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This is an introduction to the SIR epidemic model. Our purpose is not to

assess the applicability of the model to the real world, although we do want to

make the underlying assumptions of the model clear, but rather to describe the

model’s interesting mathematical behavior and real-world implications, insofar as

it may be applicable. The model is defined by the following differential equations:

dS

dt
= −aS

(

I

N

)

, (1)

dI

dt
= +aS

(

I

N

)

− bI, (2)

dR

dt
= +bI. (3)

Here S is the number of susceptible people, I is the number of infected (and

therefore infectious) people, and R is the number of recovered (and therefore

immune) people. The sum

N = S + I +R (4)

is the total number of people, and this is a conserved quantity, since the model

does not consider births or deaths.

The parameters of the model, a and b, have units of 1/time. In a short time

interval ∆t, a∆t(I/N) is the probability that a given susceptible person becomes

infected, and b∆t is the probability that a given infected person recovers. Strictly

speaking, these statements are only true in the limit ∆t → 0, and then the proba-

bilities also become zero, so what we really mean is that

a

(

I

N

)

= lim
∆t→0

P (infection)

∆t
, (5)

b = lim
∆t→0

P (recovery)

∆t
. (6)

where P (infection) is the probability that any one susceptible person becomes

infected during a time interval of duration ∆t, and P (recovery) is the probability
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that any one infected person recovers during a time interval of duration ∆t. A

shorter way to say this is that a(I/N) is the probability per unit time that a given

susceptible person becomes infected, and b is the probability per unit time that

a given infected person recovers. Note the unrealistic assumption here that the

probability per unit time of recovery is constant, independent of how long the

infected person has been infected.

The infectivity parameter a can be factored as follows:

a = a0 ptrans, (7)

where a0 is the number of encounters per unit time that any one susceptible person

has, where an encounter is defined as an interaction with another person that could

result in the susceptible person’s becoming infected, and where ptrans is the prob-

ability that infection of the susceptible person will actually happen if the other

participant in the encounter is infected. Note that the probability of this last con-

dition being relized (in a homogenous well-mixed population, with no influence

of infection on behavior) is I/N , and this explains why a has to be multiplied

by I/N to get the probability per unit time that any one susceptible person will

become infected.

As a practical matter, when setting parameters, it is best to set b first by keep-

ing in mind that 1/b is the mean time from infection to recovery, and then to set

a by using the fact that a/b is the reproduction number of the disease. The repro-

duction number is the average number of infections that will be caused directly by

transmission from a single infected person in an otherwise susceptible population.

Note that the reproduction number does not count infections caused indirectly by

the first infected person via some other person, only the infections caused by en-

counters involving that particular first infected person. The reason that a/b is the

reproduction number is that by definition the rest of the population is susceptible,

so S = N (we ignore here the distinction between N and N−1), and since we are

only counting infections caused by one person, I = 1. Thus, the rate at which the

one infected person is causing new infections is aN(1/N) = a, and the amount

of time that this one infected person has in which to do this is, on average, 1/b, so

a/b is the average number of people directly infected.

Although we have defined the reproduction number by considering what hap-

pens with one infected person in an otherwise susceptible population, it is also

important to recognize that the reproduction number is effectively reduced when

some fraction of the population is recovered and therefore immune. This is the

phenomenon of herd immunity. The same argument as above shows that the num-

ber of cases caused directly by one infected person in a population containing a
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mixture of susceptible and recovered people is aS(1/N)/b, which is a the orig-

inal reproduction number multiplied by the fraction S/N . If (a/b)(S/N) < 1,

no epidemic will occur. This result means that it is possible to protect an entire

population (in a sense that will be made precise later) by vaccinating only a frac-

tion of the population. The benefit of herd immunity, however, is limited when

the original reproduction number is too large. If a/b = 2, then we can prevent

an epidemic by vaccinating only slightly more than half of the population, but if

a/b = 10 we have to vaccinate more than 90% of the population to prevent an

epidemic.

The behavior of the solutions of the differential equations of the SIR model

is very different depending on whether a/b < 1 or a/b > 1. Of course there

is a borderline case a = b, and as a practical matter the behaviors blurr into

each other when a and b are approximately equal, but we will not discuss the

borderline situation here. We call a/b < 1 the non-epidemic case and a/b > 1 the

epidemic case. This terminology refers to the situation in which no one is intially

immune. When a fraction of the population is initially immune, and therefore

when the susceptible fraction is less than one, there is still a non-epidemic case

and an epidemic case but the threshold is different — as explained above the

relevant quantity is then the effective reproduction number (a/b)(S(0)/N). In the

following two sections, however, we consider the case in which no one is initially

immune.

Non-Epidemic Case

Here a < b, and we assume that some number I(0) of infected people are intro-

duced into an otherwise susceptible population, so R(0) = 0. We assume that

I(0) << N . Thus, for practical purposes S(0) = N , and we make the pro-

visional assumption that this approximation remains valid for all time, i.e., that

I(t) + R(t) << N , for all t. The self-consistency of this assumption will be

checked later.

With S = N , the equation for I(t) becomes

dI

dt
= (a− b)I = −(b− a)I, (8)

and of course this has the solution

I(t) = I(0) exp(−(b− a)t) (9)

3



The quantity R(∞) measures the total number of people who ever were infected

(including those who were initially infected). Since R(0) = 0, R(∞) can be

evaluated as

R(∞) =

∫

∞

0

bI(t)dt = I(0)
b

b− a
=

I(0)

1− (a/b)
. (10)

Our approximation is valid as long as I(0)/(1− (a/b)) << N , and of course a/b
has to be in (0, 1), since we are here concerned with the non-epidemic case. Note

that R(∞) blows up as (a/b) → 1, which is an indication that the non-epidemic

case is blurring into the epidemic case, which will be discussed below.

In the non-epidemic case, the total number of people who were ever infected

is:

• proportional to I(0)

• independent of N

This means that the non-epidemic is a local phenomenon. Even if I(0) is multi-

plied by a large number (for example, if a/b is 0.9, R(∞) = 10 I(0)), the non-

epidemic event does not have any noticeable impact on the population as a whole.

This is what was meant when we said that herd immunity can protect the whole

population even though only a part of the population is immnune. The point is that

herd immunity can ensure that any clusters of cases that occur involve numbers

that do not scale up with the population size N .

Epidemic Case

Here a > b, but otherwise we consider the same situation as before, in which some

number I(0) of infected people are introduced into an otherwise susceptible pop-

ulation (so R(0) = 0), with I(0) << N . At early times, when S is approximately

equal to N we have the same dynamics as before:

I(t) = I(0) exp ((a− b)t) , (11)

but now, since a > b, this is exponential growth instead of exponential decay.

Clearly, such exponential growth cannot continue indefinitely, since it would soon

predict that there are more infected people than people in the population, and well

before that, the approximation that S is approximately equal to N would become

invalid.
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To see what actually happens, we can of course solve the system (1-3) numer-

ically, but we can also obtain some analytic results in the following way.

First, we rewrite the basic differential equations of the model in terms of frac-

tions of the population. Let

σ = S/N, ι = I/N, ρ = R/N. (12)

Then, dividing both sides of each of the equations (1-3) by N and recalling that

N is constant, we get

dσ

dt
= −aσι, (13)

dι

dt
= +aσι− bι, (14)

dρ

dt
= +bι. (15)

(16)

Note that the parameter N has conveniently dissappeared. This is because we

used the formulation of the SIR model in which the infection rate depends on I
through I/N . The lack of dependence on N in the above equations implies that

our model is scale-invariant. When conclusions are expressed in terms of fractions

of the population, they will be the same no matter how large the population may

be.

A useful trick for the analysis of the above system is to eliminate time and use

ρ as the independent variable. This is achieved by dividing dσ/dt by dρ/dt. The

result, after canceling ι, is
dσ

dρ
= −

(a

b

)

σ, (17)

which is a differential equation that we can easily solve for σ as a function of ρ.

Since we are assuming that the epidemic starts with no one immune, ρ starts at

zero and increases from there. The value of σ at the start of the epidemic is very

close to 1. For example, in a city of a million people, there may be one or two

people infected, so σ has a value like 0.999998, for example, and we may as well

set σ(0) = 1. With this initial condition, we have

σ(ρ) = exp
(

−

(a

b

)

ρ
)

. (18)

Several important characteristics of the epidemic can be deduced from this rela-

tionship, as we discuss in the following.
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During an epidemic, the fraction of the population that is infected rises to

a maximum and then declines, and we would like to know what the maximum

infected fraction will be. To evaluate this, we note that

σ + ι+ ρ = 1, (19)

so maximizing ι is the same as minimizing σ + ρ. Accordingly, we set

0 =
d

dρ
(σ(ρ) + ρ) , (20)

= −

(a

b

)

σ(ρ) + 1, (21)

= −

(a

b

)

exp
(

−

(a

b

)

ρ
)

+ 1. (22)

(23)

The second and third lines of the above equation are both useful. Fron the second

line, we get the value of σ when the infected fraction is at its peak, and from the

third line we get the corresponding value of ρ. These values are

σ =
1

(a/b)
, (24)

ρ =
log(a/b)

(a/b)
, (25)

and therefore, the fraction of the population that is infected at any one time has

the maximum value

ιmax = 1−
1 + log(a/b)

(a/b)
. (26)

Note that the maximum infected fraction depends only on the reproduction num-

ber (a/b). It is an increasing function of (a/b), with the value 0 when (a/b) = 1,

and approaching 1 as (a/b) → ∞.

In a similar way, one could evaluate the maximum of the rate at which new

infections are occurring. The fraction of the population that is newly infected per

unit time (that is, the number of new infections per unit time divided by N) is

given by aσι = aσ(1 − (σ + ρ)), and the maximum value of this expression can

be found by making use of equation (18) in much the same way as in the foregoing

calculation of ιmax, but we leave the details as an exercise for the reader.

Another quantity of interest is the fraction of the population that is recovered

and therefore immune at the end of the epidemic. This is the same as the fraction
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of the population consisting of people who became infected at any time during the

epidemic. Thus it measures the total impact of the epidemic on the population,

and it is also important for the future herd immunity of the population, in case the

population is challenged by the same pathogen again. The recovered fraction at

the end of the epidemic can be obtained from equation (18) by noting that ι = 0
at the end of the epidemic, so σ + ρ = 1, or σ = 1− ρ. This gives the equation

exp
(

−

(a

b

)

ρ
)

= 1− ρ. (27)

One solution of this equation is ρ = 0, and that is the only non-negative solution

if a < b, which shows again that a non-epidemic has a negligeable effect on the

population as whole. If a > b, however, it is easy to see by plotting the the two

sides of (27) as functions of ρ that there is another solution which has 0 < ρ < 1,

and this solution corresponds to the recovered fraction at the end of the epidemic.

Like the maximum infected fraction, it depends only on the reproduction number

a/b. Even though we do not have a formula for this dependence, it is easy to

determine it by solving equation (27) numerically. The solution of (27) for the re-

covered fraction of the population at the end of the epidemic is plotted in Figure 1

as a function of the reproduction number, along with the fraction of the population

that is infected at the peak of the epidemic, as given by equation (26).

The fact that we get a definite results for the epidemic case without having to

specify the number of people initially infected shows that in the epidemic case

the number of initially infected people does not mattter. The initial infections

are the spark that ignites the fire, and if the fire is indeed ignited it will run its

course independent of the intensity of the spark. The only difference that the

number of people initially infected will make is a shift on the time axis, but the

fraction of the population that is infected at the height of the epidemic, and the

fraction of the population that is ever infected during the course of the epidemic,

will not depend at all on the number of initial infections that set the epidemic

going (assuming that number was too small to be itself a significant fraction of

the whole population). Also, since the results we have calculated are fractions

of the population, the corresponding numbers of people scale with the population

size. Thus, in the epidemic case, the numbers of people affected are

• independent of I(0)

• proportional to N

and this is exactly opposite to the situation in the non-epidemic case!
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Figure 1: Infected fraction of the population as a function of the reproduction

number. Upper curve shows the fraction of the population consisting of people

who were infected at any time during the course of the epidemic, and lower curve

shows the fraction of the population that is infected at the peak of the epidemic,

i.e., at the time at which the number of currently infected people is the largest.
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When Part of the Population is Initially Immune:

Non-Epidemic Case

Here we assume that a small number I(0) of infected people are introduced into

a large population consisting of S(0) susceptible people and R(0) recovered (and

therefore immune) people. Since I(0) is a small number, and S(0) and R(0) are

large, we may write

N = S(0) +R(0), (28)

and we make the provisional assumption that S(t) and R(t) stay close to their

initial values for all t. In that case, we have the equation

dI

dt
= a

(

S(0)

N

)

I − bI, (29)

and this can be written
dI

dt
= (aσ(0)− b) I, (30)

where

σ(0) =
S(0)

N
=

S(0)

S(0) +R(0)
. (31)

This shows that the infectivity parameter a is effectively reduced by being multi-

plied by the susceptible fraction of the population σ(0). Thus, the condition for

the non-epidemic case is now

aσ(0) < b, (32)

and in that case we have

I(t) = I(0) exp (− (b− aσ(0))) , (33)

R(∞)− R(0) =
I(0)

1− (aσ(0)/b)
. (34)

These are exactly the same results as before, except that the reproduction num-

ber a/b has been replaced by the smaller effective reproduction number aσ(0)/b.
In particular, the non-epidemic is still a local phenomenon, in the sense that the

number of infected people is proportional to the number initially infected and in-

dependent of the population size. The benefit of having only part of the population

initially susceptible is two-fold. First, and most important, it is now easier for the

non-epidemic case to be what actually happens, since the condition aσ(0) < b is

less restrictive than a < b. Also, even if a < b so that we would be in the non-

epidemic case without anyone initially immune, the number of infections (includ-

ing those initially infected) is reduced from I(0)/(1−a/b) to I(0)/(1−aσ(0)/b).
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When Part of the Population is Initially Immune:

Epidemic Case

Here we consider the same situation as in the previous section, but with aσ(0)−
b > 0, so that (33) describes exponential growth. The “0” in σ(0) refers to t = 0,

but here we are going to think of σ as a function of ρ, and the value of ρ at t = 0
is not zero, so from now on we write σ0 and ρ0 as the intial values of σ and ρ, and

we note that

σ0 + ρ0 = 1, (35)

since the number of initially infected people is negligible as a fraction of the pop-

ulation. The solution of (18) for σ(ρ) is now

σ(ρ) = σ0 exp
(

−

(a

b

)

(ρ− ρ0)
)

, (36)

and the domain of ρ is (ρ0, ρ∞), where ρ∞ < 1 remains to be determined. Note

that ρ∞−ρ0 is the fraction of the population that is ever infected during the course

of the epidemic.

In much the same way as before, we can use (36) to determine ιmax and ρ∞−ρ0.

To find ιmax, we minimize σ(ρ) + ρ:

0 =
d

dρ

(

ρ+ σ0 exp
(

−

(a

b

)

(ρ− ρ0)
))

, (37)

= 1−
(a

b

)

σ, (38)

= 1−
(a

b

)

σ0 exp
(

−

(a

b

)

(ρ− ρ0)
)

, (39)

and from this we find that the values of σ and ρ at the peak of the epidemic are

σ =
1

(a/b)
, (40)

ρ = ρ0 +
log ((a/b)σ0)

(a/b)
, (41)

It follows that

ιmax = 1− ρ0 −
1 + log ((a/b)σ0)

(a/b)
, (42)

= σ0

(

1−
1 + log ((a/b)σ0)

((a/b)σ0)

)

. (43)

10



When the entire population was initially susceptible, we had the special case of

this formula with σ0 = 1. In comparison to that case, we see that ιmax is here

reduced in two ways. First, and most important, the reproduction number a/b
is here replaced by the effective reproduction number (a/b)σ0, which is smaller.

The second effect is simply the leading scale factor σ0. In summary, at the peak

of the epidemic, the infected population will be a certain fraction of the initially

susceptible population, not of the whole population, and moreover that infected

fraction of the initially susceptible population will be as if the reproduction num-

ber had been reduced by being multiplied by the initially susceptible fraction of

the population.

Now we consider the fraction of the population that is ever infected during an

epidemic in which some fraction of the population is initially immune. At the end

of the epidemic, ι = 0, so σ + ρ = 1. Combining this with (36), we get

1− ρ∞ = σ0 exp
(

−

(a

b

)

(ρ∞ − ρ0)
)

, (44)

and we also have

1− ρ0 = σ0. (45)

Combining these equations gives the result

ρ∞ − ρ0 = σ0

(

1− exp
(

−

(a

b

)

(ρ∞ − ρ0)
))

, (46)

which can also be written as
(

ρ∞ − ρ0
σ0

)

= 1− exp

(

(

−σ0

a

b

)

(

ρ∞ − ρ0
σ0

))

. (47)

Now ρ∞ − ρ0 is the fraction of the population that ever becomes infected (with-

out regard to when) over the course of the epidemic, and of course all of these

people were initially susceptible. The quantity (ρ∞ − ρ0)/σ0 is the fraction of

the initally susceptible population that becomes infected over the course of the

epidemic. This fraction obeys the same equation as was found previously when

the whole population was initially susceptible, except that here the reproduction

number a/b is replaced by the effective reproduction number (a/b)σ0. As in the

case of ιmax, there is a two-fold benefit to having part of the population be initially

immune. First, there is effectively a reduction in the reproduction number, and

second, the relevant population (i.e., those initially susceptible) is smaller, so the

number of cases is fewer. This two-fold benefit is illustrated in Figure 2 for the

particular case in which 1/3 of the population is initially immmune.
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Figure 2: The benefit of having 1/3 of the population initially immune. Blue

curves show fraction of population ever infected over the course of the epidemic,

and red curves show the fraction infected at the peak of the epidemic, as functions

of the reproduction number a/b. In both cases the upper solid curve is what hap-

pens when no one is initially immune (same as in Figure 1), and the lower solid

curve is what happens when 1/3 of the population is initially immune. The dotted

curves are simply 2/3 of the upper solid curves, so they show the direct benefit

of having only 2/3 of the population initially susceptible. The difference between

each dotted curve and the corresponding lower curve is the indirect benefit, i.e.,

the herd immunity effect.
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