Notes for simulation of traffic flow on an arbitrary network of one-way single-lane roads with traffic lights at intersections.

Charles S. Peskin
April 17, 2017
$C=$ can index, $n c=\# f$ cars
$i=$ wersechminclex, ni $=\#$ intersectis
$b=$ block m dex,$\quad n b=\#$ of blocks
$i 1(b), i 2(b)=$ indices f intasection connecked by block b, ordered by the elirechm foraffic flow. (All blocks are one-way.)
n bin $(i)=\# \rho$ blocks ewteriz intersechim i
$\operatorname{bin}(i j j)=$ index $f^{\text {th }}$ block enteiry inversectin i

$$
j=2 \ldots n \operatorname{bin}(i)
$$

nbout (i) $=$ \#yblocks keavin inhersechn i
bout $(i, j)=$ index of $j^{\text {th }}$ bluck Leaviy ontersech i

$$
j=1 \cdots n \text { bout }(i)
$$

Note that rabin, bin can te derived frumiz, and that noit, bo it can be derived from is, as follows:
fr $i=1: n i$

$$
\begin{aligned}
& \text { nbin }(i)=\operatorname{sum}(i 2==i) \\
& \text { about }(i)=\operatorname{sum}(i 1==i)
\end{aligned}
$$

end

$$
\begin{aligned}
& \text { nbinmax }=\max (n b i n) \\
& \text { nbout max }=\max \text { (nbout) } \\
& \text { bin }=\text { zeros (ni, nbinmax) } \\
& \text { bout }=\text { zoos (ni, nboutmax) }
\end{aligned}
$$

$$
\text { fr } i=1 \operatorname{ni} i
$$

$$
\begin{aligned}
& 1=1: n i \\
& \operatorname{bin}(i, 1: \operatorname{nbin}(i))=\text { find }(i 2==i) \\
& \operatorname{bout}(i, 1: \operatorname{now}(i))=\text { find }(i 1==i)
\end{aligned}
$$

end
As a check, it shard be the care that

$$
\operatorname{sum}(n \text { bin })=\operatorname{sum}(\text { nbout })=n b
$$

Traffic lights
At any given time, the traffic liglet at intersection i is green for exactly che of the blocks that enter that intersection and red for all of the others entering that intersection
Let jgreen(i) be an integer designation which block has the green light, where

$$
1 \leq \operatorname{jgreen}(i) \leq n b i n(i)
$$

Let $s(b)$ be the stases the light at the end of block b, where $S=0$ denoks red and $S=1$ denotes green.

Given the array jgreen, s can be set as follows:

$$
\begin{aligned}
& s=\operatorname{zevos}(1, n b) \\
& \text { fun } i=1: n i \\
& b=\operatorname{bin}(i, \text { j green }(i)) \\
& s(b)=1
\end{aligned}
$$

end

Geometir information dount the network of noads

$$
x i(i), y i(i)=\text { condinates of Alersection } i
$$

$$
L(b)=\text { leryth } \rho \text { block } b
$$

$(U X(b), u y(b))=$ unit vectos alm, block b in directin of draffir flow

Gren $x i, y i$, we can frnd $L, u x, u y$ as follows

$$
\begin{aligned}
& u x=x_{i}(i 2)-x_{i}(i 1) \\
& u y=y i(i 2)-y_{i}(i 1) \\
& L=\operatorname{sprt}(u x \cdot 12+u y \cdot 12) \\
& u x=u x \cdot / L \\
& u y=u y \cdot / L
\end{aligned}
$$

Cars on blocks
Let $p(c)$ be the positim f can c on whatever block it happens tobech, measmed as distance from the stat of the block. If can c is on block b, then

$$
0 \leqslant p(c)<L(b)
$$

and the condinctes of can c are given by

$$
\begin{aligned}
& x(c)=x i(i L(b))+p(c) * u x(b) \\
& y(c)=y i(i L(b))+p(c) * u y(b)
\end{aligned}
$$

To access all of the cars on a block in order of decreasing p, we use the following linked -list data structure

$$
\text { first can }(b)=\text { index of first cans an block } b
$$

nextcan $(c)=$ index of cars immediately behind cats c on the same block lastican $(b)=$ index of last can on block b
In all cases, om envy fo means that there is no such cars. Thus nextcal (lastcon $(b))=0$, and if block b is empty then firstcon $(b)=$ lastcan $(b)=0$.

Entry \& cars and choice of their destinations
Cars enter the roadway (from parking garages is parking spaces) at random tories and locations. Let R be the rate at which this occurs. Then R has units ρ $1 f$ (time. length). Choose the time stay ot small enough that $R_{*} L_{\text {max }} * d t \ll 1$, where Lax is the largest length f om y block. Then we can make the approximation that at most one car entas the roadway per block per time step. To decide whether this happens and to choose the location p on the block if it does, we con do the following Lis each block b :
if $($ rand $<d t * R * L(b))$

$$
\begin{aligned}
& n c=n c+1 \\
& p(n c)=\operatorname{rand} * L(b)
\end{aligned}
$$

end
When a car enters the roadway, it is assigned a destination. This can also be doe randomly. Let $b d(c)$ be the block on whin the destination lies and let $p d(c)$ be the position on that block, expressed as distance from the
stent of the block. A simple way to make this choice is

$$
\begin{aligned}
& b d(c)=1+f l o o r(r a n d * n b) \\
& p d(c)=\operatorname{rand} * L(b d(c))
\end{aligned}
$$

but note that this choice grues equal weight to any block regardless of its beth. To make the probubiling of choosing a block be propurtiond to its busth, we can use the method of rejection:

$$
\begin{aligned}
& b d(c)=1+f l o o r(r a n d * n b) \\
& p d(c)=\operatorname{rand} * \operatorname{Lmax} \\
& \text { while }(\operatorname{pd}(c)>=L(b d(c))) \\
& \quad b d(c)=1+f l o o r(r \text { and } * n b) \\
& p d(c)=\text { rand } * \operatorname{Lmax}
\end{aligned}
$$

end
In this vensim we keep trying until we fund a position that fits on the block, and this makes the block that is uttimakly chosen be more likely to be a longer one. In fact, the probebiting of choosing a block is exactly mopnitiona to its length, and pod is uniforms distributed over that length.

Steering a can to its destination (despite one-way streets!)

For this we need the Cartesian condmates of the destination, which are given dy

$$
\begin{aligned}
& x d(c)=x i(i 1(b d(c)))+p d(c) * u x(b d(c)) \\
& y d(c)=y i(i f(b d(c)))+p d(c) * u y(b d(c))
\end{aligned}
$$

When a cal comes to an infersectim, it can choose to enter any of the blocks leaving that intersection. The natural choice is the one that most nearly points towards the destination. To determine this, evaluate the vector from the intersection to the destination, and then the dot product of that rector with all of the unit vectors of the blocks leaving the mbersection. The block that should be chosen is the one that maximizes this dot product (in the algebraic sense, ie., choose the most positive on least nejame result, not the ore latest in magnitude).

Accoidry to the above prescription, if car c is at intersection i, it should choose the next block b to enter in the following way

$$
\left.\begin{array}{l}
x d \text { vec }=x d(c)-x i(i) \\
y d v e c=y d(c)-y i(i) \\
d p=u x(\text { bout }(i, 1: n \text { bout }(i))) * x d v e c \\
\quad+u y(\text { bout }(i, 1: \operatorname{nbout}(i)) * y d v e c
\end{array}\right] \begin{aligned}
& {[d p m a x, j b]=\max (d p)} \\
& b=\operatorname{bout}(i, j b)
\end{aligned}
$$

In the above use of max, there are two outputs. The second one, $j b$, is the index of the element of dp that has the maximum value.
The above steering algorithm works well for reasonable road networks, including cases in which it is necessary to go around the block to reach the destination becauncf che-way streets, out it is not guaranteed
to work. Fo some roadway payouts to work. For some roadway layouts and some deshnation, a car can get trapped and go through a cycle of
blocks repeatedly by follow the above algorithm without even reaching its destination. One way to avoid this is to s the cans to remember the intersections it has been to and the choices it has made there, and never make the same choice twice at any given mersection. Another way that is easier to program is for the can to decide randminy at each mensection whether to follow the above algorithm σ to choose a random block. This can te programed as follows:

$$
\begin{aligned}
& \text { if (rand < prchoice) } \\
& j b=1+\text { floor (rand *about }(i)) \\
& b=\operatorname{bout}(i, j b)
\end{aligned}
$$

else
choose b by the method of maximize's the dot product as described above end

Here prchoice is the probability that a random choice will be made.
\% main program: traffic.m
mifialize
In clock $=1$: clockmax
$t=$ clock $* d t$
setlighs
createcars
monecans
plotcars
end
\% setlights.m
if $t>t l c$
for $i=1: n i$

$$
\begin{aligned}
& \operatorname{jgreen}(i)=\operatorname{jgreen}(i)+1 \\
& \text { if jgreen }(i)>n \operatorname{bin}(i)
\end{aligned}
$$

end

$$
j \text { green }(i)=1
$$

end

$$
t l c=t l c+t l e s t e p
$$

end

$$
\begin{aligned}
& s=z \cos (1, n b) \\
& \text { fn } i=1: n i \\
& b=\operatorname{bin}(i, \text { jgreen }(i)) \\
& s(b)=1
\end{aligned}
$$

end
\% mitialization fon setlights

$$
\begin{aligned}
& \text { jgreen }=\operatorname{ones}\left(1, n_{i}\right) \\
& \text { tlcstep }=\quad \% \text { time } \\
& \text { tlc }=\text { tlcstep }
\end{aligned}
$$

$$
\text { tlcstep }=\quad \text { \% time interval behween light changes }
$$

\% Greatecars.m
for $b=1: n b$
if (rand $<d t * R * L(b))$

$$
\begin{aligned}
& n c=n c+1 \\
& p(n c)=\operatorname{rand} * L(b) \\
& x(n c)=x i(i 1(b))+p(n c) * u x(b) \\
& y(n c)=y i(i 1(b))+p(n c) * u y(b) \\
& \text { onroad }(n c)=1
\end{aligned}
$$

insertnewcan
choose destruation

$$
\begin{aligned}
& n \operatorname{extb}(n c)=b \\
& \operatorname{tenter}(n c)=t \\
& \text { benten }(n c)=b \\
& \text { penten }(n c)=p(n c)
\end{aligned}
$$

end
end
\% insertnewcas.m
$c=$ firstcan (b)

$$
\begin{aligned}
& \text { if }(c==0 \quad \| p(n c)>p(c)) \\
& n \operatorname{extcan}(n c)=c \\
& \text { firstcan }(b)=n c \\
& \text { if }(c==0) \\
& \operatorname{losrcas}(b)=n c
\end{aligned}
$$

elseif $p(n c)<=p(\operatorname{lastcas}(b))$

$$
\begin{aligned}
& \text { nextcas }(\operatorname{las}+c a s(b))=n c \\
& \operatorname{laxtcas}(b)=n c \\
& \text { nextar(nc) }=0
\end{aligned}
$$

else

$$
\begin{aligned}
& c a=c \\
& c=\text { nextcal }(c) \\
& \text { while }(p(n c)<=p(c)) \\
& c a=c \\
& c=\text { nextcan }(c)
\end{aligned}
$$

end

$$
\operatorname{nextcan}(c a)=n c
$$

end

$$
\text { nextcas }(n c)=c
$$

\% choosedestriation.m
\%o use method of rejectm to choose a $\%$ block with probability propntimal do \% its length, and int P uniformity \% distributed on that block

$$
\begin{aligned}
& b d(n c)=1+f l o o r(\operatorname{rand} * n b) \\
& \operatorname{pd}(n c)=\operatorname{rand} * L \max \\
& \text { while }(\operatorname{pd}(n c)>=L(\operatorname{bd}(n c))) \\
& \quad b d(n c)=1+f l o o r(\operatorname{rand} * n b) \\
& \quad p d(n c)=\text { rand } * L \text { max }
\end{aligned}
$$

$$
\begin{aligned}
& \text { end }(n c)=x i(i 1(b d(n c)))+p d(n c) * u x(b d(n c)) \\
& y d(n c)=y i(i d(b d(n c)))+p d(n c) * u y(b d(n c)) \\
& \% L \max =\max (L)
\end{aligned}
$$

\% movecars.m
for $b=1: n b$

$$
c=\text { firstcan }(b)
$$

while $(c>0)$

$$
\begin{aligned}
& \text { if }(c==\text { firstcar }(b)) \\
& \text { if }(b d(c)==b) \& f(p d(c)>p(c)) \\
& d=d \max \\
& \text { elseif }(s(b)==0) \\
& d=L(b)-p(c)
\end{aligned}
$$

else
decidenextblock

$$
\text { if }(\text { lastcan }(\text { next b }(c))>0
$$

$$
d=(L(b)-p(c))+p(\operatorname{lastcan}(\text { nex } b b(c)))
$$

else

$$
d=d \text { max }
$$

end
end
else

$$
d=p(c a)-p(c)
$$

end

$$
\begin{aligned}
& p z=p(c) ; \text { nextc }=\text { nextcar }(c) \\
& p(c)=p(c)+d t * v(d)
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }(b==\text { bd }(c)) \& f(p z<p d(c)) \& f(p d(c)<=p(c)) \\
& \text { elemovecar } \\
& \text { els }(L(b)<=p(c)) \\
& p(c)=p(c)-L(b) \\
& \text { if(next }(c)==b d(c)) \& f(p d(c)<=p(c)) \\
& \text { removecar } \\
& \text { else cartonextblock } \\
& \text { end }
\end{aligned}
$$

else

$$
\begin{aligned}
& x(c)=x i(i 1(b))+p(c) * u x(b) \\
& y(c=y i(i 1(b))+p(c) * u y(b) \\
& c a=c
\end{aligned}
$$

end
$c=$ next $\%$ saved vale f nextcan (c)
end \% while loop oven cars m block end \% for loop oren blocks
\% decide nextblock. M
\% only do this if decision is not already made if next $(c)==b$

$$
i=i 2(b)
$$

if rand < prehoice

$$
\begin{aligned}
& \text { jnext }=1+f \text { lour (rand } * \text { bout }(i)) \\
& \text { next } b(c)=\operatorname{bout}(i \text {, jnext })
\end{aligned}
$$

else

$$
\begin{aligned}
& x d v e c=x d(c)-x_{i}(i) \\
& y d v e c=y d(c)-y_{i}(i) \\
& d p=u x(\text { bout }(i, 1: \text { bout }(i))) * x d v e c \ldots \\
& +u y(\text { bout }(i, 1: \text { bout }(i))) * y d v e c \\
& {[d p m a x, \text { next }]=\text { max }(d p)} \\
& \text { next } b(c)=\text { bout (i, jnext })
\end{aligned}
$$

end
end
\% remorecar. m

$$
\begin{gathered}
\text { onr }(c==\text { firstcan }(b)) \\
\text { firstcan }(b)=\text { nextcar }(c) \\
\text { if }(c==\operatorname{lastcan}(b)) \\
\operatorname{lastcar}(b)=0
\end{gathered}
$$

end
else

$$
\begin{gathered}
\text { nextcan }(c a)=\text { nextcar }(c) \\
\text { if }(c==\operatorname{lastcan}(b)) \\
\operatorname{lostcan}(b)=c a
\end{gathered}
$$

end
end
\% not really needed, but...

$$
\begin{aligned}
& x(c)=x d^{\prime}(c) \\
& y(c)=y d(c)
\end{aligned}
$$

nextcan $(c)=0$
\% recall that we puevionsh set next $c=$ nextcan($c)$

9o carto next block. m

$$
\begin{aligned}
& \text { firstcan }(b)=\operatorname{nextcan}(c) \\
& \text { if }(c==\operatorname{lootcon}(b)) \\
& \quad \operatorname{lastcan}(b)=0
\end{aligned}
$$

end

$$
\text { if }(\operatorname{lastcan}(n e x t b(c))==0)
$$

$$
\text { firstcan }(n \text { ext } b(c))=c
$$

else

$$
\text { nextcan }(\text { lastcan }(\text { nextb }(c)))=c
$$

end

$$
\text { lastcar }(\text { nextb }(c))=c
$$

nextcan $(c)=0$
$\%$ this is why we previonshy set next $c=$ nextcan (c)

$$
\begin{aligned}
& x(c)=x i(i 1(\text { next } b(c)))+p(c) * u x(\operatorname{nextb}(c)) \\
& y(c)=x_{i}(i L(\text { next } b(c)))+p(c) * u y(\text { nextb }(c))
\end{aligned}
$$

\% plokears.m

$$
\text { if }(n c>0 \quad \& \& \text { sum (onroad) })>0)
$$

Set (hcars, 'Xdata', x (find(onroad)),
end

