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Introduction

It is commonly the case that traveling waves have associated momentum, that the
momentum points in the direction of wave propagation, and that the momentum
is related to the energy of the wave by a simple equation of the form

momentum=
energy

phase velocity
. (1)

Throughout this paper, the term “momentum” means actual physical momen-
tum, the kind that can push on an obstacle in its path, and not some more abstract
concept like generalized momentum. Momentum is a vector, and we are inter-
ested in the component of momentum parallel to the direction of propagation of
the wave.

The phenomenon of wave momentum is remarkable in several respects. First,
it is not clear a priori that waves ought to have associated momentum. Waves are
commonly divided into two types: transverse and longitudinal waves. In the trans-
verse case, since nothing is moving in the direction of propagation, how can there
be associated momentum in that direction? Even in the longitudinal case, since
the wave motion is typically oscillatory, one would think that theaveragemomen-
tum density would be zero. How can there be net momentum in the direction of
the wave?

It is also remarkable that wave momentum is related to wave energy in such
a simple and seemingly universal way. As we shall see, there are many different
kinds of wave motion to which some variant of Eq. 1 applies. These include
electromagnetic waves, sound waves, water waves, and certain kinds of traveling
waves on strings under tension. One might be tempted to conclude that there is
some universal derivation of Eq. 1 that includes all of these examples as special
cases. We show herein, however, that there are other examples of traveling waves
in which there is (of course) associated energy, but no associated momentum at
all. These examples make it seem highly unlikely that any general derivation of
Eq. 1 can be devised.
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Momentum is a concept normally associated with particles, and the fact that
waves have momentum is perhaps the first hint, even at the classical level, of wave-
particle duality. In agreement with this point of view, we shall see that Eq. 1 is also
applicable to the waves that are associated with particles in quantum mechanics,
not only in the non-relativistic but also in the relativistic case.

1 Electromagnetic Waves

We write Maxwell’s equations in the form

∇× E = −1

c

∂B

∂t
, (2)

∇× B =
1

c

(
∂E

∂t
+ J

)
, (3)

∇ · E = ρ, (4)

∇ · B = 0, (5)

whereE is the electric field,B is the magnetic field,J is the current density, and
ρ is the charge density. The constantc is the speed of light.

In the above system of units, the Lorentz force per unit volume takes the form

F = ρE +
1

c
(J ×B) . (6)

It can be shown (see Appendix) that the momentum density and energy density
of the electromagnetic field are given by

P =
1

c
(E× B) , (7)

E =
1

2
(E · E + B · B) . (8)

Now consider a plane-wave solution of the free space (ρ = 0,J = 0) Maxwell
equations. Let{e1, e2, e3} be the standard basis ofR

3. We consider in particular
a wave propagating in the positivee3 direction with speedc. The most general
such solution is of the form

E = +f(x3 − ct)e1 + g(x3 − ct)e2, (9)

B = −g(x3 − ct)e1 + f(x3 − ct)e2, (10)
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wheref andg are arbitrary functions of the variablex3 − ct. Substituting these
formulae forE andB into the general expressions forP andE (Eqs. 7-8), we find

P =
1

c

(
(f(x3 − ct))2 + (g(x3 − ct))2

)
e3, (11)

E = (f(x3 − ct))2 + (g(x3 − ct))2. (12)

Thus, the momentum density points in the direction of wave propagation, which
is e3 in this case, and the scalar momentum densityP such thatP = Pe3 satisfies
Eq. 1.

For comparison with other types of wave propagation that will be considered
later, note that Eq. 1 holds here not just on the average but at every(x, t) sepa-
rately. It is thus alocal property of the traveling electromagnetic wave. Note, too,
that the waveform considered above is arbitrary; there is no restriction to sinu-
soidal waves. In fact, Eqs. 9-10 are general enough to describe electromagnetic
waves with any type of polarization. It is essential, though, that we consider waves
propagating in one direction only. The foregoing relationship between momentum
density and energy density is clearly invalid for superpositions of waves running
in different directions. The simplest example that illustrates this is the case of a
standing wave, which is a superposition of two waves of equal amplitude running
in opposite directions. By symmetry, it is obvious that such a wave has zero mo-
mentum density, at least on the average, but its energy density is clearly nonzero.

2 Sound Waves

The equations of isentropic gas dynamics in one spatial dimension are as follows:

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+

∂

∂x
p(ρ) = 0, (13)

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (14)

Hereu(x, t) is the velocity of the gas, andρ(x, t) is its density (mass per unit
volume). The functionp(ρ) gives the pressure in terms of the density.

The assumption that the gas is isentropic means that no conduction of heat is
allowed. This implies that the work done on any material element of the gas must
be accounted for by the change in macroscopic kinetic energy of that material ele-
ment, plus the change in its internal energy. Consider for the moment compression

3



of the gas which is done slowly under conditions of mechanical equilibrium, so
that no appreciable macroscopic kinetic energy is generated. Let such a com-
pression be applied to a unit mass of the gas, which is thermally insulated from
its environment. We assume that this compression starts from a standard density
ρ0 and a standard temperatureT0. These are the density and temperature of the
undisturbed gas through which a sound wave will be propagating. Because of the
isentropic assumption, subsequent changes in temperature are determined by the
changes in density. Thus, we do not need to regard the temperature as an indepen-
dent variable. Accordingly, leteI(ρ) be the internal energy per unit mass when the
density of the gas isρ. Then conservation of energy implies that

deI = −p(ρ)d1

ρ
=
p(ρ)

ρ2
dρ, (15)

since1/ρ is the volume of a unit mass of the gas, and since−pdv is, as always,
the work required to effect the volume changedv. It follows from the above result
that the internal energy per unit volumeEI is given by

EI(ρ) = ρeI(ρ) = ρ

∫ ρ

ρ0

p(σ)

(σ)2
dσ. (16)

As stated above,ρ0 is a reference density that later will be taken to be the density
of the undisturbed gas through which a sound wave is propagating.

For future reference, we evaluate the first and second derivatives of the func-
tion EI(ρ). These derivatives are conveniently expressed as follows:

E ′
I (ρ) =

EI(ρ) + p(ρ)

ρ
, (17)

E ′′
I (ρ) =

p′(ρ)
ρ

. (18)

Of course, the kinetic energy density of the gas is given by

EK =
1

2
ρu2, (19)

and the total energy density by

E = EK + EI. (20)

Another quantity of importance is the momentum density, which is given by

P = ρu. (21)
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We leave it as an exercise for the reader to derive the following conservation
laws from Eqs. 13-14:

∂P
∂t

+
∂

∂x
(uP + p(ρ)) = 0, (22)

∂E
∂t

+
∂

∂x
(uE + up(ρ)) = 0. (23)

It follows from these results thatP andE are constants of the motion, where

P =

∫ ∞

−∞
P(x, t)dx, (24)

E =

∫ ∞

−∞
E(x, t)dx. (25)

We shall refer to these as the “total momentum” and “total energy”, although
strictly speaking they have units of momentum/area and energy/area, respectively.
That is because we have integrated only overx, and not over the other two spatial
variables.

Two other constants of the motion will also be significant in the following.
They areu andρ− ρ0 where the overbar has the same significance as above, i.e.,
it denotes the integral with respect tox over(−∞,∞).

That ρ− ρ0 is a constant of the motion is nothing more than conservation
of mass, and it follows directly from Eq. 14. As mentioned above, we are now
assuming thatρ0 is the density of the undisturbed gas through which a sound
wave is propagating. It follows that

ρ− ρ0 =

∫ ∞

−∞
(ρ(x, t) − ρ0)dx = 0. (26)

Thatu is a constant of the motion is a bit more mysterious. This particular
invariant, which does not seem to have a name, was first brought to this author’s
attention by Thomas Bringley. Its conservation law is obtained by dividing Eq. 13
by ρ and then writing the result in the form

∂u

∂t
+

∂

∂x

(
1

2
u2 +

∫ ρ

ρ0

p′(σ)

σ
dσ

)
= 0. (27)

We assume in the following that

u =

∫ ∞

−∞
u(x, t)dx = 0. (28)
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This amounts to a choice of reference frame. It is the only frame in which the total
momentum and energy, as defined above, are finite.

We now make use of the equationsρ− ρ0 = 0 andu = 0 to simplify the
expressions forP andE :

P = ρu = (ρ− ρ0)u+ ρ0u = (ρ− ρ0)u, (29)

E =
1

2
ρu2 + EI(ρ)

=
1

2
ρ0u2 +

1

2
(ρ− ρ0)u2 + E ′

I (ρ0)(ρ− ρ0) +
1

2
E ′′

I (ρ0)(ρ− ρ0)2 + . . .

=
1

2
ρ0u2 +

1

2
(ρ− ρ0)u2 +

1

2

p′(ρ0)

ρ0
(ρ− ρ0)2 + . . . . (30)

In Eq. 30, we have introduced an expansion inρ − ρ0 of the internal energy. In
this expansion, The zero-order term is not present because the internal energy of
the gas is measured with respect to its value atρ = ρ0. The linear term vanishes
because(ρ− ρ0) = 0, and the quadratic term has been simplified with the help
of Eq. 18. The kinetic energy has also been split into two terms, one involvingρ0

and the other involvingρ− ρ0.
In the acoustic limit, i.e., the limit of small amplitude disturbances about a

constant stateu = 0, ρ = ρ0, the equations of motion reduce to

ρ0
∂u

∂t
+ c20

∂ρ̃

∂x
= 0, (31)

∂ρ̃

∂t
+ ρ0

∂u

∂x
= 0, (32)

where

ρ̃ = ρ− ρ0, (33)

c0 =
√
p′(ρ0) > 0. (34)

These equations have traveling wave solutions of the form

u(x, t) = c0f(x− c0t), (35)

ρ̃(x, t) = ρ0f(x− c0t), (36)

wheref satisfies
f = 0, (37)
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so that Eqs. 26 and 28 are satisfied. The functionf is otherwise arbitrary. The
solution we are considering here is a traveling acoustic wave that propagates with
speedc0 in the direction of increasingx. By substituting−c0 in place ofc0 in
Eqs. 35-36, we get a similar wave traveling in the direction of decreasingx. Note
that this substitution changes the sign ofu but not that of̃ρ.

We can now evaluate the total momentum and the total energy of the traveling
acoustic wave constructed above. To do so, we substitute Eqs. 35-36 into Eqs. 29-
30, and make use of the definition ofc0, Eq. 34. Since we are interested in the
acoustic limit, we keep only the lowest order terms, i.e., those which are second
order in the variablesu and ρ̃. In particular, this means that we drop the terms
summarized by “. . .” in the internal energy, and also the term involvingρ̃u2 in the
kinetic energy. The results are

P = c0ρ0f 2, (38)

E =
1

2
ρ0c

2
0f

2 +
1

2

c20
ρ0
ρ2

0f
2

= c20ρ0f 2. (39)

Thus,
P = E/c0. (40)

Sincec0 is the wave velocity, this is similar to the relationship mentioned in the
introduction and found above for electromagnetic waves, with the interesting dif-
ference that here we are considering the total momentum and the total energy, so
we have only a global relationship and not also a local one.

Note that the total momentum points in the direction of wave propagation. (It
is easy to check that the sign ofP is reversed but the sign ofE remains unchanged
if we consider waves propagating in the negativex direction.)

It is instructive to considerwhy there is net momentum in a traveling sound
wave. As mentioned in the introduction, this is counterintuitive, since the aver-
age velocity of the air would seem to be zero, and indeed we have taken care to
elevate this to a basic principle by choosing a frame of reference in which the
spatial integral ofu(x, t) is zero for everyt. It turns out, however, that there is net
momentum because of thecorrelationbetween density and velocity in a traveling
acoustic wave. In fact, those regions of space in which the air is moving forward
(i.e., in the direction of wave propagation) are also the regions in which the den-
sity of the air is above average, and vice versa. It is only this effect that produces
net momentum. The momentum is second order in the amplitude of the wave, but
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so, too, is the energy, and they turn out to be proportional, with the constant of
proportionality being the wave velocity.

3 Water Waves

Although water waves and sound waves are physically quite different, we shall see
that their energy-momentum relationships are strikingly similar. There is, how-
ever, this important difference: that water waves are dispersive, i.e., their speeds
are wavelength dependent. Thus, in order to get a simple relationship between
energy and momentum, we need to consider waves of a single wavelength, i.e.,
sinusoidal waves. Since these have infinite extent, it will not be possible to in-
tegrate over allx to find the total momentum and total energy, as we did in the
case of (localized) sound waves. Instead, we shall integrate over one cycle of the
sinusoidal water wave.

We consider an inviscid and incompressible fluid of infinite depth that moves
under the influence of gravity. Lety be the vertical coordinate, so thatx andz are
horizontal coordinates, and lett be the time. Letu, v, w be thex, y, z components
of fluid velocity, respectively, and letp be the fluid pressure. Leth be the height
of the free surface, measured from its undisturbed height. We consider the special
case in whichw = 0, andu, v, p, h are independent ofz. This is the case of two-
dimensional motion, in the(x, y) plane. The equations of motion are as follows.
Fory < h(x, t), we have

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
+
∂p

∂x
= 0, (41)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+
∂p

∂y
= −ρg, (42)

∂u

∂x
+
∂v

∂y
= 0, (43)

whereρ is the constant fluid density andg is the constant acceleration of a falling
object under the influence of gravity.

There are two boundary conditions that need to be imposed on the free surface
y = h(x, t). One is simply that the pressure on the free surface is zero:

p(x, h(x, t), t) = 0. (44)
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The other is the kinematic condition that a particle on the free surface remains on
the free surface. Let the trajectory of such a particle be denotedX(t), Y (t). Then

Y (t) = h(X(t), t). (45)

Differentiating the above equation with respect to time gives

dY

dt
=
∂h

∂t
(X(t), t) +

∂h

∂x
(X(t), t)

dX

dt
. (46)

By definition of the fluid velocityu, v, we have

dX

dt
= u(X(t), Y (t), t), (47)

dY

dt
= v(X(t), Y (t), t). (48)

Thus, with the help of Eq. 45, Eq. 46 may be rewritten

v(X(t), h(X(t), t), t) =
∂h

∂t
(X(t), t) +

∂h

∂x
(X(t), t)u(X(t), h(X(t), t), t). (49)

Since this holds foranyfluid particle that happens to be on the free surface, and
since there is alwayssomefluid particle that happens to be at position(x, h(x, t))
at time t, we can replaceX(t) by x in the above result to obtain, finally, the
kinematic boundary condition

v(x, h(x, t), t) =
∂h

∂t
(x, t) +

∂h

∂x
(x, t)u(x, h(x, t), t). (50)

The boundary conditions at infinite depth are thatu, v, andp+ρgy all approach
zero asy → −∞. Note in particular that this singles out a frame of reference,
since the addition of a nonzero constant tou would spoil the condition thatu → 0
asy → −∞.

We now define the momentum density (in the x direction) and also the energy
density of the fluid. Thex-momentum density is given by

P(x, t) = ρ

∫ h(x,t)

−∞
u(x, y, t)dy. (51)

The energy density is the sum of the kinetic energy densityEK and the gravitational
potential energy density, which we denoteEG. The kinetic energy density is given
by

EK(x, t) =
1

2
ρ

∫ h(x,t)

−∞

(
(u(x, y, t))2 + (v(x, y, t))2

)
dy. (52)
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Because of the infinite depth of the fluid, we need to be careful in making a
definition of the gravitational potential energy that gives a finite result. For this
purpose, we introduce a depthd0 > 0 which is sufficiently large that

h(x, t) > −d0 (53)

for all x, t. Now we ignore the potential energy of that part of the fluid for which
y < −d0, since this potential energy, although infinite, is constant. Thus, we make
the definition

EG(x, t) = ρg

∫ h(x,t)

−d0

ydy − ρg

∫ 0

−d0

ydy. (54)

In this equation, the second term on the right-hand side is present because we want
to measure the potential energy relative to that of the undisturbed fluid, for which
h(x, t) = 0. Of course, the integrals on the right-hand side are easily evaluated,
and the result is

EG =
1

2
ρg(h(x, t))2. (55)

Note that the artificial depthd0 no longer appears.
Combining the gravitational energy density and the kinetic energy density, we

get the overall energy density

E =
1

2
ρg(h(x, t))2 +

1

2
ρ

∫ h(x,t)

−∞

(
(u(x, y, t))2 + (v(x, y, t))2

)
dy. (56)

Note that the momentum density and the energy density defined above have
units of momentum/area and energy/area, respectively. This is because we have
integrated over the depth. These units reflect the fundamental nature of water
waves as surface phenomena.

We leave it as an exercise for the reader to show, starting from Eqs. 41-44
together with Eq. 50, that

∂P
∂t

+
∂

∂x

∫ h(x,t)

−∞

(
p+ ρu2

)
dy = 0, (57)

∂E
∂t

+
∂

∂x

∫ h(x,t)

−∞
u

(
p+ ρgy +

1

2
ρ

(
u2 + v2

))
dy = 0. (58)

These are the equations of conservation of momentum and energy for water waves.
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In the following we consider waves that are periodic inx with periodL, and
we let an overbar denote the integral over any one period, e.g.,

P =

∫ L

0

Pdx, (59)

E =

∫ L

0

Edx. (60)

It follows from Eqs. 57-58 thatP andE are independent of time. We call these
constants of the motion the “total momentum” and the “total energy”. More pre-
cisely, they are the momentum per unit length carried by one period of the wave,
and the energy per unit length carried by one period of the wave, respectively.
(The “length” in “per unit length” here runs in the horizontal direction perpendic-
ular to the plane of the motion, i.e., parallel to the crests of the waves.)

Let us now consider small amplitude water waves. The linearized equations
of motion are obtained by treatingu, v, h, andp̃ = p + ρgy as quantities of first
order, and retaining only first-order terms in the equations of motion, which then
become

ρ
∂u

∂t
+
∂p̃

∂x
= 0, (61)

ρ
∂v

∂t
+
∂p̃

∂y
= 0, (62)

∂u

∂x
+
∂v

∂y
= 0, (63)

p̃(x, 0, t) = ρgh(x, t), (64)
∂h

∂t
(x, t) = v(x, 0, t). (65)

Equations 61-63 are valid on the domainy < 0. An important consequence of
linearization is that our problem is now defined on this fixed domain (instead of
y < h(x, t)). The linearized boundary conditions on the upper surfacey = 0 are
Eqs. 64-65, and the boundary conditions at extreme depth are thatu, v, andp̃ all
approach zero asy → −∞.

We seek a solution to the linearized equations in the form of a sinusoidal wave
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that decays exponentially with depth:

u(x, y, t) = U sin

(
ωt− 2πx

L

)
exp

(
2πy

L

)
, (66)

v(x, y, t) = V cos

(
ωt− 2πx

L

)
exp

(
2πy

L

)
, (67)

p̃(x, y, t) = P sin

(
ωt− 2πx

L

)
exp

(
2πy

L

)
, (68)

h(x, t) = H sin

(
ωt− 2πx

L

)
. (69)

It is easy to check that the linearized equations of motion are satisfied provided
that we set

P = ρgH, (70)

U = ωH, (71)

V = ωH, (72)

ω = ±
√

2π

L
g. (73)

The construction given by Eqs. 66-73 is a sinusoidal wave with amplitudeH and
wavelengthL which travels in the direction of increasingx if ω > 0, and in the
direction of decreasingx if ω < 0. The phase velocity of this traveling wave is
easily seen to be

vp = ±
√
Lg

2π
. (74)

For future reference, we note that

ωvp = g. (75)

We now seek to evaluate the momentum and energy associated with the travel-
ing wave constructed above. Consistent with our small-amplitude approximation,
we evaluate these quantities only to lowest order in the wave amplitude. First, we
consider the momentum density, which we expand as a Taylor series inh(x, t):

P = ρ

∫ h(x,t)

−∞
u(x, y, t)dy

= ρ

∫ 0

−∞
u(x, y, t)dy + ρh(x, t)u(x, 0, t) + . . . , (76)
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where. . . denotes terms of third order and higher, since these terms are at least
second order inh(x, t) and first order inu. Next we integrate the above result over
one period inx. Clearly, the integral of the first-order term is zero, and we are left
with the following result, to lowest (i.e., second) order:

P = ρh(x, t)u(x, 0, t)

= ρUHsin2

(
ωt− 2πx

L

)

=
1

2
ρUHL

=
1

2
ρωH2L. (77)

To lowest (second) order, the energy density is given by

E =
1

2
ρg(h(x, t))2 +

1

2
ρ

∫ 0

−∞

(
(u(x, y, t))2 + (v(x, y, t)2

)
dy

=
1

2
ρgH2 sin2

(
ωt− 2πx

L

)
+

1

2
ω2H2 L

4π
. (78)

Integrating this result over one period inx, we get

E =
1

2
ρgH2L

2
+

1

2
ω2H2 L

4π
L

=
1

4
ρgH2L+

1

4
ρgH2L

=
1

2
ρgH2L. (79)

Now recalling Eq. 75, and comparing Eqs. 78 and 79, we see that

E = vpP (80)

Thus, the same basic relationship between energy and momentum that we have
seen so far in every case holds for water waves as well. Here, just as in the
case of sound waves, the relationship is only a global one; it does not hold at
each separate position and time (as it did in the case of traveling electromagnetic
waves). The similarity to the case of sound waves becomes even more striking
when we consider why it is that traveling water waves have momentum at all. The
motion of fluid particles in water waves is circular, and one might think that the
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net momentum in the direction of propagation would be zero. This reasoning is
incorrect, however, because of the correlation between the height of the water and
the direction of horizontal motion. As any swimmer knows, the water is moving
forward (i.e., in the direction of the wave) at the crest of the wave, and backward
in the trough. This asymmetry is the fundamental source of net momentum in the
direction of wave propagation, as the foregoing mathematical argument shows.

Despite the above similarity between water waves and sound waves, there is
this important difference: sound waves (in the acoustic, or small-amplitude limit)
all travel at the same velocity, regardless of their wavelength. Water waves (in
deep water), by contrast, are dispersive, i.e., their velocity is wave-length de-
pendent. This gives us the opportunity to address the following basic question:
Which is the relevant velocity in the relationship between energy and momentum,
the phase velocity or the group velocity? (Recall that the phase velocity isω/k,
and the group velocity isdω/dk, whereω is the temporal frequency in radians per
unit time, andk is the spatial frequency in radians per unit length. In our notation
k = 2π/L, whereL is the wavelength.) Considering the standard interpretation
of the group velocity as the velocity at which a localized disturbance carrying
energy and momentum propagates, one would certainly be tempted to guess that
in any relationship like Eq. 80, it would be the group velocity that would appear.
Note that this isnot the case. It seems from the water wave example that the
phasevelocity is the relevant one. We shall return to this issue when considering
the momenta of particles and the velocity of their associated waves in quantum
mechanics.

4 Nonlinear Vibrating String

In this section we consider traveling waves on an elastic string under tension. We
do not linearize the problem, but instead consider the full, nonlinear, equations of
motion. Let the motion of the string be described by a function

x = X(s, t), (81)

wheres is a material coordinate (not necessarily arclength), andt is the time, so
that X(s, t) is the position inR

3 of the material point whose label iss at time
t. We assume that the material properties of the string are time-independent and
homogeneous, and that the material coordinates have been chosen in a way that
reflects this homogeneity, so that equal intervals ofs correspond to equal amounts
of material with identical properties. It follows that the mass densityρwith respect
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to the material coordinates is constant, and also that the elastic energy densityEE

with respect to the material coordinates is a function only of|∂X/∂s|, and does
not depend explicitly ons or t.

Let ′ denote the derivative of a function of one variable with respect to its argu-
ment. ThenE ′

E(|∂X/∂s|) is the tension in the string. The direction associated with
this tension is the unit tangent to the string, which is given by(∂X/∂s)/|∂X/∂s|.
It points, of course in the direction of increasing s.

With these considerations in mind, it is straightforward to write down the equa-
tion of motion of the string, which is:

ρ
∂2X

∂t2
=

∂

∂s

(
E ′

E

(∣∣∣∣∂X∂s
∣∣∣∣
)

∂X/∂s

|∂X/∂s|
)
. (82)

Equation 82 is, in fact, the equation of momentum conservation, with momen-
tum density (with respect to the material coordinates) given by

P = ρ
∂X

∂t
. (83)

The energy density (again, with respect to the material coordinates) is

E =
1

2
ρ

∣∣∣∣∂X∂t
∣∣∣∣
2

+ EE

(∣∣∣∣∂X∂s
∣∣∣∣
)
, (84)

and we leave it as an exercise for the reader to show that Eq. 82 implies the equa-
tion of conservation of energy, which takes the form

∂E
∂t

=
∂

∂s

(
∂X

∂t
· E ′

E

(∣∣∣∣∂X∂s
∣∣∣∣
)

∂X/∂s

|∂X/∂s|
)
. (85)

Equations 82 and 85 imply thatP andE are constants of the motion, where in
this section the overbar denotes the integral froms = −∞ to s = ∞. In saying
this, we are assuming that the behavior ofX(s, t) ass → ±∞ is such that these
constants of the motion have finite values. This will be the case for the localized
solutions that we construct below.

Equation 82 is a nonlinear system in the three components ofX(s, t). It is
a remarkable fact that this nonlinear system has traveling wave solutions. To
construct such traveling waves, we look for solutions of Eq. 82 with the property
that ∣∣∣∣∂X∂s

∣∣∣∣ = r, (86)
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wherer is a positive constant. It is not obvious a priori that there are such solu-
tions, but if there are, they satisfy

ρ
∂2X

∂t2
=

E ′
E(r)

r

∂2X

∂s2
. (87)

This is nothing but the wave equation

1

c2
∂2X

∂t2
=

1

r2

∂2X

∂s2
(88)

with wave velocity

c =

√
E ′

E(r)

ρ/r
. (89)

Note thatrsmeasures arclength along the string (see Eq. 86) and thatc is the wave
speed expressed as arclength per unit time. SinceE ′

E(r) is the tension in the string,
andρ/r is the mass per unit arclength, Eq. 89 is the standard formula for the speed
of a small-amplitude transverse wave on a vibrating string. It is interesting that
this formula is also applicable here, even though we have not made any small-
amplitude approximation.

Now consider solutions of Eq. 89 of the following form:

X(s, t) = rse1 +

3∑
i=1

fi(rs− ct)ei, (90)

where{e1, e2, e3} is the standard basis ofR
3, and where the second derivatives

of the three functionsfi are continuous and the first derivatives have bounded
support, so that the wave described by Eq. 90 may be said to be localized. At any
given time, then, for sufficiently large|s|, we have simply

X(s, t) = rse1 + c, (91)

wherec is a constant vector which may have one value for large positives and
another value for large negatives. Eq. 91 describes a string under tensionE ′

E(r)
that is stretched out parallel to thex1 axis. Thus, we are considering the limit of
an infinitely long string with “ends” to which a force parallel to thex1 axis has
been applied. Of couse the forces at the two ends are opposite to each other, and
their directions are such as to stretch the string, i.e., the force ats = +∞ points in
the positivex1 direction, and the force at−∞ points in the negativex1 direction.
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Although Eq. 88 is automatically satisfied by anyX(s, t) of the form given
by Eq. 90, we can only be assured that Eq. 82 is satisfied if the functionsfi are
chosen in such a way that Eq. 86 isalsosatisfied. This leads to the condition

1 = (1 + f ′
1)

2 + (f ′
2)

2 + (f ′
3)

2, (92)

which can also be written

−2f ′
1 = (f ′

1)
2 + (f ′

2)
2 + (f ′

3)
2 (93)

Equation 92, or alternatively Eq. 93, can be thought of as a quadratic equation for
f ′

1 in terms off ′
2 andf ′

3. The solutions are real if and only if(f ′
2)

2 + (f ′
3)

2 ≤ 1.
For simplicity, we assume from now on that the corresponding strict inequality is
always satisfied, i.e., that

(f ′
2)

2 + (f ′
3)

2 < 1. (94)

When this inequality is satisfied, there are exactly two solutionsf ′
1 for each pair

f ′
2, f

′
3. Only one of these has the property thatf ′

1 = 0 whenf ′
2 = f ′

3 = 0, and that
is the solution we want. It is characterized by

1 + f ′
1 > 0, (95)

which means that the string never “turns back” on itself, but instead has the prop-
erty thatX1(s, t) is a strictly increasing function ofs for eacht.

The solution forf ′
1 that we have chosen can be written explicitly as

f ′
1 = −

(
1 −

√
1 − (f ′

2)
2 − (f ′

3)
2 ) (96)

We see, then, that our traveling wave solution is completely determined, up to a
constant of integration, if we specify the functionsf2 andf3. These functions are
arbitrary, except that their second derivatives should be continuous, and their first
derivatives should have bounded support and satisfy(f ′

2)
2 + (f ′

3)
2 < 1.

It is quite remarkable that the nonlinear system given by Eq. 82 has exact
traveling wave solutions, and moreover that these have so much in common with
the solutions of the linear wave equation. In particular, the solutions we have con-
structed have an essentially arbitrary waveform (except for an upper bound on am-
plitude), at least insofar as the transverse components are concerned, although the
longitudinal component is then determined by the transverse components. Note,
however, that there is no principle of superposition here. In particular, although
we can construct traveling waves running in either direction, the sum of two such
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waves running in opposite directions willnot be a solution, in general. Indeed, if
two such waves collide, they will interact in a complicated way.

Let us now consider the relationship between energy and momentum for trav-
eling waves of the type considered above. Since these waves, by construction, do
not stretch the string, they do not involve any changes in the elastic energy,EE.
To avoid the introduction of an infinite constant, we therefore redefine the elastic
energy as

EE

(∣∣∣∣∂X∂s
∣∣∣∣
)
− EE (r) , (97)

and note that this redefined elastic energy is zero for the traveling waves that we
have constructed. Thus, in the following, we ignore elastic energy and consider
kinetic energy only.

Thex1 component of the momentum density (with respect tos) is given by

P1 = ρ
∂X1

∂t
= −ρcf ′

1(rs− ct). (98)

The energy density (also with respect tos) is

E =
1

2
ρ

∣∣∣∣∂X∂t
∣∣∣∣
2

=
1

2
ρc2

3∑
i=1

(f ′
i)

2
(rs− ct). (99)

From Eq. 93, we see immediately that

P1 =
E
c

(100)

Although the densities that appear in this equation are defined with respect tos, the
same result is obviously valid for densities defined with respect to arclength. To
obtain the latter result, we need only divide both sides of Eq. 100 by the arclength
per units, which isr. What is significant, however, is that the velocityc which
appears in Eq. 100 is the arclength per unit time traversed by the wave. This has a
meaning that is independent of the arbitrary scale of thes variable.

Of course, if we had considered a wave moving in the direction of decreasing
x1, we would have obtained the same result except that the sign ofP1 would
have been negative. Thus the momentum density points in the direction of wave
propagation, and is related to the energy density by an equation of the same kind
as we have seen in each type of wave propagation that we have considered up to
now. Note in particular that here we have not only a global relationship, but also a
local one, i.e., a relationship that holds at every position and time separately. This
is similar to what we found for Maxwell’s equations, and unlike what we found in
the cases of sound waves and water waves.
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5 Linear Vibrating String

There is a special case of the foregoing theory in which the equations of motion,
Eq. 82, are exactly linear, without any auxiliary assumptions like Eq. 86, and also
without any restriction on the amplitude of the vibration. This special case is
characterized by a quadratic elastic energy function

EE(r) =
1

2
Kr2. (101)

Then
E ′

E(r) = Kr, (102)

and E ′
E(r)

r
= K, (103)

independent ofr. It follows that Eq. 82 reduces to the linear wave equation

ρ
∂2X

∂t2
= K

∂2X

∂s2
. (104)

Note in particular that the three components ofX(s, t) are uncoupled in Eq. 104,
and that each of them satisfies the wave equation. Therefore, it is perfectly possi-
ble to have solutions of Eq. 104 which are purely transverse waves, i.e., solutions
of the following form

X1(s, t) = rs, (105)

X2(s, t) = f2(rs− ct), (106)

X3(s, t) = f3(rs− ct), (107)

wherer is a positive constant, and

c = r

√
K

ρ
(108)

These are transverse waves on a stretched string. Clearly, they have energy (both
kinetic and elastic), and they propagate in thex1 direction, but theirx1 component
of momentum is obviously zero, since∂X1/∂t = 0.

More generally, if we allow constraints on the motion, it seems clear that we
can easily generate other examples, both linear and nonlinear, in which there are
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traveling waves (which of course have energy), and in which there cannot be any
momentum at all in the direction of the wave. All we have to do is impose con-
straints that prevent motion in the direction of propagation. Any wave motion that
occurs will then be purely transverse. Such waves carry energy but cannot carry
momentum in the direction of wave propagation.

These examples show that the relationship postulated in Eq. 1 cannot be uni-
versal after all, and this makes it all the more mysterious that Eq. 1 seems to be
satisfied for so many different types of wave propagation.

6 Quantum Mechanics

In quantum mechanics, particles are associated with waves, and since the particles
also have energy and momentum, it is fair to ask whether a relationship like Eq. 1
is valid or not.

The fundamental relationships that translate between particle properties and
wave properties in quantum mechanics are as follows:

E = ~ω, (109)

P = ~k, (110)

whereE is the energy of the particle,P is its momentum (for simplicity, we
consider motion in a specified direction, so that momentum is a scalar),ω is the
temporal frequency (radians per unit time) of the associated wave,k is the spatial
frequency (radians per unit length) of the associated wave, and~ = h/(2π), where
h is Planck’s constant.

Clearly, it is a consequence of these fundamental relationships that

E

P
=
ω

k
. (111)

Sinceω/k is the phase velocity of a wave, this establishes Eq. 1 for the waves that
are associated with particles in quantum mechanics. Note the interesting detail
that the relevant velocity is the phase velocity of the wave, not the group velocity.
(Recall that in the case of water waves, we also found that the phase velocity was
the correct velocity to use in Eq. 1.)

The above fact is particularly remarkable when we consider that the means by
which we assign an “energy” or “momentum” to a wave in quantum mechanics is
completely different from how this is done for a classical wave. In the classical
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case, the energy, and the momentum if there is any, definitely increase with the
amplitude of the wave. In quantum mechanics, however, any multiple of a wave
function represents the same state as the original wave function, and therefore has
the same associated energy and momentum.

Although we have already reached the main goal of this section, let us now
see how this works in greater detail, paying particular attention to the relationship
between the phase velocity of the wave and particle velocity, where we identify
the particle velocity with the group velocity of the particle-associated wave.

Consider, first, the case of a free, non-relativistic particle. In classical mechan-
ics, such a particle has

P = mv, (112)

E =
1

2
mv2, (113)

wherem is the mass of the particle andv is its velocity. It follows that

E =
P 2

2m
. (114)

This relationship between energy and momentum holds in non-relativistic quan-
tum mechanics as well as in classical mechanics. Combining Eqs. 111 and 114,
we see that the phase velocity of the associated wave should beP/(2m) = v/2.
Let us identify the classical velocityv of the particle with the group velocity of
the wave,dω/dk, and ask whether it is indeed the case that the phase velocity is
half of the group velocity.

To check, recall that the Schroedinger equation for a free particle moving in
one dimension is

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
. (115)

This has solutions
ψ(x, t) = exp (i(kx− ωt)) . (116)

Substituting this into the Schroedinger equation, we get

~ω =
(~k)2

2m
. (117)

It follows that

ω

k
=

~k

2m
, (118)

dω

dk
=

~k

m
. (119)
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Thus, the phase velocity is indeed half the group velocity.
In the relativistic case, we have the momentum and energy

P =
mv√

1 − (v2/c2)
, (120)

E =
mc2√

1 − (v2/c2)
, (121)

wherem is the rest mass of the particle,v is its velocity, andc is the speed of light.
This gives

E

P
=
c2

v
, (122)

and comparison with Eq. 111 shows that the phase velocity of the associated wave
must be

ω

k
=
c2

v
, (123)

which is greater than the velocity of light, and is inversely related to the particle
velocity! As in the non-relativistic case, we want to associatev with the group
velocity,dω/dk, so we need to check whether the associated wave equation indeed
has the property that the product of the phase velocity and the group velocity is
equal toc2.

To check whether this is the case, we consider the Klein-Gordon equation for
a relativistic free particle:

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
+

(mc
~

)2

φ = 0 (124)

Again, we look for a solution of the form

φ(x, t) = exp (i(kx− ωt)) , (125)

and we find the dispersion relation

−ω
2

c2
+ k2 +

(mc
~

)2

= 0. (126)

Differentiating with respect tok and dividing by 2, we find

− ω

c2
dω

dk
+ k = 0, (127)
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from which it follows that
ω

k
=

c2

dω/dk
, (128)

just as predicted by Eq. 123.
To summarize this section, it appears that the relationship between energy and

momentum that we have found to be valid for many (but not for all!) types of
classical traveling waves is also valid for the waves that are associated with free
particles in quantum mechanics. This relationship is simplyE = Pvp, where
vp = ω/k is the phase velocity of the associated wave. Note that this is not
the same as the particle velocityv, which instead is equal to the group velocity,
v = dω/dk.

Summary and Conclusions

It seems to be a recurring theme in wave propagation that traveling waves have as-
sociated momentum as well as energy, that the momentum points in the direction
of wave propagation, and that it is related to the energy by a simple equation in
which the momentum is equal to the energy divided by the phase velocity of the
traveling wave.

As we have seen, these basic facts hold for traveling electromagnetic waves,
traveling sound waves, traveling water waves, a particular kind of large-amplitude
traveling wave on a string under tension, and even for the traveling waves asso-
ciated with free particles in non-relativistic and also in relativistic quantum me-
chanics.

Yet the thought that there should be a general theory that embraces all of these
cases is frustrated by the simple example of a purely transverse mechanical wave,
in which there is clearly associated energy, but no associated momentum in the
direction of wave propagation. We have seen in detail how such momentum-free
traveling waves exist as exact solutions to the equations of motion of a particular
kind of elastic string, one in which the elastic energy of any material interval of the
string is a homogeneous quadratic function of its length. Besides this example, it
is easy to envision other mechanical arrangements in which longitudinal motion is
prohibited by constraints, but in which wave propagation can nevertheless occur.
All such examples of purely transverse mechanical waves will necessarily have
zero momentum in the direction of wave propagation. These counterexamples
make the seemingly universal character of wave momentum all the more mysteri-
ous.
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Appendix: Momentum Density and Energy Density
of the Electromagnetic Field

In most of the cases that we have considered, the expressions for momentum den-
sity and energy density are immediate consequences of the mechanical definitions
of momentum and energy. For the electromagnetic field, however, this is not the
case. The purpose of this appendix, then, is to derive the conservation laws that
justify the expressions for momentum density and energy density that we have
used. For convenience, we repeat here the Maxwell equations and the expression
for the Lorentz force in the units that we are using:

∇×E = −1

c

∂B

∂t
, (129)

∇×B =
1

c

(
∂E

∂t
+ J

)
, (130)

∇ · E = ρ, (131)

∇ · B = 0, (132)

F = ρE +
1

c
(J × B) . (133)

HereE is the electric field,B is the magnetic field,J is the current density,ρ is the
charge density, andF is the force per unit volume applied by the electromagnetic
field to the charges and currents. The constantc is the speed of light.

24



We claim that the momentum density and energy density of the electromag-
netic field are given by

P =
1

c
(E× B) , (134)

E =
1

2
(E · E + B · B) . (135)

To justify this claim, we derive and interpret the corresponding conservation laws.
With the help of the first two Maxwell equations, it is easy to see that

∂P
∂t

= (∇× B) ×B + (∇× E) × E − 1

c
(J × B). (136)

To proceed further, we need the vector identity

(∇× V) × V = V · ∇V − 1

2
∇ (|V|2) . (137)

In components, this can be rewritten as follows:

((∇×V) ×V)i =
∂

∂xk

(
ViVk − 1

2
δik|V|2

)
− Vi∇ · V (138)

We use this identity twice, once withV = E and once withV = B. Taking
into account the last two Maxwell equations, and also the formula for the Lorentz
force, we get

∂Pi

∂t
=
∂σik

∂xk
− Fi, (139)

where

σik = EiEk +BiBk − 1

2
δik

(|E|2 + |B|2) ,
= EiEk +BiBk − δikE . (140)

Equation 139 is the standard statement of momentum conservation in continuum
mechanics, withσik as the stress tensor and−F as a body force applied to the
system. (The reason for the minus sign is thatF was defined as the force per
unit volume applied by the electromagnetic field to the charges and currents, but
we want the force per unit volume applied by the charges and currents to the
electromagnetic field.)
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Next, we turn our attention to the conservation of energy. We have

∂E
∂t

= E · ∂E
∂t

+ B · ∂B
∂t

= c (E · (∇× B) −B · (∇× E)) − E · J
= −c∇ · (E× B) −E · J, (141)

where we have used the first two Maxwell equations and then the vector identity

∇ · (E × B) = −E · (∇×B) + B · (∇×E) (142)

Equation 141 is the statement of conservation of energy. On the last line we see
thatc(E×B) is the energy flux, and thatE ·J is the rate at which the electromag-
netic field does work on the charges and currents. (The magnetic field does no
work because the force generated by the magnetic field is always perpendicular to
the currents.)
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