory, r(t), is determined by the initial position,
r0 = r(0), and the initial velocity, v0 = v(0).

We can reformulate this as a system of six first order differential equations
for the position and velocity, x(t) = (r(t), v(t)). In components, this is


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

 =


r1(t)
r2(t)
r3(t)
v1(t)
v2(t)
v3(t)

 .

1There is a conflict of notation that we hope causes little confusion. Sometimes, as here,
xk refers to component k of the vector x. More often xk refers to an approximation of the
vector x at time tk.

2This is the existence and uniqueness theorem for ordinary differential equations. See any
good book on ordinary differential equations for details.
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The dynamics are given by ṙ = v and v̇ = 1
mF (r). This puts the equations (8.3)

into the form (8.1) where

f =


f1

f2

f3

f4

f5

f6

 =


x4

x5

x6
1
mF1(x1, x2, x3)
1
mF2(x1, x2, x3)
1
mF3(x1, x2, x3)

 .

There are variants of this scheme, such as taking x1 = r1, x2 = ṙ1, x3 = r2, etc.,
or using the momentum, p = mṙ rather than the velocity, v = ṙ. The initial
values for the six compenents x0 = x(t0) are given by the initial position and
velocity components.

8.1 Time stepping and the forward Euler method

For simplicity this section supposes f does not depend on t, so that (8.1) is just
ẋ = f(x). Time stepping, or marching, means computing approximate values
of x(t) by advancing time in a large number of small steps. For example, if we
know x(t), then we can estimate x(t+ ∆t) using

x(t+ ∆t) ≈ x(t) + ∆tẋ(t) = x(t) + ∆tf(x(t)) . (8.4)

If we have an approximate value of x(t), then we can use (8.4) to get an ap-
proximate value of x(t+ ∆t).

This can be organized into a method for approximating the whole trajectory
x(t) for 0 ≤ t ≤ T . Choose a time step, ∆t, and define discrete times tk = k∆t
for k = 0, 1, 2, . . .. We compute a sequence of approximate values xk ≈ x(tk).
The approximation (8.4) gives

xk+1 ≈ x(tk+1) = x(tk + ∆t) ≈ x(tk) + ∆tf(xk) ≈ xk + ∆tf(xk) .

The forward Euler method takes this approximation as the definition of xk+1:

xk+1 = xk + ∆tf(xk) . (8.5)

Starting with initial condition x0 (8.5) allows us to calculate x1, then x2, and
so on as far as we like.

Solving differential equations sometimes is called integration. This is because
of the fact that if f(x, t) is independent of x, then ẋ(t) = f(t) and the solution
of the initial value problem (8.1) (8.2) is given by

x(t) = x(0) +
∫ t

0

f(s)ds .

If we solve this using the rectangle rule with time step ∆t, we get

x(tk) ≈ xk = x(0) + ∆t
k−1∑
j=0

f(tj) .
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We see from this that xk+1 = xk + ∆tf(tk), which is the forward Euler method
in this case. We know that the rectangle rule for integration is first order
accurate. This is a hint that the forward Euler method is first order accurate
more generally.

We can estimate the accuracy of the forward Euler method using an infor-
mal error propagation equation. The error, as well as the solution, evolves (or
propagates) from one time step to the next. We write the value of the exact
solution at time tk as x̃k = x(tk). The error at time tk is ek = xk − x̃k. The
residual is the amount by which x̃k fails to satisfy the forward Euler equations3

(8.5):
x̃k+1 = x̃k + ∆tf(x̃k) + ∆trk , (8.6)

which can be rewritten as

rk =
x(tk + ∆t)− x(tk)

∆t
− f(x(tk)) . (8.7)

In Section 3.2 we showed that

x(tk + ∆t)− x(tk)
∆t

= ẋ(tk) +
∆t
2
ẍ(tk) +O(∆t2) .

Together with ẋ = f(x), this shows that

rk =
∆t
2
ẍ(tk) +O(∆t2) , (8.8)

which shows that rk = O(∆t).
The error propagation equation, (8.10) below, estimates e in terms of the

residual. We can estimate ek = xk − x̃k = xk − x(tk) by comparing (8.5) to
(8.6)

ek+1 = ek + ∆t (f(x(k))− f(x̃k))−∆trk .

This resembles the forward Euler method applied to approximating some func-
tion e(t). Being optimistic, we suppose that xk and x(tk) are close enough to
use the approximation (f ′ is the Jacobian matrix of f as in Section ??)

f(xk) = f(x̃k + ek) ≈ f(x̃k) + f ′(x̃k)ek ,

and then
ek+1 ≈ ek + ∆t (f ′(x̃k)ek − rk) . (8.9)

If this were an equality, it would imply that the ek satisfy the forward Euler
approximation to the differential equation

ė = f ′ (x (t)) e− r(t) , (8.10)

where x(t) satisfies (8.1), e has initial condition e(0) = 0, and r(t) is given by
(8.8):

r(t) =
∆t
2
ẍ(t) . (8.11)

3We take out one factor of ∆t so that the order of magnitude of r is the order of magnitude
of the error e.
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The error propagation equation (8.10) is linear, so e(t) should be proportional to4

r, which is proportional to ∆t. If the approximate e(t) satisfies ‖e(t)‖ = C(t)∆t,
then the exact e(t) should satisfy ‖e(t)‖ = O(∆t), which means there is a C(t)
with

‖e(t)‖ ≤ C(t)∆t . (8.12)

This is the first order accuracy of the forward Euler method.
It is important to note that this argument does not prove that the forward

Euler method converges to the correct answer as ∆t→ 0. Instead, it assumes the
convergence and uses it to get a quantitative estimate of the error. The formal
proof of convergence may be found in any good book on numerical methods for
ODEs, such as the book by Isaiah Iserles.

If this analysis is done a little more carefully, it shows that there is an
asymptotic error expansion

xk ∼ x(tk) + ∆tu1(tk) + ∆t2u2(tk) + · · · . (8.13)

The leading error coefficient, u1(t), is the solution of (8.10). The higher or-
der coefficients, u2(t), etc. are found by solving higher order error propagation
equations.

The modified equation is a different approach to error analysis that allows
us to determine the long time behavior of the error. The idea is to modify
the differential equaion (8.1) so that the solution is closer to the forward Euler
sequence. We know that xk = x(tk) + O(∆t). We seek a differential equation
ẏ = g(y) so that xk = y(tk) + O(∆t2) We construct an error expansion for the
equation itself rather than the solution.

It is simpler to require y(t) so satisfy the forward Euler equation at each t,
not just the discrete times tk:

y(t+ ∆t) = y(t) + ∆tf(y(t)) . (8.14)

We seek
g(y,∆t) = g0(y) + ∆tg1(y) + · · · (8.15)

so that the solution of (8.14) satisfies ẏ = g(y) + O(∆t2). We combine the
expansion (8.15) with the Taylor series

y(t+ ∆t) = y(t) + ∆tẏ(t) +
∆t2

2
ÿ(t) +O(∆t3) ,

to get (dividing both sides by ∆t, O(∆t3)/∆t = O(∆t2).):

y(t) + ∆tẏ(t) +
∆t2

2
ÿ(t) +O(∆t3) = y(t) + ∆tf(y(t))

g0(y(t)) + ∆tg1(y(t)) +
∆
2
ÿ(t) = f(y(t)) +O(∆t2)

4The value of e(t) depends on the values of r(s) for 0 ≤ s ≤ t. We can solve u̇ = f ′(x)u−w,
where w = 1

2
ẍ, then solve (8.10) by setting e = ∆tu. This shows that ‖e(t)‖ = ∆t ‖u(t)‖,

which is what we want, with C(t) = ‖u(t)‖.
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Equating the leading order terms gives the unsurprising result

g0(y) = f(y) ,

and leaves us with
g1(y(t)) +

1
2
ÿ(t) = O(∆t) . (8.16)

We differentiate ẏ = f(y) +O(∆t) and use the chain rule, giving

ÿ =
d

dt
ẏ =

d

dt

(
f(y(t)) +O(∆t)

)
= f ′(y)ẏ(t) +O(∆t)

ÿ = f ′(y)f(y) +O(∆t)

Substituting this into (8.16) gives

g1(y) = −1
2
f ′(y)f(y) .

so the modified equation, with the first correction term, is

ẏ = f(y)− ∆t
2
f ′(y)f(y) . (8.17)

A simple example illustrates these points. The nondimensional harmonic
oscillator equation is r̈ = −r. The solution is r(t) = a sin(t) + b cos(t), which
oscillates but does not grow or decay. We write this in first order as ẋ1 = x2,
ẋ2 = −x1, or

d

dt

(
x1

x2

)
=
(

x2

−x1

)
. (8.18)

Therefore, f(x) =
(

x2

−x1

)
, f ′ =

(
0 1
−1 0

)
, and f ′f =

(
0 1
−1 0

)(
x2

−x1

)
=(

−x1

−x2

)
, so (8.17) becomes

d

dt

(
y1

y2

)
=
(

y2

−y1

)
+

∆t
2

(
y1

y2

)
=
(

∆t
2 t 1
−1 ∆t

2

)(
y1

y2

)
.

We can solve this by finding eigenvalues and eigenvectors, but a simpler trick
is to use a partial integrating factor and set y(t) = e

1
2 ∆t·tz(t), where ż =(

0 1
−1 0

)
z. Since z1(t) = a sin(t) + b cos(t), we have our approximate nu-

merical solution y1(t) = e
1
2 ∆t·t (a sin(t) + b cos(t)). Therefore

‖e(t)‖ ≈
(
e

1
2 ∆t·t − 1

)
. (8.19)

This modified equation analysis confirms that forward Euler is first order
accurate. For small ∆t, we write e

1
2 ∆t·t − 1 ≈ 1

2∆t · t so the error is about
∆t · t (a sin(t) + b cos(t)). Moreover, it shows that the error grows with t. For
each fixed t, the error satisfies ‖e(t)‖ = O(∆t) but the implied constant C(t)
(in ‖e(t)‖ ≤ C(t)∆t) is a growing function of t, at least as large as C(t) ≥ t

2 .
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8.2 Runge Kutta methods

Runge Kutta5 methods are a general way to achieve higher order approximate
solutions of the initial value problem (8.1), (8.2). Each time step consists of
m stages, each stage involving a single evaluation of f . The relatively simple
four stage fourth order method is in wide use today. Like the forward Euler
method, but unlike multistep methods, Runge Kutta time stepping computes
xk+1 from xk without using values xj for j < k. This simplifies error estimation
and adaptive time step selection.

The simplest Runge Kutta method is forward Euler (8.5). Among the second
order methods is Heun’s6

ξ1 = ∆tf(xk, tk) (8.20)
ξ2 = ∆tf(xk + ξ1, tk + ∆t) (8.21)

xk+1 = xk +
1
2

(ξ1 + ξ2) . (8.22)

The calculations of ξ1 and ξ2 are the two stages of Heun’s method. Clearly they
depend on k, though that is left out of the notation.

To calculate xk from x0 using a Runge Kutta method, we apply take k time
steps. Each time step is a transformation that may be written

xk+1 = Ŝ(xk, tk,∆t) .

As in Chapter 6, we express the general time step as7 x′ = Ŝ(x, t,∆t). This
Ŝ approximates the exact solution operator, S(x, t,∆t). We say that x′ =
S(x, t,∆t) if there is a trajectory satisfying the differential equation (8.1) so that
x(t) = x and x′ = x(t+ ∆t). In this notation, we would give Heun’s method as
x′ = Ŝ(x,∆t) = x+ 1

2 (ξ1 + ξ2), where ξ1 = f(x, t,∆t), and ξ2 = f(x+ξ1, t,∆t).
The best known and most used Runge Kutta method, which often is called

the Runge Kutta method, has four stages and is fourth order accurate

ξ1 = ∆tf(x, t) (8.23)

ξ2 = ∆tf(x+
1
2
ξ1, t+

1
2

∆t) (8.24)

ξ3 = ∆tf(x+
1
2
ξ2, t+

1
2

∆t) (8.25)

ξ4 = ∆tf(x+ ξ3, t+ ∆t) (8.26)

x′ = x+
1
6

(ξ1 + 2ξ2 + 2ξ3 + ξ4) . (8.27)

5Carl Runge was Professor of applied mathematics at the turn of the 20th century in
Göttingen, Germany. Among his colleagues were David Hilbert (of Hilbert space) and Richard
Courant. But Courant was forced to leave Germany and came to New York to found the
Courant Institute. Kutta was a student of Runge.

6Heun, whose name rhymes with “coin”, was another student of Runge.
7The notation x′ here does not mean the derivative of x with respect to t (or any other

variable) as it does in some books on differential equations.
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Understanding the accuracy of Runge Kutta methods comes down to Taylor
series. The reasoning of Section 8.1 suggests that the method has error O(∆tp)
if

Ŝ(x, t,∆t) = S(x, t,∆t) + ∆t r , (8.28)

where ‖r‖ = O(∆tp). The reader should verify that this definition of the resid-
ual, r, agrees with the definition in Section 8.1. The analysis consists of ex-
panding both S(x, t,∆t) and Ŝ(x, t,∆t) in powers of ∆t. If the terms agree up
to order ∆tp but disagree at order ∆tp+1, then p is the order of accuracy of the
overall method.

We do this for Heun’s method, allowing f to depend on t as well as x. The
calculations resemble the derivation of the modified equation (8.17). To make
the expansion of S, we have x(t) = x, so

x(t+ ∆t) = x+ ∆tẋ(t) +
∆t2

2
ẍ(t) +O(∆t3) .

Differentiating with respect to t and using the chain rule gives:

ẍ =
d

dt
ẋ =

d

dt
f(x(t), t) = f ′(x(t), t)ẋ(t) + ∂tf(x(t), t) ,

so
ẍ(t) = f ′(x, t)f(x, t) + ∂tf(x, t) .

This gives

S(x, t,∆t) = x+ ∆tf(x, t) +
∆t2

2
(f ′(x, t)f(x, t) + ∂tf(x, t)) +O(∆t3) . (8.29)

To make the expansion of Ŝ for Heun’s method, we first have ξ1 = ∆tf(x, t),
which needs no expansion. Then

ξ2 = ∆tf(x+ ξ1, t+ ∆t)
= ∆t

(
f(x, t) + f ′(x, t)ξ1 + ∂tf(x, t)∆t+O(∆t2)

)
= ∆tf(x, t) + ∆t2

(
f ′(x, t)f(x, t) + ∂tf(x, t)

)
+O(∆t3) .

Finally, (8.22) gives

x′ = x+
1
2

(ξ1 + ξ2)

= x+
1
2

{
∆tf(x, t) +

[
∆tf(x, t) + ∆t2

(
f ′(x, t)f(x, t) + ∂tf(x, t)

)]}
+O(∆t3)

Comparing this to (8.29) shows that

Ŝ(x, t,∆t) = S(x, t,∆t) +O(∆t3) .

which is the second order accuracy of Heun’s method. The same kind of analysis
shows that the four stage Runge Kutta method is fourth order accurate, but it
would take a full time week. It was Kutta’s thesis.
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8.3 Linear systems and stiff equations

A good way to learn about the behavior of a numerical method is to ask what
it would do on a properly chosen model problem. In particular, we can ask how
an initial value problem solver would perform on a linear system of differential
equations

ẋ = Ax . (8.30)

We can do this using the eigenvalues and eigenvectors of A if the eigenvectors
are not too ill conditioned. If8 Arα = λαrα and x(t) =

∑n
α=1 uα(t)rα, then the

components uα satisfy the scalar differential equations

u̇α = λαuα . (8.31)

Suppose xk ≈ x(tk) is the approximate solution at time tk. Write xk =∑n
α=1 uαkrα. For a majority of methods, including Runge Kutta methods and

linear multistep methods, the uαk (as functions of k) are what you would get
by applying the same time step approximation to the scalar equation (8.31).
The eigenvector matrix, R, (see Section ??), that diagonalizes the differential
equation (8.30) also diagonalizes the computational method. The reader should
check that this is true of the Runge Kutta methods of Section 8.2.

One question this answers, at least for linear equations (8.30), is how small
the time step should be. From (8.31) we see that the λα have units of 1/time, so
the 1/ |λα| have units of time and may be called time scales. Since ∆t has units
of time, it does not make sense to say that ∆t is small in an absolute sense, but
only relative to other time scales in the problem. This leads to the following:
Possibility: A time stepping approximation to (8.30) will be accurate only if

max
α

∆t |λα| � 1 . (8.32)

Although this possibility is not true in every case, it is a dominant technical
consideration in most practical computations involving differential equations.
The possibility suggests that the time step should be considerably smaller than
the smallest time scale in the problem, which is to say that ∆t should resolve
even the fastest time scales in the problem.

A problem is called stiff if it has two characteristics: (i) there is a wide range
of time scales, and (ii) the fastest time scale modes have almost no energy. The
second condition states that if |λα| is large (relative to other eigenvalues), then
|uα| is small. Most time stepping problems for partial differential equations are
stiff in this sense. For a stiff problem, we would like to take larger time steps
than (8.32):

∆t |λα| � 1
{

for all α with uα signifi-
cantly different from zero. (8.33)

What can go wrong if we ignore (8.32) and choose a time step using (8.33)
is numerical instability. If mode uα is one of the large |λα| small |uα| modes,

8We call the eigenvalue index α to avoid conflict with k, which we use to denote the time
step.
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it is natural to assume that the real part satisfies Re(λα) ≤ 0. In this case
we say the mode is stable because |uα(t)| = |uα(0)| eλαt does not increase as t
increases. However, if ∆tλα is not small, it can happen that the time step ap-
proximation to (8.31) is unstable. This can cause the uαk to grow exponentially
while the actual uα decays or does not grow. Exercise 8 illustrates this. Time
step restrictions arising from stability are called CFL conditions because the
first systematic discussion of this possibility in the numerical solution of partial
differential equations was given in 1929 by Richard Courant, Kurt Friedrichs,
and Hans Levy.

8.4 Adaptive methods

Adaptive means that the computational steps are not fixed in advance but are
determined as the computation proceeds. Section 3.6, discussed an integration
algorithm that chooses the number of integration points adaptively to achieve
a specified overall accuracy. More sophisticated adaptive strategies choose the
distribution of points to maximize the accuracy from a given amount of work.
For example, suppose we want an Î for I =

∫ 2

0
f(x)dx so that

∣∣∣Î − I∣∣∣ < .06. It

might be that we can calculate I1 =
∫ 1

0
f(x)dx to within .03 using ∆x = .1 (10

points), but that calculating I2 =
∫ 2

1
f(x)dx to within .03 takes ∆x = .02 (50

points). It would be better to use ∆x = .1 for I1 and ∆x = .02 for I2 (60 points
total) rather than using ∆x = .02 for all of I (100 points).

Adaptive methods can use local error estimates to concentrate computational
resources where they are most needed. If we are solving a differential equation
to compute x(t), we can use a smaller time step in regions where x has large
accelleration. There is an active community of researchers developing systematic
ways to choose the time steps in a way that is close to optimal without having
the overhead in choosing the time step become larger than the work in solving
the problem. In many cases they conclude, and simple model problems show,
that a good strategy is to equidistribute the local truncation error. That is, to
choose time steps ∆tk so that the the local truncation error ρk = ∆tkrk is nearly
constant.

If we have a variable time step ∆tk, then the times tk+1 = tk + ∆tk form
an irregular adapted mesh (or adapted grid). Informally, we want to choose a
mesh that resolves the solution, x(t) being calculated. This means that knowing
the xk ≈ x(tk) allows you make an accurate reconstruction of the function x(t),
say, by interpolation. If the points tk are too far apart then the solution is
underresolved. If the tk are so close that x(tk) is predicted accurately by a few
neighboring values (x(tj) for j = k ± 1, k ± 2, etc.) then x(t) is overresolved,
we have computed it accurately but paid too high a price. An efficient adaptive
mesh avoids both underresolution and overresolution.

Figure 8.1 illustrates an adapted mesh with equidistributed interpolation
error. The top graph shows a curve we want to resolve and a set of points that
concentrates where the curvature is high. Also also shown is the piecewise linear
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Figure 8.1: A nonuniform mesh for a function that needs different resolution
in different places. The top graph shows the function and the mesh used to
interpolate it. The bottom graph is the difference between the function and the
piecewise linear approximation. Note that the interpolation error equidistributed
though the mesh is much finer near x = 0.

curve that connects the interpolation points. On the graph is looks as though
the piecewise linear graph is closer to the curve near the center than in the
smoother regions at the ends, but the error graph in the lower frame shows this
is not so. The reason probably is that what is plotted in the bottom frame is
the vertical distance between the two curves, while what we see in the picture is
the two dimensional distance, which is less if the curves are steep. The bottom
frame illustrates equidistribution of errer. The interpolation error is zero at the
grid points and gets to be as large as about −6.3 × 10−3 in each interpolation
interval. If the points were uniformly spaced, the interpolation error would be
smaller near the ends and larger in the center. If the points were bunched even
more than they are here, the interpolation error would be smaller in the center
than near the ends. We would not expect such perfect equidistribution in real
problems, but we might have errors of the same order of magnitude everywhere.

For a Runge Kutta method, the local truncation error is ρ(x, t,∆t) = Ŝ(x, t,∆t)−
S(x, t,∆t). We want a way to estimate ρ and to choose ∆t so that |ρ| = e, where
e is the value of the equidistributed local truncation error. We suggest a method
related to Richardson extrapolation (see Section 3.3), comparing the result of
one time step of size ∆t to two time steps of size ∆t/2. The best adaptive Runge
Kutta differential equation solvers do not use this generic method, but instead
use ingenious schemes such as the Runge Kutta Fehlberg five stage scheme that
simultaneously gives a fifth order Ŝ5, but also gives an estimate of the difference
between a fourth order and a fifth order method, Ŝ5−Ŝ4. The method described
here does the same thing with eight function evaluations instead of five.

The Taylor series analysis of Runge Kutta methods indicates that ρ(x, t,∆t) =
∆tp+1σ(x, t) + O(∆tp+2). We will treat σ as a constant because the all the x
and t values we use are within O(∆t) of each other, so variations in σ do not
effect the principal error term we are estimating. With one time step, we get
x′ = Ŝ(x, t,∆t) With two half size time steps we get first x̃1 = Ŝ(x, t,∆t/2),
then x̃2 = Ŝ(x̃1, t+ ∆t/2,∆t/2).

We will show, using the Richardson method of Section 3.3, that

x′ − x̃2 =
(
1− 2−p

)
ρ(x, t,∆t) +O(∆tp+1) . (8.34)

We need to use the semigroup property of the solution operator: If we “run”
the exact solution from x for time ∆t/2, then run it from there for another time
∆t/2, the result is the same as running it from x for time ∆t. Letting x be the
solution of (8.1) with x(t) = x, the formula for this is

S(x, t,∆t) = S(x(t+ ∆t/2), t+ ∆t/2,∆t/2)
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= S(S(x, t,∆t/2) , t+ ∆t/2,∆t/2) .

We also need to know that S(x, t,∆t) = x+O(∆t) is reflected in the Jacobian
matrix S′ (the matrix of first partials of S with respect to the x arguments with
t and ∆t fixed)9: S′(x, t,∆t) = I +O(∆t).

The actual calculation starts with

x̃1 = Ŝ(x, t,∆t/2)
= S(x, t,∆t/2) + 2−(p+1)∆t−(p+1)σ +O(∆t−(p+2)) ,

and

x̃2 = Ŝ(x̃1, t+ ∆t,∆t/2)
= S(x̃1, t+ ∆t/2,∆t/2) + 2−(p+1)∆t−(p+1)σ +O(∆t−(p+2)) ,

We simplify the notation by writing x̃1 = x(t+∆t/2)+u with u = 2−(p+1)∆tpσ+
O(∆t−(p+2)). Then ‖u‖ = O(∆t−(p+1)) and also (used below) ∆t ‖u‖ = O(∆t−(p+2))
and (since p ≥ 1) ‖u‖2 = O(∆t−(2p+2)) = O(∆t−(p+2)). Then

S(x̃1, t+ ∆t/2,∆t/2) = S(x(t+ ∆t/2) + u, t+ ∆t/2,∆t/2)

= S(x(t+ ∆t/2), t+ ∆t/2,∆t/2) + S′u+O
(
‖u‖2

)
= S(x(t+ ∆t/2), t+ ∆t/2,∆t/2) + u+O

(
‖u‖2

)
= S(x, t,∆t) + 2−(p+1)∆tpσ + uO

(
∆tp+2

)
.

Altogether, since 2 · 2−(p+1) = 2−p, this gives

x̃2 = S(x, t,∆t) + 2−p∆tp+1σ +O
(
∆tp+2

)
.

Finally, a single size ∆t time step has

x′ = X(x,∆t, t) + ∆tp+1σ +O
(
∆tp+2

)
.

Combining these gives (8.34). It may seem like a mess but it has a simple
underpinning. The whole step produces an error of order ∆tp+1. Each half
step produces an error smaller by a factor of 2p+1, which is the main idea of
Richardson extrapolation. Two half steps produce almost exactly twice the
error of one half step.

There is a simple adaptive strategy based on the local truncation error es-
timate (8.34). We arrive at the start of time step k with an estimated time
step size ∆tk. Using that time step, we compute x′ = Ŝ(xk, tk,∆tk) and x̃2 by
taking two time steps from xk with ∆tk/2. We then estimate ρk using (8.34):

ρ̂k =
1

1− 2−p
(
x′ − x̃2

)
. (8.35)

9This fact is a consequence of the fact that S is twice differentiable as a function of all
its arguments, which can be found in more theoretical books on differential equations. The
Jacobian of f(x) = x is f ′(x) = I.
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This suggests that if we adjust ∆tk by a factor of µ (taking a time step of size
µ∆tk instead of ∆tk), the error would have been µp+1ρ̂k. If we choose µ to
exactly equidistribute the error (according to our estimated ρ, we would get

e = µp+1 ‖ρ̂k‖ =⇒ µk = (e/ ‖ρ̂k‖)1/(p+1)
. (8.36)

We could use this estimate to adjust ∆tk and calculate again, but this may lead
to an infinite loop. Instead, we use ∆tk+1 = µk∆tk.

Chapter 3 already mentioned the paradox of error estimation. Once we
have a quantitative error estimate, we should use it to make the solution more
accurate. This means taking

xk+1 = Ŝ(xk, tk,∆tk) + ρ̂k ,

which has order of accuracy p + 1, instead of the order p time step Ŝ. This
increases the accuracy but leaves you without an error estimate. This gives
an order p + 1 calculation with a mesh chosen to be nearly optimal for an
order p calculation. Maybe the reader can find a way around this paradox.
Some adaptive strategies reduce the overhead of error estimation by using the
Richardson based time step adjustment, say, every fifth step.

One practical problem with this strategy is that we do not know the quanti-
tative relationship between local truncation error and global error10. Therefore
it is hard to know what e to give to achieve a given global error. One way to es-
timate global error would be to use a given e and get some time steps ∆tk, then
redo the computation with each interval [tk, tk+1] cut in half, taking exactly
twice the number of time steps. If the method has order of accuracy p, then the
global error should decrease very nearly by a factor of 2p, which allows us to
estimate that error. This is rarely done in practice. Another issue is that there
can be isolated zeros of the leading order truncation error. This might happen,
for example, if the local truncation error were proportional to a scalar function
ẍ. In (8.36), this could lead to an unrealistically large time step. One might
avoid that, say, by replacing µk with min(µk, 2), which would allow the time
step to grow quickly, but not too much in one step. This is less of a problem
for systems of equations.

8.5 Multistep methods

Linear multistep methods are the other class of methods in wide use. Rather than
giving a general discussion, we focus on the two most popular kinds, methods
based on difference approximations, and methods based on integrating f(x(t)),
Adams methods. Hybrids of these are possible but often are unstable. For some
reason, almost nothing is known about methods that both are multistage and
multistep.

10Adjoint based error control methods that address this problem are still in the research
stage (2006).
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Multistep methods are characterized by using information from previous
time steps to go from xk to xk+1. We describe them for a fixed ∆t. A simple
example would be to use the second order centered difference approximation
ẋ(t) ≈ (x(t+ ∆t)− x(t−∆t)) /2∆t to get

(xk+1 − xk−1) /2∆t = f(xk) ,

or
xk+1 = xk−1 + 2∆tf(xk) . (8.37)

This is the leapfrog11 method. We find that

x̃k+1 = x̃k−1 + 2∆tf(x̃k) + ∆tO(∆t2) ,

so it is second order accurate. It achieves second order accuracy with a single
evaluation of f per time step. Runge Kutta methods need at least two evalua-
tions per time step to be second order. Leapfrog uses xk−1 and xk to compute
xk+1, while Runge Kutta methods forget xk−1 when computing xk+1 from xk.

The next method of this class illustrates the subtletlies of multistep methods.
It is based on the four point one sided difference approximation

ẋ(t) =
1

∆t

(
1
3
x(t+ ∆t) +

1
2
x(t)− x(t−∆t) +

1
6
x(t− 2∆t)

)
+O

(
∆t3

)
.

This suggests the time stepping method

f(xk) =
1

∆t

(
1
3
xk+1 +

1
2
xk − xk−1 +

1
6
xk−2

)
, (8.38)

which leads to

xk+1 = 3∆tf(xk)− 3
2
xk + 3xk−1 −

1
2
xk−2 . (8.39)

This method never is used in practice because it is unstable in a way that Runge
Kutta methods cannot be. If we set f ≡ 0 (to solve the model problem ẋ = 0),
(8.38) becomes the recurrence relation

xk+1 +
3
2
xk − 3xk−1 +

1
2
xk−2 = 0 , (8.40)

which has characteristic polynomial12 p(z) = z3 + 3
2z

2 − 3z + 1
2 . Since one

of the roots of this polynomial has |z| > 1, general solutions of (8.40) grow
exponentially on a ∆t time scale, which generally prevents approximate solutions
from converging as ∆t → 0. This cannot happen for Runge Kutta methods
because setting f ≡ 0 always gives xk+1 = xk, which is the exact answer in this
case.

11Leapfrog is a game in which two or more children move forward in a line by taking turns
jumping over each other, as (8.37) jumps from xk−1 to xk+1 using only f(xk).

12If p(z) = 0 then xk = zk is a solution of (8.40).



8.6. IMPLICIT METHODS 167

Adams methods use old values of f but not old values of x. We can integrate
(8.1) to get

x(tk+1) = x(tk) +
∫ tk+1

tk

f(x(t))dt . (8.41)

An accurate estimate of the integral on the right leads to an accurate time step.
Adams Bashforth methods estimate the integral using polynomial extrapolation
from earlier f values. At its very simplest we could use f(x(t)) ≈ f(x(tk)),
which gives ∫ tk+1

tk

f(x(t))dt ≈ (tk+1 − tk)f(x(tk)) .

Using this approximation on the right side of (8.41) gives forward Euler.
The next order comes from linear rather than constant extrapolation:

f(x(t)) ≈ f(x(tk)) + (t− tk)
f(x(tk))− f(x(tk−1))

tk − tk−1
.

With this, the integral is estimated as (the generalization to non constant ∆t is
Exercise ??):∫ tk+1

tk

f(x(t))dt ≈ ∆tf(x(tk)) +
∆t2

2
f(x(tk))− f(x(tk−1))

∆t

= ∆t
[

3
2
f(x(tk))− 1

2
f(x(tk−1))

]
.

The second order Adams Bashforth method for constant ∆t is

xk+1 = xk + ∆t
[

3
2
f(xk)− 1

2
f(xk−1)

]
. (8.42)

To program higher order Adams Bashforth methods we need to evaluate the
integral of the interpolating polynomial. The techniques of polynomial interpo-
lation from Chapter 7 make this simpler.

Adams Bashforth methods are attractive for high accuracy computations
where stiffness is not an issue. They cannot be unstable in the way (8.39) is
because setting f ≡ 0 results (in (8.42), for example) in xk+1 = xk, as for Runge
Kutta methods. Adams Bashforth methods of any order or accuracy require one
evaluation of f per time step, as opposed to four per time step for the fourth
order Runge Kutta method.

8.6 Implicit methods

Implicit methods use f(xk+1) in the formula for xk+1. They are used for stiff
problems because they can be stable with large λ∆t (see Section 8.3) in ways
explicit methods, all the ones discussed up to now, cannot. An implicit method
must solve a system of equations to compute xk+1.
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The simplest implicit method is backward Euler:

xk+1 = xk + ∆tf(xk+1) . (8.43)

This is only first order accurate, but it is stable for any λ and ∆t if Re(λ) ≤ 0.
This makes it suitable for solving stiff problems. It is called implicit because
xk+1 is determined implicitly by (8.43), which we rewrite as

F (xk+1,∆t) = 0 , where F (y,∆t) = y −∆tf(y)− xk , (8.44)

To find xk+1, we have to solve this system of equations for y.
Applied to the linear scalar problem (8.31) (dropping the α index), the

method (8.43) becomes uk+1 = uk + ∆tλuk+1, or

uk+1 =
1

1−∆tλ
uk .

This shows that |uk+1| < |uk| if ∆t > 0 and λ is any complex number with
Re(λ) ≤ 0. This is in partial agreement with the qualitative behavior of the
exact solution of (8.31), u(t) = eλtu(0). The exact solution decreases in time if
Re(λ) < 0 but not if Re(λ) = 0. The backward Euler approximation decreases in
time even when Re(λ) = 0. The backward Euler method artificially stabilizes a
neutrally stable system, just as the forward Euler method artificially destabilizes
it (see the modified equation discussion leading to (8.19)).

Most likely the equations (8.44) would be solved using an iterative method as
discussed in Chapter 6. This leads to inner iterations, with the outer iteration
being the time step. If we use the unsafeguarded local Newton method, and let
j index the inner iteration, we get F ′ = I −∆tf ′ and

yj+1 = yj −
(
I −∆tf ′(yj)

)−1(
yj −∆tf(yj)− xk

)
, (8.45)

hoping that yj → xk+1 as j → ∞. We can take initial guess y0 = xk, or, even
better, an extrapolation such as y0 = xk + ∆t(xk − xk−1)/∆t = 2xk − xk−1.
With a good initial guess, just one Newton iteration should give xk+1 accurately
enough.

Can we use the approximation J ≈ I for small ∆t? If we could, the Newton
iteration would become the simpler functional iteration (check this)

yj+1 = xk + ∆tf(yj) . (8.46)

The problem with this is that it does not work precisely for the stiff systems
we use implicit methods for. For example, applied to u̇ = λu, the functional
iteration diverges (|yj | → ∞ as j →∞) for ∆tλ < −1.

Most of the explicit methods above have implicit anologues. Among implicit
Runge Kutta methods we mention the trapezoid rule

xk+1 − xk
∆t

=
1
2
(
f(xk+1) + f(xk)

)
. (8.47)
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There are backward differentiation formula, or BDF methods based on higher
order one sided approximations of ẋ(tk+1). The second order BDF method uses
(??):

ẋ(t) =
1

∆t

(
3
2
x(t)− 2x(t−∆t) +

1
2
x(t− 2∆t)

)
+O

(
∆t2

)
,

to get

f(x(tk+1)) = ẋ(tk+1) =
(

3
2
x(tk+1)− 2x(tk) +

1
2
x(tk−1)

)
+O

(
∆t2

)
,

and, neglecting the O
(
∆t2

)
error term,

xk+1 −
2∆t

3
f(xk+1) =

4
3
xk −

1
3
xk−1 . (8.48)

The Adams Molton methods estimate
∫ tk+1

tk
f(x(t))dt using polynomial in-

terpolation using the values f(xk+1), f(xk), and possibly f(xk−1), etc. The
second order Adams Molton method uses f(xk+1) and f(xk). It is the same
as the trapezoid rule (8.47). The third order Adams Molton method also uses
f(xk−1). Both the trapezoid rule (8.47) and the second order BDF method
(8.48) both have the property of being A-stable, which means being stable for
(8.31) with any λ and ∆t as long as Re(λ) ≤ 0. The higher order implicit
methods are more stable than their explicit counterparts but are not A stable,
which is a constant frustration to people looking for high order solutions to stiff
systems.

8.7 Computing chaos, can it be done?

In many applications, the solutions to the differential equation (8.1) are chaotic.13

The informal definition is that for large t (not so large in real applications) x(t)
is an unpredictable function of x(0). In the terminology of Section 8.5, this
means that the solution operator, S(x0, 0, t), is an ill conditioned function of
x0.

The dogma of Section 2.7 is that a floating point computation cannot give
an accurate approximation to S if the condition number of S is larger than
1/εmach ∼ 1016. But practical calculations ranging from weather forcasting to
molecular dynamics violate this rule routinely. In the computations below, the
condition number of S(x, t) increases with t and crosses 1016 by t = 3 (see
Figure 8.3). Still, a calculation up to time t = 60 (Figure 8.4, bottom), shows
the beautiful butterfly shaped Lorentz attractor, which looks just as it should.

On the other hand, in this and other computations, it truly is impossible
to calculate details correctly. This is illustrated in Figure 8.2. The top picture

13James Glick has written a nice popular book on chaos. Neil Strogatz has a more technical
introduction that does not avoid the beautiful parts.
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plots two trajectories, one computed with ∆t = 4× 10−4 (dashed line), and the
other with the time step reduced by a factor of 2 (solid line). The difference
between the trajectories is an estimate of the accuracy of the computations.
The computation seems somewhat accurate (curves close) up to time t ≈ 5,
at which time the dashed line goes up to x ≈ 15 and the solid line goes down
to x ≈ −15. At least one of these is completely wrong. Beyond t ≈ 5, the
two “approximate” solutions have similar qualitative behavior but seem to be
independent of each other. The bottom picture shows the same experiment with
∆t a hundred times smaller than in the top picture. With a hundred times more
accuracy, the approximate solution loses accuracy at t ≈ 10 instead of t ≈ 5. If
a factor of 100 increase in accuracy only extends the validity of the solution by
5 time units, it should be hopeless to compute the solution out to t = 60.

The present numerical experiments are on the Lorentz equations, which are
a system of three nonlinear ordinary differential equations

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

with14 σ = 10, ρ = 28, and β = 8
3 . The C/C++ program outputs (x, y, z)

for plotting every t = .02 units of time, though there many time steps in each
plotting interval. The solution first finds its way to the butterfly shaped Lorentz
attractor then stays on it, travelling around the right and left wings in a seem-
ingly random (technically, chaotic) way. The initial data x = y = z = 0 are
not close to the attractor, so we ran the differential equations for some time
before time t = 0 in order that (x(0), y(0), z(0)) should be a typical point on
the attractor. Figure 8.2 shows the chaotic sequence of wing choice. A trip
around the left wing corresponds to a dip of x(t) down to x ≈ −15 and a trip
around the right wing corresponds to x going up to x ≈ 15.

Sections 2.7 and 4.3 explain that the condition number of the problem of
calculating S(x, t) depends on the Jacobian matrix A(x, t) = ∂xS(x, t). This
represents the sensitivity of the solution at time t to small perturbations of the
initial data. Adapting notation from (4.29), we find that the condition number
of calculating x(t) from initial conditions x(0) = x is

κ(S(x, t)) = ‖A(x(0), t)‖ ‖x(0)‖
‖x(t)‖

. (8.49)

We can calculate A(x, t) using ideas of perturbation theory similar to those we
used for linear algebra problems in Section 4.2.6. Since S(x, t) is the value of a
solution at time t, it satisfies the differential equation

f(S(x, t)) =
d

dt
S(x, t) .

14These can be found, for example, in http://wikipedia.org by searching on “Lorentz at-
tractor”.
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We differentiate both sides with respect to x and interchange the order of dif-
ferentiation,

∂

∂x
f((S(x, t)) =

∂

∂x

d

dt
S(x, t) =

d

dt

∂

∂x
S(x, t) =

d

dt
A(x, t) ,

to get (with the chain rule)

d

dt
A(x, t) =

∂

∂x
f(S(x, t))

= f ′(S(x, t)) · ∂xS
Ȧ = f ′(S(x, t))A(x, t) . (8.50)

Thus, if we have an initial value x and calculate the trajectory S(x, t), then we
can calculate the first variation, A(x, t), by solving the linear initial value prob-
lem (8.50) with initial condition A(x, 0) = I (why?). In the present experiment,
we solved the Lorentz equations and the perturbation equation using forward
Euler with the same time step.

In typical chaotic problems, the first variation grows exponentially in time.
If σ1(t) ≥ σ2(t) ≥ · · · ≥ σn(t) are the singular values of A(x, t), then there
typically are Lyapounov exponents, µk, so that

σk(t) ∼ eµkt ,

More precisely,

lim
t→∞

ln(σk(t))
t

= µk .

In our problem, ‖A(x, t)‖ = σ1(t) seems to grow exponentially because µ1 > 0.
Since ‖x = x(0)‖ and ‖x(t)‖ are both of the order of about ten, this, with
(8.49), implies that κ(S(x, t)) grows exponentially in time. That explains why
it is impossible to compute the values of x(t) with any precision at all beyond
t = 20.

It is interesting to study the condition number of A itself. If µ1 > µn, the
l2 this also grows exponentially,

κl2(A(x, t)) =
σ1(t)
σn(t)

∼ e(µ1−µn)t .

Figure 8.3 gives some indication that our Lorentz system has differing Lyapoounov
exponents. The top figure shows computations of the three singular values for
A(x, t). For 0 ≤ t <≈ 2, it seems that σ3 is decaying exponentially, making a
downward sloping straight line on this log plot. When σ3 gets to about 10−15,
the decay halts. This is because it is nearly impossible for a full matrix in double
precision floating point to have a condition number larger than 1/εmach ≈ 1016.
When σ3 hits 10−15, we have σ1 ∼ 102, so this limit has been reached. These
trends are clearer in the top frame of Figure 8.4, which is the same calculation
carried to a larger time. Here σ1(t) seems to be growing exponentially with a
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Figure 8.2: Two convergence studies for the Lorentz system. The time steps in
the bottom figure are 100 times smaller than the time steps in the to figure. The
more accurate calculation loses accuracy at t ≈ 10, as opposed to t ≈ 5 with a
larger time step. The qualitative behavior is similar in all computations.

Figure 8.3: Computed singluar values of the sensitivity matrix A(x, t) =
∂xS(x, t) with large time step (top) and ten times smaller time step (bottom).
Top and bottom curves are similar qualitatively though the fine details differ.
Theory predicts that middle singular value should be not grow or decay with t.
The times from Figure 8.2 at which the numerical solution loses accuracy are
not apparent here. In higher precision arithmetic, σ3(t) would have continued
to decay exponentially. It is unlikely that computed singular values of any full
matrix would differ by less than a factor of 1/εmach ≈ 1016.

gap between σ1 and σ3 of about 1/εmach. Theory says that σ2 should be close to
one, and the computations are consistent with this until the condition number
bound makes σ2 ∼ 1 impossible.

To summarize, some results are quantitatively right, including the butterfly
shape of the attractor and the exponential growth rate of σ1(t). Some results
are qualitatively right but quantitatively wrong, including the values of x(t)
for t >≈ 10. Convergence analyses (comparing ∆t results to ∆t/2 results)
distinguishes right from wrong in these cases. Other features of the computed
solution are consistent over a range of ∆t and consistently wrong. There is no
reason to think the condition number of A(x, t) grows exponentially until t ∼ 2
then levels off at about 1016. Much more sophisticated computational methods
using the semigroup property show this is not so.

8.8 Software: Scientific visualization

Visualization of data is indispensable in scientific computing and computational
science. Anomolies in data that seem to jump off the page in a plot are easy
to overlook in numerical data. It can be easier to interpret data by looking at
pictures than by examining columns of numbers. For example, here are entries

Figure 8.4: Top: Singular values from Figure 8.3 computed for longer time. The
σ1(t) grows exponentially, making a straight line on this log plot. The computed
σ2(t) starts growing with the same exponential rate as σ1 when roundoff takes
over. A correct computation would show σ3(t) decreasing exponentially and
σ2(t) neither growing nor decaying. Bottom: A beautiful picture of the butterfly
shaped Lorentz attractor. It is just a three dimensional plot of the solution curve.
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500 to 535 from the time series that made the top curve in the top frame of
Figure 8.4 (multiplied by 10−5).

0.1028 0.1020 0.1000 0.0963 0.0914 0.0864 0.0820
0.0790 0.0775 0.0776 0.0790 0.0818 0.0857 0.0910
0.0978 0.1062 0.1165 0.1291 0.1443 0.1625 0.1844
0.2104 0.2414 0.2780 0.3213 0.3720 0.4313 0.4998
0.5778 0.6649 0.7595 0.8580 0.9542 1.0395 1.1034

Looking at the numbers, we get the overall impression that they are growing in
an irregular way. The graph shows that the numbers have simple exponential
growth with fine scale irregularities superposed. It could take hours to get that
information directly from the numbers.

It can be a challenge to make visual sense of higher dimensional data. For
example, we could make graphs of x(t) (Figure 8.2), y(t) and z(t) as functions
of t, but the single three dimensional plot in the lower frame of Figure 8.4 makes
is clearer that the solution goes sometimes around the left wing and sometimes
around the right. The three dimensional plot (plot3 in Matlab) illuminates the
structure of the solution better than three one dimensional plots.

There are several ways to visualize functions of two variables. A contour plot
draws several contour lines, or level lines, of a function u(x, y). A contour line for
level uk is the set of points (x, y) with u(x, y) = uk. It is common to take about
ten uniformly spaced values uk, but most contour plot programs, including the
Matlab program contour, allow the user to specify the uk. Most contour lines
are smooth curves or collections of curves. For example, if u(x, y) = x2 − y2,
the contour line u = uk with uk 6= 0 is a hyperbola with two components. An
exception is uk = 0, the contour line is an ×.

A grid plot represents a two dimensional rectangular array of numbers by
colors. A color map assigns a color to each numerical value, that we call c(u). In
practice, usually we specify c(u) by giving RGB values, c(u) = (r(u), g(u), b(u)),
where r, g, and b are the intensities for red, green and blue respectively. These
may be integers in a range (e.g. 0 to 255) or, as in Matlab, floating point
numbers in the range from 0 to 1. Matlab uses the commands colormap and
image to establish the color map and display the array of colors. The image is
an array of boxes. Box (i, j) is filled with the color c(u(i, j)).

Surface plots visualize two dimensional surfaces in three dimensional space.
The surface may be the graph of u(x, y). The Matlab commands surf and surfc
create surface plots of graphs. These look nice but often are harder to interpret
than contour plots or grid plots. It also is possible to plot contour surfaces of
a function of three variables. This is the set of (x, y, z) so that u(x, y, z) = uk.
Unfortunately, it is hard to plot more than one contour surface at a time.

Movies help visualize time dependent data. A movie is a sequence of frames,
with each frame being one of the plots above. For example, we could visualize
the Lorentz attractor with a movie that has the three dimensional butterfly
together with a dot representing the position at time t.

The default in Matlab, and most other quality visualization packages, is
to render the user’s data as explicitly as possible. For example, the Matlab
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command plot(u) will create a piecewise linear “curve” that simply connects
successive data points with straight lines. The plot will show the granularity of
the data as well as the values. Similarly, the grid lines will be clearly visible in a
color grid plot. This is good most of the time. For example, the bottom frame
of Figure 8.4 clearly shows the granularity of the data in the wing tips. Since
the curve is sampled at uniform time increments, this shows that the trajectory
is moving faster at the wing tips than near the body where the wings meet.

Some plot packages offer the user the option of smoothing the data using
spline interpolation before plotting. This might make the picture less angu-
lar, but it can obscure features in the data and introduce artifacts, such as
overshoots, not present in the actual data.

8.9 Resources and further reading

There is a beautiful discussion of computational methods for ordinary differen-
tial equations in Numerical Methods by øA]ke Bjöork and Germund Dahlquist.
It was Dahlquist who created much of our modern understanding of the sub-
ject. A more recent book is A First Course in Numerical Analysis of Differential
Equations by Arieh Iserles. The book Numerical Solution of Ordinary Differ-
ential Equations by Lawrence Shampine has a more practical orientation.

There is good public domain software for solving ordinary differential equa-
tions. A particularly good package is LSODE (google it).

The book by Sans-Serna explains symplectic integrators and their appli-
cation to large scale problems such as the dynamics of large scape biological
molecules. It is an active research area to understand the quantitative relation-
ship between long time simulations of such systems and the long time behavior
of the systems themselves. Andrew Stuart has written some thoughtful oapers
on the subject.

The numerical solution of partial differential equations is a vast subject with
many deep specialized methods for different kinds of problems. For computing
stresses in structures, the current method of choice seems to be finite element
methods. For fluid flow and wave propagation (particularly nonlinear), the ma-
jority relies on finite difference and finite volume methods. For finite differences,
the old book by Richtmeyer and Morton still merit though there are more up
to date books by Randy LeVeque and by Bertil Gustavson, Heinz Kreiss, and
Joe Oliger.

8.10 Exercises

1. We compute the second error correction u2(t) n (8.13). For simplicity,
consider only the scalar equation (n = 1). Assuming the error expansion,
we have

f(xk) = f(x̃k + ∆tu1(tk) + ∆t2u2(tk) +O(∆t3))
≈ f(x̃k) + f ′(x̃k)

(
∆tu1(tk) + ∆t2u2(tk)

)
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+
1
2
f ′′(x̃k)∆t2u1(tk)2 +O

(
∆t3

)
.

Also

x(tk + ∆t)− x(tk)
∆t

= ẋ(tk) +
∆t
2
ẍ(tk) +

∆t2

6
x(3)(tk) +O

(
∆t3

)
,

and

∆t
u1(tk + ∆t)− u1(tk)

∆t
= ∆tu̇1(tk) +

∆t2

2
ü1(tk) +O

(
∆t3

)
.

Now plug in (8.13) on both sides of (8.5) and collect terms proportional
to ∆t2 to get

u̇2 = f ′(x(t))u2 +
1
6
x(3)(t) +

1
2
f ′′(x(t))u1(t)2+??? .

2. This exercise confirms what was hinted at in Section 8.1, that (8.19) cor-
rectly predicts error growth even for t so large that the solution has lost
all accuracy. Suppose k = R/∆t2, so that tk = R/∆t. The error equation
(8.19) predicts that the forward Euler approximation xk has grown by a
factor of eR/2 although the exact solution has not grown at all. We can
confirm this by direct calculation. Write the forward Euler approxima-
tion to (8.18) in the form xk+1 = Axk, where A is a 2 × 2 matrix that
depends on ∆t. Calculate the eigenvalues of A up to second order in ∆t:
λ1 = 1 + i∆t+ a∆t2 +O(∆t3), and λ2 = 1− i∆t+ b∆t2 +O(∆t3). Find
the constants a and b. Calculate µ1 = ln(λ1) = i∆t + c∆t2 + O(∆t3)
so that λ1 = exp(i∆t + c∆t2 + O(∆t3)). Conclude that for k = R/∆t2,
λk1 = exp(kµ1) = eiR/∆teR/2+O(∆t), which shows that the solution has
grown by a factor of nearly eR/2 as predicted by (8.19). This s**t is good
for something!

3. Another two stage second order Runge Kutta method sometimes is called
the modified Euler method. The first stage uses forward Euler to predict
the x value at the middle of the time step: ξ1 = ∆t

2 f(xk, tk) (so that
x(tk + ∆t/2) ≈ xk + ξ1). The second stage uses the midpoint rule with
that estimate of x(tk + ∆t/2) to step to time tk+1: xk+1 = xk + ∆tf(tk +
∆t
2 , xk + ξ1). Show that this method is second order accurate.

4. Show that applying the four stage Runge Kutta method to the linear
system (8.30) is equivalent to approximating the fundamental solution
S(∆t) = exp(∆tA) by its Taylor series in ∆t up to terms of order ∆t4 (see
Exercise ??). Use this to verify that it is fourth order for linear problems.

5. Write a C/C++ program that solves the initial value problem for (8.1),
with f independent of t, using a constant time step, ∆t. The arguments
to the initial value problem solver should be T (the final time), ∆t (the
time step), f(x) (specifying the differential equations), n (the number of
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components of x), and x0 (the initial condition). The output should be
the apaproximation to x(T ). The code must do something to preserve
the overall order of accuracy of the method in case T is not an integer
multiple of ∆t. The code should be able to switch between the three
methods, forward Euler, second order Adams Bashforth, forth order four
state Runge Kutta, with a minimum of code editing. Hand in output for
each of the parts below showing that the code meets the specifications.

(a) The procedure should return an error flag or notify the calling routine
in some way if the number of time steps called for is negative or
impossibly large.

(b) For each of the three methods, verify that the coding is correct by
testing that it gets the right answer, x(.5) = 2, for the scalar equation
ẋ = x2, x(0) = 1.

(c) For each of the three methods and the test problem of part b, do a
convergence study to verify that the method achieves the theoretical
order of accuracy. For this to work, it is necessary that T should be
an integer multiple of ∆t.

(d) Apply your code to problem (8.18) with initial data x0 = (1, 0)∗.
Repeat the convergence study with T = 10.

6. Verify that the recurrence relation (8.39) is unstable.

(a) Let z be a complex number. Show that the sequence xk = zk satisfies
(8.39) if and only if z satisfies 0 = p(z) = z3 + 3

2z
2 − 3z + 1

2 .

(b) Show that xk = 1 for all k is a solution of the recurrence relation.
Conclude that z = 1 satisfies p(1) = 0. Verify that this is true.

(c) Using polynomial division (or another method) to factor out the
known root z = 1 from p(z). That is, find a quadratic polynomial,
q(z), so that p(z) = (z − 1)q(z).

(d) Use the quadratic formula and a calculator to find the roots of q as

z = −5
4 ±

√
41
16 ≈ −2.85, .351.

(e) Show that the general formula xk = azk1 + bzk2 + czk3 is a solution to
(8.39) if z1, z2, and z3 are three roots z1 = 1, z2 ≈ −2.85, z3 ≈ .351,
and, conversely, the general solution has this form. Hint: we can find
a, b, c by solving a vanderMonde system (Section 7.4) using x0, x1,
and x2.

(f) Assume that |x0| ≤ 1, |x1| ≤ 1, and |x2| ≤ 1, and that b is on the
order of double precision floating point roundoff (εmach) relative to
a and c. Show that for k > 80, xk is within εmach of bzk2 . Conclude
that for k > 80, the numerical solution has nothing in common with
the actual solution x(t).
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7. Applying the implicit trapezoid rule (8.47) to the scalar model problem
(8.31) results in uk+1 = m(λ∆t)uk. Find the formula for m and show that
|m| ≤ 1 if Re(λ) ≤ 0, so that |uk+1| ≤ |uk|. What does this say about the
applicibility of the trapezoid rule to stiff problems?

8. Exercise violating time step constraint.

9. Write an adaptive code in C/C++ for the initial value problem (8.1) (8.2)
using the method described in Section 8.4 and the four stage fourth order
Runge Kutta method. The procedure that does the solving should have
arguments describing the problem, as in Exercise 5, and also the local
truncation error level, e. Apply the method to compute the trajectory
of a comet. In nondimensionalized variables, the equations of motion are
given by the inverse square law:

d2

dt2

(
r1

r2

)
=

−1

(r2
1 + r2

2)3/2

(
r1

r2

)
.

We always will suppose that the comet starts at t = 0 with r1 = 10,
r2 = 0, ṙ1 = 0, and ṙ2 = v0. If v0 is not too large, the point r(t) traces
out an ellipse in the plane15. The shape of the ellipse depends on v0. The
period, P (v0), is the first time for which r(P ) = r(0) and ṙ(P ) = ṙ(0).
The solution r(t) is periodic because it has a period.

(a) Verify the correctness of this code by comparing the results to those
from the fixed time step code from Exercise 5 with T = 30 and
v0 = .2.

(b) Use this program, with a small modification to compute P (v0) in
the range .01 ≤ v0 ≤ .5. You will need a criterion for telling when
the comet has completed one orbit since it will not happen that
r(P ) = r(0) exactly. Make sure your code tests for and reports
failure16.

(c) Choose a value of v0 for which the orbit is rather but not extremely
elliptical (width about ten times height). Choose a value of e for
which the solution is rather but not extremely accurate – the error is
small but shows up easily on a plot. If you set up your environment
correctly, it should be quick and easy to find suitable paramaters
by trial and error using Matlab graphics. Make a plot of a single
period with two curves on one graph. One should be a solid line
representing a highly accurate solution (so accurate that the error is
smaller than the line width – plotting accuracy), and the other being
the modestly accurate solution, plotted with a little “o” for each time
step. Comment on the distribution of the time step points.

15Isaac Newton formulated these equations and found the explicit solution. Many aspects
of planetary motion – elliptical orbits, sun at one focus, |r| θ̇ = const – had beed discovered
observationally by Johannes Keppler. Newton’s inverse square law theory fit Keppler’s data.

16This is not a drill.
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(d) For the same parameters as part b, make a single plot of that contains
three curves, an accurate computation of r1(t) as a function of t (solid
line), a modestly accurate computation of r1 as a function of t (“o”
for each time step), and ∆t as a function of t. You will need to use a
different scale for ∆t if for no other reason than that it has different
units. Matlab can put one scale in the left and a different scale on
the right. It may be necessary to plot ∆t on a log scale if it varies
over too wide a range.

(e) Determine the number of adaptive time stages it takes to compute
P (.01) to .1% accuracy (error one part in a thousand) and how many
fixed ∆t time step stages it takes to do the same. The counting will
be easier if you do it within the function f .

10. The vibrations of a two dimensional crystal lattice may be modelled in a
crude way using the differential equations17

r̈jk = rj−1,k + rj+1,k + rj,k−1 + rj,k+1 − 4rjk . (8.51)

Here rjk(t) represents the displacement (in the vertical direction) of an
atom at the (j, k) location of a square crystal lattice of atoms. Each atom
is bonded to its four neighbors and is pulled toward them with a linear
force. A lattice of size L has 1 ≤ j ≤ L and 1 ≤ k ≤ L. Apply reflecting
boundary conditions along the four boundaries. For example, the equation
for r1,k should use r0,k = r1,k. This is easy to implement using a ghost
cell strategy. Create ghost cells along the boundary and copy appropriate
values from the actual cells to the ghost cells before each evaluation of
f . This allows you to use the formula (8.51) at every point in the lattice.
Start with initial data rjk(0) = 0 and ṙjk(0) = 0 for all j, k except ṙ1,1 = 1.
Compute for L = 100 and T = 300. Use the fourth order Runge Kutta
method with a fixed time step ∆t = .01. Write the solution to a file every
.5 time units then use Matlab to make a movie of the results, with a 2D
color plot of the solution in each frame. The movie should be a circular
wave moving out from the bottom left corner and bouncing off the top and
right boundaries. There should be some beautiful wave patterns inside the
circle that will be hard to see far beyond time t = 100. Hand in a few
of your favorite stills from the movie. If you have a web site, post your
movie for others to enjoy.

17This is one of Einstein’s contributions to science.
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Monte Carlo means using random numbers in scientific computing. More
precisely, it means using random numbers as a tool to compute something that is
not random. For example1, let X be a random variable and write its expected
value as A = E[X]. If we can generate X1, . . . , Xn, n independent random
variables with the same distribution, then we can make the approximation

A ≈ Ân =
1
n

n∑
k=1

Xk .

The strong law of large numbers states that Ân → A as n → ∞. The Xk and
Ân are random and (depending on the seed, see Section 9.2) could be different
each time we run the program. Still, the target number, A, is not random.

We emphasize this point by distinguishing between Monte Carlo and simula-
tion. Simulation means producing random variables with a certain distribution
just to look at them. For example, we might have a model of a random process
that produces clouds. We could simulate the model to generate cloud pictures,
either out of scientific interest or for computer graphics. As soon as we start
asking quantitative questions about, say, the average size of a cloud or the
probability that it will rain, we move from pure simulation to Monte Carlo.

The reason for this distinction is that there may be other ways to define A
that make it easier to estimate. This process is called variance reduction, since
most of the error in Â is statistical. Reducing the variance of Â reduces the
statistical error.

We often have a choice between Monte Carlo and deterministic methods.
For example, if X is a one dimensional random variable with probability density
f(x), we can estimate E[X] using a panel integration method, see Section 3.4.
This probably would be more accurate than Monte Carlo because the Monte
Carlo error is roughly proportional to 1/

√
n for large n, which gives it order of

accuracy roughly 1
2 . The worst panel method given in Section 3.4 is first order

accurate. The general rule is that deterministic methods are better than Monte
Carlo in any situation where the determinist method is practical.

We are driven to resort to Monte Carlo by the “curse of dimensionality”.
The curse is that the work to solve a problem in many dimensions may grow
exponentially with the dimension. Suppose, for example, that we want to com-
pute an integral over ten variables, an integration in ten dimensional space. If
we approximate the integral using twenty points in each coordinate direction,
the total number of integration points is 2010 ≈ 1013, which is on the edge of
what a computer can do in a day. A Monte Carlo computation might reach
the same accuracy with only, say, 106 points. People often say that the number
of points needed for a given accuracy in Monte Carlo does not depend on the
dimension, and there is some truth to this.

One favorable feature of Monte Carlo is that it is possible to estimate the or-
der of magnitude of statistical error, which is the dominant error in most Monte
Carlo computations. These estimates are often called “error bars” because of

1Section ?? has a quick review of the probability we use here.
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the way they are indicated on plots of Monte Carlo results. Monte Carlo error
bars are essentially statistical confidence intervals. Monte Carlo practitioners
are among the avid consumers of statistical analysis techniques.

Another feature of Monte Carlo that makes academics happy is that sim-
ple clever ideas can lead to enormous practical improvements in efficiency and
accuracy (which are basically the same thing). This is the main reason I em-
phasize so strongly that, while A is given, the algorithm for estimating it is not.
The search for more accurate alternative algorithms is often called “variance
reduction”. Common variance reduction techniques are importance sampling,
antithetic variates, and control variates.

Many of the examples below are somewhat artificial because I have chosen
not to explain specific applications. The techniques and issues raised here in
the context of toy problems are the main technical points in many real applica-
tions. In many cases, we will start with the probabilistic definition of A, while
in practice, finding this is part of the problem. There are some examples in
later sections of choosing alternate definitions of A to improve the Monte Carlo
calculation.

9.1 Quick review of probability

This is a quick review of the parts of probability needed for the Monte Carlo
material discussed here. Please skim it to see what notation we are using and
check Section 9.6 for references if something is unfamiliar.

Probability theory begins with the assumption that there are probabilities
associated to events. Event B has probability Pr(B), which is a number be-
tween 0 and 1 describing what fraction of the time event B would happen if we
could repeat the experiment many times. The exact meaning of probabilities is
debated at length elsewhere.

An event is a set of possible outcomes. The set of all possible outcomes is
called Ω and particular outcomes are called ω. Thus, an event is a subset of the
set of all possible outcomes, B ⊆ Ω. For example, suppose the experiment is to
toss four coins (a penny, a nickle, a dime, and a quarter) on a table and record
whether they were face up (heads) or face down (tails). There are 16 possible
outcomes. The notation THTT means that the penny was face down (tails), the
nickle was up, and the dime and quareter were down. The event “all heads” con-
sists of a single outcome, HHHH. The event B = “more heads than tails” con-
sists of the five outcomes: B = {HHHH,THHH,HTHH,HHTH,HHHT}.

The basic set operations apply to events. For example the intersection of
events B and c is the set of outcomes both in B and in C: ω ∈ B ∩ C means
ω ∈ B and ω ∈ C. For that reason, B ∩ C represents the event “B and
C”. For example, if B is the event “more heads than tails” above and C is
the event “then dime was heads”, then C has 8 outcomes in it, and B ∩ C =
{HHHH,THHH,HTHH,HHHT}. The set union, B ∪ C is ω ∈ B ∪ C if
ω ∈ B or ω ∈ C, so we call it “B or C”. One of the axioms of probability is

Pr(B ∪ C) = Pr(B) + Pr(C) , if B ∩ C is empty.
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Another axiom is that

0 ≤ Pr(B) ≤ 1 , for any event B.

These have many intuitive consequences, such as

B ⊂ C =⇒ Pr(B) ≤ Pr(C) .

A final axiom is Pr(Ω) = 1; for sure something will happen. This really means
that Ω includes every possible outcome.

The conditional “probability of B given C” is given by Bayes’ formula:

Pr(B | C) =
Pr(B ∩ C)

Pr(C)
=

Pr(B and C)
Pr(C)

(9.1)

Intuitively, this is the probability that a C outcome also is a B outcome. If we
do an experiment and ω ∈ C, Pr(B | C) is the probability that ω ∈ B. The
right side of (9.1) represents the fraction of C outcomes that also are in B. We
often know Pr(C) and Pr(B | C), and use (9.1) to calculate Pr(B ∩ C). Of
course, Pr(C | C) = 1. Events B and C are independent if Pr(B) = Pr(B | C),
which is the same as Pr(B | C) = Pr(B)Pr(C), so B being independent of C is
the same as C being independent of B.

The probability space Ω is finite if it is possible to make a finite list2 of all the
outcomes in Ω: Ω = {ω1, ω2, . . . , ωn}. The space is countable if it is possible to
make a possibly infinite list of all the elements of Ω: Ω = {ω1, ω2, . . . , ωn, . . .}.
We call Ω discrete in both cases. When Ω is discrete, we can specify the prob-
abilities of each outcome

fk = Pr(ω = ωk) .

Then an event B has probability

Pr(B) =
∑
ωk∈B

Pr(ωk) =
∑
ωk∈B

fk .

A discrete random variable3 is a number, X(ω), that depends on the random
outcome, ω. In the coin tossing example, X(ω) could be the number of heads.
The expected value is (defining xk = X(ωk))

E[X] =
∑
ω∈Ω

X(ω)Pr(ω) =
∑
ωk

xkfk .

The probability distribution of a continuous random variable is described by
a probability density function, or PDF, f(x). If X ∈ Rn is an n component
random vector and B ⊆ Rn is an event, then

Pr(B) =
∫
x∈B

f(x)dx .

2Warning: this list is impractically large even in common simple applications.
3Warning: sometimes ω is the random variable and X is a function of a random variable.
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In one dimension, we also have the cumulative distribution function, or4 CDF:
F (x) = Pr(X ≤ x) =

∫ x
−∞ f(x)dx. For a < b we have Pr(a ≤ x ≤ b) =

F (b)− F (a). Also f(x) = d
dxF (x), so we may write, informally,

Pr(x ≤ X ≤ x+ dx) = F (x+ dx)− F (x) = f(x)dx . (9.2)

The expected value is

µ = E[X] =
∫
Rn

xf(x)dx .

in more than one dimension, both sides are n component vectors with compo-
nents

µk = E[Xk] =
∫
Rn

xkf(x)dx .

In one dimension, the variance is

σ2 = var(X) = E
[
(X − µ)2

]
=
∫ ∞
−∞

(x− µ)2
f(x)dx .

It is helpful not to distinguish between discrete and continuous random vari-
ables in general discussions. For example, we write E[X] for the expected value
in either case. The probability distribution, or probability law, of X is its prob-
ability density in the continuous case or the discrete probabilities in the discrete
case. We write X ∼ f to indicate that f is the probability density, or the dis-
crete probabilities, of X. We also write X ∼ X ′ to say that X and X ′ have the
same probability distribution. If X and X ′ also are independent, we say they
are iid, for independent and identically distributed. The goal of a simple sampler
(Section 9.3 below) is generating a sequence Xk ∼ X. We call these samples of
the distribution X.

In more than one dimension, there is the symmetric n×n variance/covariance
matrix (usually called covariance matrix),

C = E
[
(X − µ) (X − µ)∗

]
=
∫
Rn

(x− µ) (x− µ)∗ f(x)dx , (9.3)

whose entries are the individual covariances

Cjk = E [(Xj − µj) (Xk − µk)] = cov [Xj , Xk] .

The covariance matrix is positive semidefinite in the sense that for any y ∈ Rn,
y∗Cy ≥ 0. This follows from (9.3):

y∗Cy = y∗ (E [(X − µ)(X − µ)∗]) y
= E

[(
y∗(X − µ)

)(
(X − µ)∗y

)]
= E

[
W 2
]
≥ 0 ,

4A common convention is to use capital letters for random variables and the corresponding
lower case letter to represent values of that variable.
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where W = y∗(X −µ). In order for C not to be positive definite, there must be
a y 6= 0 that has E

[
W 2
]

= 0, which means that5 W is identically zero. This
means that the random vector X always lies on the hyperplane in Rn defined
by y∗x = y∗µ.

Let Z = (X,Y ) be an n + m dimensional random variable with X being
the first n components and Y being the last m, with probability density f(z) =
f(x, y). The marginal density for X is g(x) =

∫
y∈Rm f(x, y)dy, and the marginal

for Y is h(y) =
∫
x
f(x, y)dx. The random variables X and Y are independent

if f(x, y) = g(x)h(y). This is the same as saying that any event depending
only on X is independent of any event depending only on6 Y . The conditional
probability density is the probability density for X alone once the value of Y is
known:

f(x | y) =
f(x, y)∫

x′∈Rn f(x′, y)dx′
. (9.4)

For n = m = 1 the informal version of this is the same as Bayes’ rule (9.1). If
B is the event x ≤ X ≤ x+ dx and C is the event y ≤ Y ≤ y + dy, then

f(x | y)dx = Pr(B | Y = y)
= Pr(B | y ≤ Y ≤ y + dy)

=
Pr(B and y ≤ Y ≤ y + dy)

Pr(y ≤ Y ≤ y + dy)

The numerator in the last line is f(x, y)dxdy and the denominator is
∫
x′
f(x′, y)dx′dy,

which gives (9.4).
Suppose X is an n component random variable, Y = u(X), and g(y) is the

probability density of Y . We can compute the expected value of Y in two ways

E [Y ] =
∫
y

yg(y)dy = E [u(X)] =
∫
x

u(x)f(x)dx .

The one dimensional informal version is simple if u is one to one (like ex or 1/x,
but not x2). Then y + dy corresponds to u(x+ dx) = u(x) + u′(x)dx, so

g(y)dy = Pr(y ≤ Y ≤ y + dy)
= Pr(y ≤ u(X) ≤ y + dy

= Pr(x ≤ X ≤ x+ dx)

= f(x)dx where dx =
dy

u′(x)

=
f(x)
u′(x)

dy .

5If W is a random variable with E
[
W 2
]

= 0, then the Pr(W 6= 0) = 0. Probabilists say

that W = 0 almost surely to distinnguish between events that don’t exist (like W 2 = −1) and
events that merely never happen.

6If B ⊆ Rn and C ⊆ Rm, then Pr(X ∈ B and Y ∈ C) = Pr(X ∈ B)Pr(Y ∈ C).
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This shows that if y = u(x), then g(y) = f(x)/u′(x).
Three common continuous random variables are uniform, exponential, and

gaussian (or normal). In each case there is a standard version and a general
version that is easy to express in terms of the standard version. The standard
uniform random variable, U , has probability density.

f(u) =
{

1 if 0 ≤ u ≤ 1
0 otherwise. (9.5)

Because the density is constant, U is equally likely to be anywhere within the
unit interval, [0, 1]. From this we can create the general random variable uni-
formly distributed in the interval [a, b] by Y = (b − a)U + a. The PDF for Y
is

g(y) =
{

1
b−a if a ≤ y ≤ b
0 otherwise.

The exponential random variable, T , with rate constant λ > 0, has PDF

f(t) =
{
λe−λt if 0 ≤ t
0 if t < 0. (9.6)

The exponential is a model for the amount of time something (e.g. a light bulb)
will work before it breaks. It is characterized by the Markov property, if it has
not broken by time t, it is as good as new. Let λ characterize the probability
density for breaking right away, which means λdt = Pr(0 ≤ T ≤ dt). The
random time T is exponential if all the conditional probabilities are equal to
this:

Pr(t ≤ T ≤ t+ dt | T ≥ t) = Pr(T ≤ dt) = λdt .

Using Bayes’ rule (9.1), and the observation that Pr(T ≤ t + dt and T ≥ t) =
f(t)dt, this becomes

λdt =
f(t)dt

1− F (t)
,

which implies λ (1− F (t)) = f(t), and, by differentiating, −λf(t) = f ′(t). This
gives f(t) = Ce−λt for t > 0. We find C = λ using

∫∞
0
f(t)dt = 1. Independent

exponential inter arrival times generate the Poisson arrival processes. Let Tk,
for k = 1, 2, . . . be independent exponentials with rate λ. The kth arrival time
is

Sk =
∑
j≤k

Tj .

The expected number of arrivals in interval [t1, t2] is λ(t2 − t1) and all arrivals
are independent. This is a fairly good model for the arrivals of telephone calls
at a large phone bank.

We denote the standard normal by Z. The standard normal has PDF

f(z) =
1√
2π
e−z

2/2 . (9.7)
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The general normal with mean µ and variance σ2 is given by X = σZ + µ and
has PDF

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

. (9.8)

We write X ∼ N (µ, σ2) in this case. A standard normal has distribution
N (0, 1). An n component random variable, X, is a multivariate normal with
mean µ and covariance C it has probability density

f(x) =
1
Z

exp ((x− µ)∗H(x− µ)/2) , (9.9)

where H = C−1 and the normalization constant is (we don’t use this) Z =
1/
√

(2π)ndet(C). The reader should check that this is the same as (9.8) when
n = 1.

The class of multivariate normals has the linear transformation property.
Suppose L is an m× n matrix with rank m (L is a linear transformation from
Rn to Rm that is onto Rm). If X is an n dimensional multivariate normal, then
Y is an m dimensional multivariate normal. The covariance matrix for Y is
given by

CY = LCXL
∗ . (9.10)

We derive this, taking µ = 0 without loss of generality (why?), as follows:

CY = E [Y Y ∗] = E
[
(LX) ((LX)∗

]
= E [LXX∗L∗] = LE [XX∗]L∗ = LCXL

∗ .

The two important theorems for simple Monte Carlo are the law of large
numbers and the central limit theorem. Suppose A = E[X] and Xk for k =
1, 2, . . . is an iid sequence of samples of X. The approximation of A is

Ân =
1
n

n∑
k=1

Xk .

The error is Rn = Ân − A. The law of large numbers states7 that Ân → A as
n→∞. Statisticians call estimators with this property consistent. The central
limit theorem states that if σ2 = var(X), then Rn ≈ N (0, σ2/n). It is easy to
see that

E [Rn] = E
[
Ân

]
−A = 0 ,

and that (recall that A is not random)

var(Rn) = var(Ân) =
1
n

var(X) .

The first property makes the estimator unbiased, the second follows from inde-
pendence of the Xk. The deep part of the central limit theorem is that for large
n, Rn is approximately normal, regardless of the distribution of X (as long as
E
[
X2
]
<∞).

7The Kolmogorov strong law of large numbers is the theorem that limn→∞ Ân = A almost
surely, i.e. that the probability of the limit not existing or being the wrong answer is zero.
More useful for us is the weak law, which states that, for any ε > 0, P (|Rn| > ε) → 0 as
n→∞. These are closely related but not the same.
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9.2 Random number generators

The random variables used in Monte Carlo are generated by a (pseudo) random
number generator. The procedure double rng() is a perfect random number
generator if

for( k=0; k<n; k++ ) U[k] = rng();

produces an array of iid standard uniform random variables. The best available
random number generators are perfect in this sense for nearly all practical pur-
poses. The native C/C++ procedure random() is good enough for most Monte
Carlo (I use it).

Bad ones, such as the native rand() in C/C++ and the procedure in Numer-
ical Recipies give incorrect results in common simple cases. If there is a random
number generator of unknown origin being passed from person to person in the
office, do not use it (without a condom).

The computer itself is not random. A pseudo random number generator
simulates randomness without actually being random. The seed is a collection of
m integer variables: int seed[m];. Assuming standard C/C++ 32 bit integers,
the number of bits in the seed is 32 ·m. There is a seed update function Φ(s) and
an output function Ψ(s). The update function produces a new seed: s′ = Φ(s).
The output function produces a floating point number (check the precision)
u = Ψ(s) ∈ [0, 1]. One call u = rng(); has the effect

s←− Φ(s) ; return u = Ψ(s) ; .

The random number generator should come with procedures s = getSeed();
and setSeed(s);, with obvious functions. Most random number generators set
the initial seed to the value of the system clock as a default if the program
has no setSeed(s); command. We use setSeed(s) and getSeed() for two
things. If the program starts with setSeed(s);, then the sequence of seeds
and “random” numbers will be the same each run. This is helpful in debugging
and reproducing results across platforms. The other use is checkpointing. Some
Monte Carlo runs take so long that there is a real chance the computer will
crash during the run. We avoid losing too much work by storing the state of
the computation to disk every so often. If the machine crashes, we restart from
the most recent checkpoint. The random number generator seed is part of the
checkpoint data.

The simplest random number generators use linear congruences. The seed
represents an integer in the range 0 ≤ s < c and Φ is the linear congruence (a
and b positive integers) s′ = Φ(s) = (as+ b)mod c. If c > 232, then we need
more than one 32 bit integer variable to store s. Both rand() and random()
are of this type, but rand() has m = 1 and random() has m = 4. The output
is u = Ψ(s) = s/c. The more sophisticated random number generators are of a
similar computational complexity.
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9.3 Sampling

A simple sampler is a procedure that produces an independent sample of X each
time it is called. The job of a simple sampler is to turn iid standard uniforms
into samples of some other random variable. A large Monte Carlo computation
may spend most of its time in the sampler and it often is possible to improve
the performance by paying attention to the details of the algorithm and coding.
Monte Carlo practitioners often are amply rewarded for time stpnt tuning their
samplers.

9.3.1 Bernoulli coin tossing

A Bernoulli random variable with parameter p, or a coin toss, is a random
variable, X, with Pr(X = 1) = p and Pr(X = 0) = 1 − p. If U is a standard
uniform, then p = Pr(U ≤ p). Therefore we can sample X using the code
fragment

X=0; if ( rng() <= p) X=1;

Similarly, we can sample a random variable with finitely many values Pr(X =
xk) = pk (with

∑
k pk = 1) by dividing the unit interval into disjoint sub

intervals of length pk. This is all you need, for example, to simulate a simple
random walk or a finite state space Markov chain.

9.3.2 Exponential

If U is standard uniform, then

T =
−1
λ

ln(U) (9.11)

is an exponential with rate parameter λ. Before checking this, note first that
U > 0 so ln(U) is defined, and U < 1 so ln(U) is negative and T > 0. Next,
since λ is a rate, it has units of 1/Time, so (9.11) produces a positive number
with the correct units. The code T = -(1/lambda)*log( rng() ); generates
the exponential.

We verify (9.11) using the informal probability method. Let f(t) be the PDF
of the random variable of (9.11). We want to show f(t) = λe−λt for t > 0. Let
B be the event t ≤ T ≤ t+ dt. This is the same as

t ≤ −1
λ

ln(U) ≤ t+ dt ,

which is the same as

−λt− λdt ≤ ln(U) ≤ −λt (all negative),

and, because ex is an increasing function of x,

e−λt−λdt ≤ U ≤ e−λt .
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Now, e−λt−λdt = e−λte−λdt, and e−λdt = 1− λdt, so this is

e−λt − λdte−λt ≤ U ≤ e−λt .

But this is an interval within [0, 1] of length λ dt e−λt, so

f(t)dt = Pr(t ≤ T ≤ t+ dt)
= Pr(e−λt − λdte−λt ≤ U ≤ e−λt)
= λ dt e−λt ,

which shows that (9.11) gives an exponential.

9.3.3 Using the distribution function

In principle, the CDF provides a simple sampler for any one dimensional prob-
ability distribution. If X is a one component random variable with probability
density f(x), the cumulative distrubution function is F (x) = Pr(X ≤ x) =∫
x′≤x f(x′dx′. Of course 0 ≤ F (x) ≤ 1 for all x, and for any u ∈ [0, 1], there

is an x with F (x) = u. Moreover, if X ∼ f and U = F (X), and u = F (x),
Pr(U ≤ u) = Pr(X ≤ x) = F (x) = u. But Pr(U ≤ u) = u says that U is a
standard uniform. Conversely, we can reverse this reasoning to see that if U
is a standard uniform and F (X) = U , then X has probability density f(x).
The simple sampler is, first take U rng();, then find X with F (X) = U . The
second step may be difficult in applications where F (x) is hard to evaluate or
the equation F (x) = u is hard to solve.

For the exponential random variable,

F (t) = Pr(T ≤ t) =
∫ t

t′=0

λe−λt
′
dt′ = 1− e−λt .

Solving F (t) = u gives t = −1
λ ln(1 − u). This is the same as the sampler we

had before, since 1− u also is a standard uniform.
For the standard normal we have

F (z) =
∫ z

z′=−∞

1√
2π
e−z

′2/2dz′ = N(z) . (9.12)

There is no elementary8 formula for the cumulative normal, N(z), but there is
good software to evaluate it to nearly double precision accuracy, both for N(z)
and for the inverse cumulative normal z = N−1(u). In many applications,9 this
is the best way to make standard normals. The general X ∼ N (µ, σ2) may be
found using X = σZ + µ.

8An elementary function is one that can be expressed using exponentials, logs, trigonomet-
ric, and algebraic functions only.

9There are applications where the relationship between Z and U is important, not only
the value of Z. These include sampling using normal copulas, and quasi (low discrepency
sequence) Monte Carlo.
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9.3.4 The Box Muller method

The Box Muller algorithm generates two independent standard normals from
two independent standard uniforms. The formulas are

R =
√
−2 ln(U1)

Θ = 2πU2

Z1 = R cos(Θ)
Z2 = R sin(Θ) .

We can make a thousand independent standard normals by making a thousand
standard uniforms then using them in pairs to generate five hunderd pairs of
independent standard normals.

9.3.5 Multivariate normals

Let X ∈ Rn be a multivariate normal random variable with mean zero and
covariance matrix C. We can sample X using the Choleski factorization of C,
which is C LLT , where L is lower triangular. Note that L exists because C
is symmetric and positive definite. Let Z ∈ Rn be a vector of n independent
standard normals generated using Box Muller or any other way. The covariance
matrix of Z is I (check this). Therefore, if

X = LZ , (9.13)

then X is multivariate normal (because it is a linear transformation of a multi-
variate normal) and has covariance matrix (see (9.10)

CX = LILt = C .

If we want a multivariate normal with mean µ ∈ Rn, we simply take X = LZ+µ.

9.3.6 Rejection

The rejection algorithm turns samples from one density into samples of another.
One ingredient is a simple sampler for the trial distribution, or proposal distri-
bution. Suppose gSamp() produces iid samples from the PDF g(x). The other
ingredient is an acceptance probability, p(x), with 0 ≤ p(x) ≤ 1 for all x. The
algorithm generates a trial X ∼ g and accepts this trial value with probability
p(X). The process is repeated until the first acceptance. All this happens in

while ( rng() > p( X = gSamp() ) ); (9.14)

We accept X is U ≤ p(X), so U > p(X) means reject and try again. Each time
we generate a new X, which must be independent of all previous ones.

The X returned by (9.14) has PDF

f(x) =
1
Z
p(x)g(x) , (9.15)
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where Z is a normalization constant that insures that
∫
f(x)dx = 1:

Z =
∫
x∈Rn

p(x)g(x)dx . (9.16)

This shows that Z is the probability that any given trial will be an acceptance.
The formula (9.15) shows that rejection goes from g to f by thinning out samples
in regions where f < g by rejecting some of them. We verify it informally in
the one dimensional setting:

f(x)dx = Pr ( accepted X ∈ (x, x+ dx))
= Pr (X ∈ (x, x+ dx) | acceptance )

=
Pr (X ∈ (x, x+ dx) and accepted)

Pr ( accepted )

=
g(x)dxp(x)

Z
.

An argument like this also shows the correctness of (9.15) also for multivariate
random variables.

We can use rejection to generate normals from exponentials. Suppose g(x) =
e−x for x > 0, corresponding to a standard exponential, and f(x) = 2√

2π
e−x

2/2

for x > 0, corresponding to the positive half of the standard normal distribution.
Then (9.15) becomes

p(x) = Z
f(x)
g(x)

= Z · 2√
2π
· e
−x2/2

e−x

p(x) = Z · 2√
2π
ex−x

2/2 . (9.17)

This would be a formula for p(x) if we know the constant, Z.
We maximize the efficiency of the algorithm by making Z, the overall prob-

ability of acceptance, as large as possible, subject to the constraint p(x) ≤ 1 for
all x. Therefore, we find the x that maximizes the right side:

ex−x
2/2 = max =⇒ x− x2

2
= max =⇒ xmax = 1 .

Choosing Z so that the maximum of p(x) is one gives

1 = pmax = Z · 2√
2π
exmax−x2

max/2 = Z
2√
2π
e1/2 ,

so
p(x) =

1√
e
ex−x

2/2 . (9.18)
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It is impossible to go the other way. If we try to generate a standard expo-
nential from a positive standard normal we get accetpance probability related
to the recripocal to (9.17):

p(x) = Z

√
2π
2

ex
2/2−x .

This gives p(x)→∞ as x→∞ for any Z > 0. The normal has thinner10 tails
than the exponential. It is possible to start with an exponential and thin the
tails using rejection to get a Gaussian (Note: (9.17) has p(x)→ 0 as x→∞.).
However, rejection cannot fatten the tails by more than a factor of 1

Z . In
particular, rejection cannot fatten a Gaussian tail to an exponential.

The efficiency of a rejection sampler is the expected number of trials needed
to generate a sample. Let N be the number of samples to get a success. The
efficiency is

E[N ] = 1 · Pr(N = 1) + 2 · Pr(N = 2) + · · ·
We already saw that Pr(N = 1) = Z. To have N = 2, we need first a rejection
then an acceptance, so Pr(N = 2) = (1 − Z)Z. Similarly, Pr(N = k) =
(1− Z)k−1Z. Finally, we have the geometric series formulas for 0 < r < 1:

∞∑
k=0

rk =
1

1− r
,

∞∑
k=1

krk−1 =
∞∑
k=0

krk−1 =
d

dr

∞∑
k=0

rk =
1

(1− r)2
.

Applying these to r = 1− Z gives E[N ] = 1
Z . In generating a standard normal

from a standatd exponential, we get

Z =
√
π

2e
≈ .76 .

The sampler is efficient in that more than 75% of the trials are successes.
Rejection samplers for other distributions, particularly in high dimensions,

can be much worse. We give a rejection algorithm for finding a random point
uniformly distributed inside the unit ball n dimensions. The algorithm is correct
for any n in the sense that it produces at the end of the day a random point with
the desired probability density. For small n, it even works in practice and is not
such a bad idea. However, for large n the algorithm is very inefficient. In fact, Z
is an exponentially decreasing function of n. It would take more than a century
on any present computer to generate a point uniformly distributed inside the
unit ball in n = 100 dimensions this way. Fortunately, there are better ways.

A point in n dimensions is x = (x1, . . . , xn). The unit ball is the set of points
with

∑n
k=1 x

2
k ≤ 1. We will use a trial density that is uniform inside the smallest

(hyper)cube that contains the unit ball. This is the cube with −1 ≤ xk ≤ 1 for
each k. The uniform density in this cube is

g(x1, . . . , xn) =
{

2−n if |xk| ≤ 1 for all k = 1, . . . , n
0 otherwise.

10The tails of a probability density are the parts for large x, where the graph of f(x) gets
thinner, like the tail of a mouse.
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This density is a product of the one dimensional uniform densities, so we can
sample it by choosing n independent standard uniforms:

for( k = 0; k < n; k++) x[k] = 2*rng() - 1; // unif in [-1,1].

We get a random point inside the unit ball if we simply reject samples outside
the ball:

while(1) { // The rejection loop (possibly infinite!)

for( k = 0; k < n; k++) x[k] = 2*rng() - 1; // Generate a trial vector

// of independent uniforms

// in [-1,1].

ssq = 0; // ssq means "sum of squares"

for( k = 0; k < n; k++ ) ssq+= x[k]*x[k];

if ( ssq <= 1.) break ; // You accepted and are done with the loop.

// Otherwise go back and do it again.

}

The probability of accepting in a given trial is equal to the ratio of the
volume (or area in 2D) of the ball to the cube that contains it. In 2D this is

area(disk)
area(square)

=
π

4
≈ .79 ,

which is pretty healthy. In 3D it is

vol(ball)
vol(cube)

=
4π
3

8
≈ .52 ,

Table 9.1 shows what happens as the dimension increases. By the time the
dimension reaches n = 10, the expected number of trials to get a success is
about 1/.0025 = 400, which is slow but not entirely impractical. For dimension
n = 40, the expected number of trials has grown to about 3 × 1020, which is
entirely impractical. Monte Carlo simulations in more than 40 dimensions are
common. The last column of the table shows that the acceptance probability
goes to zero faster than any exponential of the form e−cn, because the numbers
that would be c, listed in the table, increase with n.

9.3.7 Histograms and testing

Any piece of scientific software is presumed wrong until it proves itself correct
in tests. We can test a one dimensional sampler using a histogram. Divide the
x axis into neighboring bins of length ∆x centered about bin centers xj = j∆x.
The corresponding bins are Bj = [xj − ∆x

2 , xj + ∆x
2 ]. With n samples, the

bin counts are11 Nj = # {Xk ∈ Bj , 1 ≤ k ≤ n}. The probability that a given
sample lands in Bj is Pr(Bj) =

∫
x∈Bj f(x)dx ≈ ∆xf(xj). The expected bin

count is E[Nj ] ≈ n∆xf(xj), and the standard deviation (See Section 9.4) is

11Here # {· · ·} means the number of elements in the set {· · ·}.



194 CHAPTER 9. MONTE CARLO METHODS

Table 9.1: Acceptence fractions for producing a random point in the unit ball
in n dimensions by rejection.

dimension vol(ball) vol(cube) ratio −ln(ratio)/dim
2 π 4 .79 .12
3 4π/3 8 .52 .22
4 π2/2 16 .31 .29
10 2πn/2/(nΓ(n/2)) 2n .0025 .60
20 2πn/2/(nΓ(n/2)) 2n 2.5× 10−8 .88
40 2πn/2/(nΓ(n/2)) 2n 3.3× 10−21 1.2

σNj ≈
√
n∆x

√
f(xj). We generate the samples and plot the Nj and E[Nj ] on

the same plot. If E[Nj ] � σNj , then the two curves should be relatively close.
This condition is

1√
n∆x

�
√
f(xj) .

In particular, if f is of order one, ∆x = .01, and n = 106, we should have reason-
able agreement if the sampler is correct. If ∆x is too large, the approximation∫
x∈Bj f(x)dx ≈ ∆xf(xj) will not hold. If ∆x is too small, the histogram will

not be accurate.
It is harder to test higher dimensional random variables. We can test two and

possibly three dimensional random variables using multidimensional histograms.
We can test that various one dimensional functions of the random X have the
right distributions. For example, the distributions of R2 =

∑
X2
k = ‖X‖2l2 and

Y =
∑
akXk = a ·X are easy to figure out if X is uniformly distributed in the

ball.

9.4 Error bars

It is relatively easy to estimate the order of magnitude of the error in most Monte
Carlo computations. Monte Carlo computations are likely to have large errors
(see Chapter 2). Therefore, all Monte Carlo computations (except possibly
those for senior management) should report error estimates.

Suppose X is a scalar random variable and we approximate A = E[X] by

Ân =
1
n

n∑
k=1

Xk .

The central limit theorem states that

Rn = Ân −A ≈ σnZ , (9.19)

where σn is the standard deviation of Ân and Z ∼ N (0, 1). A simple calculation
shows that σn = 1√

n

√
σ2, where σ2 = var(X) = E[(X − A)2]. We estimate σ2
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using12

σ̂2
n =

1
n

n∑
k=1

(
Xk − Ân

)2

, (9.20)

then take

σ̂n =
1√
n

√
σ̂2
n .

Since Z in (9.19) will be of order one, Rn will be of order σ̂n.
We typically report Monte carlo data in the form A = Ân± σ̂n. Graphically,

we plot Ân as a circle (or some other symbol) and σ̂n using a bar of length 2σ̂n
with Ân in the center. This is the error bar.

We can think of the error bar as the interval
[
Ân − σ̂n, Ân + σ̂n

]
. More gen-

erally, we can consider k standard deviation error bars
[
Ân − kσ̂n, Ân + kσ̂n

]
.

In statistics, these intervals are called confidence intervals and the confidence is
the probability that A is within the conficence interval. The central limit the-
orem (and numerical computations of integrals of gaussians) tells us that one
standard deviation error bars have have confidence

Pr
(
A ∈

[
Ân − σ̂n, Ân + σ̂n

])
≈ 66% ,

and and two standard deviation error bars have

Pr
(
A ∈

[
Ân − 2σ̂n, Ân + 2σ̂n

])
≈ 95% ,

It is the custom in Monte Carlo practice to plot and report one standard devia-
tion error bars. This requires the consumer to understand that the exact answer
is outside the error bar about a third of the time. Plotting two or three standard
deviation error bars would be safer but would give an inaccurate picture of the
probable error size.

9.5 Software: performance issues

Monte Carlo methods raises many performance issues. Naive coding following
the text can lead to poor performance. Two significant factors are frequent
branching and frequent procedure calls.

9.6 Resources and further reading

There are many good books on the probability background for Monte Carlo,
the book by Sheldon Ross at the basic level, and the book by Sam Karlin and
Gregory Taylor for more the ambitious. Good books on Monte Carlo include

12Sometimes (9.20) is given with n − 1 rather than n in the denominator. This can be a
serious issue in practical statistics with small datasets. But Monte Carlo datasets should be
large enough that the difference between n and n− 1 is irrelevent.
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the still surprisingly useful book by Hammersley and Handscomb, the physicists’
book (which gets the math right) by Mal Kalos and Paula Whitlock, and the
broader book by George Fishman. I also am preparing a book on Monte Carlo,
whth many parts already posted.

Markov Chain Monte Carlo, or MCMC, is the most important topic left
out here. Most multivariate random variables not discussed here cannot be
sampled in a practical way by the direct sampling methods, but do have indirect
dynamic samplers. The ability to sample essentially arbitrary distributions has
led to an explosion of applications in statistics (sampling Bayesian posterior
distributions, Monte Carlo calibration of statistical tests, etc.), and operations
research (improved rare event sampling, etc.).

Choosing a good random number generator is important yet subtle. The
native C/C++ function rand() is suitable only for the simplest applications
because it cycles after only a billion samples. The function random() is much
better. The random number generators in Matlab are good, which cannot be
said for the generators in other scientific computing and visualization packages.
Joseph Marsaglia has a web site with the latest and best random number gen-
erators.

9.7 Exercises

1. What is wrong with the following piece of code?

for ( k = 0; k < n; k++ ) {
setSeed(s);
U[k] = rng();
}

2. Calculate the distribution function for an exponential random variable
with rate constant λ. Show that the sampler using the distribution func-
tion given in Section 9.3.3 is equivalent to the one given in Section 9.3.2.
Note that if U is a standard uniform, then 1−U also is standard uniform.

3. If S1 and S2 are independent standard exponentials, then T = S1 + S2

has PDF f(t) = te−t.

(a) Write a simple sampler of T that generates S1 and S2 then takes
T = S1 + S2.

(b) Write a simpler sampler of T that uses rejection from an exponential
trial. The trial density must have λ < 1. Why? Look for a value of
λ that gives reasonable efficiency. Can you find the optimal λ?

(c) For each sampler, use the histogram method to verify its correctness.

(d) Program the Box Muller algorithm and verify the results using the
histogram method.



9.7. EXERCISES 197

4. A Poisson random walk has a position, X(t) that starts with X(0) = 0. At
each time Tk of a Poisson process with rate λ, the position moves (jumps)
by a N (0, σ2), which means that X(Tk + 0) = X(Tk − 0) + σZk with iid
standard normal Zk. Write a program to simulate the Poisson random
walk and determine A = Pr(X(T ) > B). Use (but do not hard wire) two
parameter sets:

(a) T = 1, λ = 4, σ = .5, and B = 1.

(b) T = 1, λ = 20, σ = .2, and B = 2.

Use standard error bars. In each case, choose a sample size, n, so that
you calculate the answer to 5% relative accuracy and report the sample
size needed for this.
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