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In the rigid pIB method [1], a rigid body is connected to a fluid in which it is

immersed by a system of stiff, zero-rest-length springs. In the equation of motion

of the body, the relevant mass density of the body is its excess mass density, i.e. the

difference between the density of the body and the density of the fluid. The reason

for this is that fluid is everywhere in the IB method; it does not just surround the

body but actually coexists in the same space with the body, and within that space

the fluid is effectively constrained to move rigidly along with the body by the

aforementioned stiff springs. Thus the fluid already accounts for a certain amount

of mass, and the body need only account for the excess. We are concerned here,

however, with the situation in which there is no excess, and the body is then said

to be neutrally buoyant.

In its equation of motion, the body then appears as a massless object, and

likewise it has zero moment of inertia. It follows that the net force and torque

acting on the body must be zero at all times. In other words the body is always in

mechanical equilibrium. The equations of equilibrium need to be solved in order

to find the tensions in the springs that connect the body to the fluid, and these

tensions are needed in order to find the force on the fluid. The formulation of this

equilibrium problem is as follows.

In cartesian coordinates that are attached to the body, let

Zk, k = 1, . . . , n (1)

be the coordinates of the points of the body that are connected to the fluid by stiff

springs. We assume that the origin of coordinates within the body has been chosen

to be the centroid of these points, and then we have the useful equation

n
∑

k=1

Zk = 0. (2)

Since the body is rigid, it moves by translation and rotation only. Therefore, the

lab-frame position of the point with label k is always of the form

X0 +RZk, (3)
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where X0 is the lab-frame position of the origin of the body coordinates, and

where R is a 3× 3 rotation matrix. Note that X0 and R do not depend on k.

Let Xk be the point in the fluid to which Zk is connected by a stiff, zero-rest-

length spring, and let the stiffness of this spring be denoted by the constant K,

which we assume is the same for all of the springs. We allow in the following for

external forces to be applied to the n labeled points of the body, with the force Fk

being applied at the point with label k.

The equations of equilibrium can then be stated as follows:

0 =
n

∑

k=1

Fk +K (Xk − (X0 +RZk)) , (4)

0 =
n

∑

k=1

(RZk)× (Fk +K (Xk − (X0 +RZk))) . (5)

Equation (4) states that the total force on the rigid body is zero, and equation (5)

states that the total torque on the rigid body is zero. Note that the torque is being

measured with respect to the origin of the coordinate system that is attached to the

body. This makes no difference, however, since forces that sum to zero have the

same torque about any reference point, and equation (4) guarantees that the forces

in question do indeed sum to zero.

Equations (4) & (5) can be simplified. In equation (4), the term RZk drops out

because R does not depend on k and the Zk have zero as their sum, see equation

(2). Equation (4) is then easily solved for X0 with the result

X0 =
1

n

n
∑

k=1

(

Xk +
1

K
Fk

)

. (6)

In equation (5), X0 drops out because it appears in a cross product with a sum

that is equal to zero, and of course we also have RZk × RZk = 0. After these

simplifications, equation (5) reads as follows:

0 =
n

∑

k=1

(RZk)× (Fk +KXk) . (7)

Note that we now have a complete separation of the equilibrium problem into two

parts. The unknown translation X0 has already been determined — it is given by

equation (6), which does not involve R, and the unknown rotation R remains to

be determined by making use of equation (7), in which X0 does not appear.
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We can convert equation (7) into a matrix equation for R in the following way.

Take the cross product of both sides of (7) with an arbitrary vector c, and then use

the vector identity

(a× b)× c = −a(b · c) + b(a · c)

= (−ab
T + ba

T)c. (8)

In this way, since c is arbitrary, we get the result

0 =

n
∑

k=1

(

(Fk +KXk)Z
T
kR

T −RZk (Fk +KXk)
T
)

= (RA)T −RA, (9)

where

A =

n
∑

k=1

Zk (Fk +KXk)
T . (10)

Besides satisfying equation (9), R should be orthogonal. We can use the singular

value decomposition of A to construct such an R. Let

A = UDV T, (11)

where U and V are orthogonal, and D is diagonal. Then

R = V UT (12)

is orthogonal, and

RA = V UTUDV T = V DV T. (13)

Since this is symmetric, equation (9) is satisfied.

There are some loose ends here that the reader may want to investigate: We

have not shown that R is the only orthogonal solution of equation (9), and we

have not shown that R is a rotation, i.e., that det(R) = +1. Of course, the latter

condition is easily checked once a candidate R has been found.

With the equilibrium equations solved, we have the important result that the to-

tal force and torque that were applied to the rigid body are transmitted unchanged

to the fluid. For total force, this is an obvious consequence of equation (4), since

the total force on the fluid is given by

n
∑

k=1

K((X0 +RZk)−Xk), (14)
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and this is equal to
∑n

k=1
Fk by a simple rearrangement of equation (4). The

corresponding result for torque is not quite obvious, since the point where the each

spring force is applied to the fluid is different from the point at which (minus) that

force is applied to the rigid body. The total torque applied to the fluid is given by

n
∑

k=1

(Xk −X0)×K((X0 +RZk)−Xk). (15)

Note, however, that

Xk −X0 = (Xk − (X0 +RZk)) + (RZk). (16)

When this is substituted into (15), the result can be simplified using a × a = 0,

and equation (15) becomes

n
∑

k=1

(RZk)×K((X0 +RZk)−Xk), (17)

which is equal to
∑n

k=1
(RZk) × Fk by a simple rearrangement of equation (5).

Thus, the change in location of the force application makes no difference, and

equation (5) does indeed ensure that the total torque applied to the rigid body is

transmitted to the fluid.

It is also of interest to consider the case in which torque is applied directly,

instead of being applied through given external forces. It may seem that we have

covered this case already, since the applied forces considered above produce a

torque

τ =
n

∑

k=1

(RZk)× Fk, (18)

but this involves a particular dependence of τ on R, and this actually simplifies

the determination of R in comparison to the two cases that will be considered

below.

The first of these cases is a given lab-frame torque

τ = τ 0, (19)

independent of R. This case is applicable if a constant torque is being applied by

some mechanism that is fixed in the laboratory frame.
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The second possibility 1 is that the torque-generating mechanism is attached

to the rigid body itself, and rotates along with that body. This occurs in the case of

bacteria such as E. coli that have rotary molecular motors embedded in their cell

walls. These motors apply torque to flexible flagella that serve as a propulsion

mechanism for the bacterium, and of course there is a countertorque applied by

these same motors to the bacterium itself. Let the vector sum of all of the counter-

torques in a frame of reference attached to the body of the bacterium be denoted

τ 0, which we assume here is constant. Then the lab-frame torque applied to the

bacterium is is given by

τ = Rτ 0. (20)

Although this depends on R, the manner in which it does so is different from that

of equation (18).

Our purpose now is to formulate and solve the equations of equilibrium in

the presence of applied torque given by equation (19) or by equation (20). These

two cases have a lot in common, and we consider them in parallel. It makes no

essential difference to the difficulty of the problem whether the applied forces Fk

are still included or not, so we leave them in place for the sake of generality. The

equation for X0 remains exactly the same as before, and the equilibrium value of

X0 is unaffected by the addition of the the applied torque τ 0 or Rτ 0, so we only

need to consider the effect on the eqution for R.

After putting the equation for R in matrix form in the same manner as before,

we get

0 = (τ 0×) + (RA)T −RA, (21)

or, alternatively,

0 = ((Rτ 0)×) + (RA)T −RA (22)

by applying the torque given by equation (19) or (20), respectively. In the above

equations, the 3x3 matrix A has the same definition as before, see equation (10).

The notation (a×) that is used here and in the following denotes the 3x3 anti-

symmetric matrix such that

(a×)b = a× b (23)

for all b. Note that

((Ra)×) = R(a×)RT. (24)

1For detailed modeling of the case described in this paragraph, see [2]. This paper uses es-

sentially the version of the rigid pIB method described in this Note, but the exposition in the

paper is different from how we present it here, and in particular we show here how to improve an

approximation that is made in the paper.
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This follows from the invariance of the cross product under rotations, that is,

(Ra) × (Rb) = R(a × b). This invariance is obvious from the geometric in-

terpretation of the cross project, but it is not so easy to prove algebraically — try

it and see! Given the invariance of the cross product, however, it is very straight-

forward to prove (24).

Because of (24), we can rewrite (22) as

0 = R(τ 0×)RT + (RA)T − RA

= R(τ 0×)RT + ATRT − RA, (25)

and then we can multiply by RT on the left and by R on the right to obtain

0 = (τ 0×) +RTAT −AR

= (τ 0×) + (AR)T −AR (26)

The only difference between (26) and (21) is now that RA has been replaced by

AR.

We now make use of the singular value decomposition A = UDV T and we

look for R of the form

R = R1V UT, so that RA = R1V DV T (27)

in the case of equation (21), and

R = V UTR1 so thatAR = UDUTR1 (28)

in the case of equation (26). In these equations, R1 is an unknown orthogonal

matrix (not the same matrix in the two cases). After these changes of variables,

and a little algebraic manipulation, the two equations become

0 = ((V T
τ 0)×) +DRT

2 −R2D, where R2 = V TR1V (29)

0 = ((UT
τ 0)×) +RT

2D −DR2, where R2 = UTR1U. (30)

In each of these equations, R2 is an unknown orthogonal matrix, and everything

else is known.

If the applied torque is small in some appropriate dimensionless sense, then

we should look for a solution R2 in each case that is close to the identity. An

orthognoal matrix close to the identity is (approximately) of the form I+Ω, where
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Ω is small and antisymmetric. If we substitute this form for R2 into (29) or (30),

we get

0 = ((V T
τ 0)×)−DΩ− ΩD, (31)

0 = ((UT
τ 0)×)− ΩD −DΩ. (32)

Note that finally our two equations have reached the same form, although the

terms involving the given torque τ 0 are different. If we evaluate the diagonal

elements of all terms in either of these equations, we simply get 0 = 0, but this is

not a limitation since Ω is antisymmetric, and its diagonal elements are therefore

known to be equal to zero. From the off-diagonal elements of (31) or (32), we get

Ωij =
((V T

τ 0)×)ij
Di +Dj

, (33)

Ωij =
((UT

τ 0)×)ij
Di +Dj

. (34)

for any pair (i, j) such that i 6= j. Note that none of the denominators here are

zero unless two of the singular values Di of the 3x3 matrix A are equal to zero.

This completes the construction of an approximate solution to either of the two

given-torque problems, and a procedure for improving the approximate solution

by fixed-point iteration will be discussed below. An important point to note about

the approximate solution is that it provides an exact solution to the equations of

equilibrium, but at the price of allowing a small deformation of the rigid body.

This is because equations (29) or (30) for R2 are solved exactly, but for a matrix

R2 that is only approximately orthogonal. Another important remark about the ap-

proximation we are making here is that we expect it to improve as the stiffness K
of the penalty springs becomes large. In the pIB method, we are really interested

in the limit K → ∞, and in that limit applied torques (and also the applied forces)

are effectively small. This can be seen formally by dividing all of the equations

by K and thinking of 1/K as a small parameter. Finally, we remark that existence

of an equilibrium solution to the given-torque problems we have been considering

is by no means assured, and in fact on physical grounds it seems clear that for any

fixed K, existence will fail for ‖τ 0‖ sufficiently large. This is because there is

a limit to how much rotation can increase the lengths of the springs that connect

the rigid body to the fluid, so when the applied torque is too large, there may be

no orientation of the rigid body in which that torque is balanced. This difficulty

disappears, however, if we consider a fixed torque and let K be arbitrarilty large,
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and that is exactly the situatiton in which our approximation becomes increasingly

valid.

The approximation described above can be improved by fixed-point iteration.

For this we need the Rodrigues’ formula for a rotation in three-dimensional space

about a unit vector a through an angle θ. Such a rotation is described by the 3x3

matrix

I + sin(θ)(a×) + (1− cos(θ))(a×)2. (35)

An alternate form that will be more useful for us is

I +
sin(θ)

θ
(ω×) +

1− cos(θ)

θ2
(ω×)2, (36)

where

θ = ‖ω‖ (37)

In the form (36) of Rodrigues’ formula there is no constraint: the vector ω can

have any (positive) norm, and then θ = ‖ω‖ is to be regarded as a function of ω,

and not as an independent variable.

In the following, we use the notation Ω for the antisymmetric matrix (ω×).
The consistency of this with our previous use of Ω will become apparent very

soon. We can impose the requirement that R2 should be a rotation by setting R2

in equation (29) or (30) equal to the expression (36). When this is done, we get

0 = ((V T
τ 0)×)−

sin(θ)

θ
(DΩ+ ΩD) +

1− cos(θ)

θ2
(DΩ2 − Ω2D), (38)

0 = ((UT
τ 0)×)−

sin(θ)

θ
(ΩD +DΩ) +

(1− cos(θ))

θ2
(Ω2D −DΩ2).(39)

In these equations

θ = ‖ω‖ =

√

1

2
‖Ω‖2, (40)

in which the matrix norm in use here is the Frobenius norm.

If the driving torques are small, we expect ‖Ω‖ to be small as well, and then

‖Ω‖2 should be even smaller. These considerations suggest the fixed-point itera-

tions

DΩm+1 + Ωm+1D =
((V T

τ 0)×) + 1−cos θm
θ2
m

(DΩ2
m − Ω2

mD)

sin θm
θm

, (41)

Ωm+1D +DΩm+1 =
((UT

τ 0)×) + 1−cos θm
θ2
m

(Ω2
mD −DΩ2

m)

sin θm
θm

. (42)
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Here m = 0, 1, 2, . . . is the iteration number, and Ωm is antisymmetric for all m
by definition. If we start from Ω0 = 0, then Ω1 will be precisely the antisym-

metric matrix Ω that was used above to construct the approximate solution I +Ω,

see equations (31-32). Each of the equations (41) or (42) is easily solved for the

off-diagonal components of Ωm+1 in precisely the same way as the approximate

solution was previously found, see equations (33) & (34). If the fixed-point it-

eration converges, then we have found an orientation of the rigid body that is in

equilibrium with the applied forces and torques.
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