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Abstract. We discuss the Fortuin–Kasteleyn (FK) random cluster representation for Ising models
with no external field and with pair interactions which need not be ferromagnetic. In the ferro-
magnetic case, the close connections between FK percolation and Ising spontaneous magnetization
and the availability of comparison inequalities to independent percolation have been applied to
certain disordered systems, such as dilute Ising ferromagnets and quantum Ising models in random
environments; we review some of these applications. For non-ferromagnetic disordered systems,
such as spin glasses, the state of the art is much more primitive. We discuss some of the many open
problems for spin glasses and show how the FK representation leads to one small result, that there
is uniqueness of the spin glass Gibbs distribution above the critical temperature of the associated
ferromagnet.
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1. The FK Random Cluster Representation

In this section, we will briefly review the relation between Ising models, Fortuin–
Kasteleyn (FK) random cluster models and independent percolation. FK models
were introduced in Kasteleyn and Fortuin (1969), Fortuin and Kasteleyn (1972);
more recent presentations may be found in Aizenman et al. (1988), Grimmett (1994).
Our emphasis here will be on the version relevant for Ising systems with some ferro-
magnetic and some antiferromagnetic pair interactions; for more discussion of this
sort, see Newman (1991). For simplicity, we will restrict attention to models in Z

d

with nearest neighbor interactions. Since we will eventually apply the FK repre-
sentation to disordered systems, we must allow our couplings to vary from bond to
bond, in magnitude and in sign.

Let Ẑ
d denote the set of nearest neighbor bonds of Z

d; i.e., Ẑ
d is the set of

unordered pairs b = 〈x, y〉 = 〈y, x〉 of sites x, y in Z
d with Euclidean distance ‖x −

y‖ = 1. The interactions, Jb, are real numbers indexed by b in Ẑ
d and the inverse

temperature is a non-negative constant β. (When we consider disordered systems,
the Jb’s will be random variables on some probability space (Ω,F , P ) and the present
considerations will be relevant for each fixed ω ∈ Ω.) Given the Jb’s and β, we define
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parameters pb ∈ [0, 1) by the formula,

pb = 1 − e−β|Jb| . (1.1)

For Λ a finite subset of Z
d, the (volume Λ) Gibbs distribution (with free bound-

ary conditions) for the Ising model is a probability measure on {−1, +1}Λ and the
corresponding FK model distribution is a probability measure on {0, 1}Λ̂, where Λ̂
denotes the set of bonds b = 〈x, y〉 with x and y in Λ. We regard these respec-
tively as the probability distributions µs of +1 or −1 valued spin random variables
(Sx : x ∈ Λ) and µn of 0 or 1 valued bond occupation variables (Nb: b ∈ Λ̂). These
two measures are the marginal distributions (for their respective sets of variables) of
a joint distribution µ on Ω̃ = {−1, +1}Λ × {0, 1}Λ̂ defined, in two steps, as follows.
Step 1. Let µ′ be the joint distribution on {−1, +1}Λ×{0, 1}Λ̂ of random variables
(S′

x, N ′
b: x ∈ Λ , b ∈ Λ̂) which are all mutually independent with P (S′

x = +1) =
P (S′

x = −1) = 1
2 and P (N ′

b = 1) = pb.
Step 2. Let Ũ be the event

Ũ = {for all b = 〈x, y〉 ∈ Λ̂, JbN
′
bS

′
xS′

y ≥ 0} (1.2)

(regarded as a subset of Ω̃), and define µ to be µ′ conditioned on Ũ ; i.e.,

µ(·) = µ′(Ũ)−1 µ′(·) 1
Ũ

(·). (1.3)

It is an elementary exercise to show that the two marginal distributions are given
explicitly by

µs((sx)) = Z−1
s exp


β

2

∑
〈x,y〉∈Λ̂

J〈x,y〉sxsy


 , (1.4)

µn((nb)) = Z−1
n 2�((nb)) µind

n ((nb)) 1U ((nb)), (1.5)

where Zs and Zn are normalization constants, �((nb)) denotes the number of clusters
determined by (nb) (i.e., the number of connected components in the graph with
vertex set Λ and edge set, {b ∈ Λ̂: nb = 1}), µind

n is the Bernoulli product measure
corresponding to independent occupation variables with µind

n ({nb = 1}) = pb for
each b and U is the event in {0, 1}Λ̂,

U = {(nb): there exists some choice of (sx: x ∈ Λ)
so that ((sx), (nb)) ∈ Ũ}. (1.6)

The formula (1.4) is standard for an Ising model Gibbs distribution. Likewise
(1.5) is standard for the FK model in the ferromagnetic case (Jb ≥ 0 for all b),
since then U = {0, 1}Λ̂ (by taking sx ≡ +1 or ≡ −1 in (1.6)). FK models for non-
ferromagnetic interactions are less well known; the first published reference we are
aware of is Kasai and Okiji (1988) (see also Swendsen and Wang 1987, Edwards and
Sokal 1988, Newman 1991). Here U , which is typically not all of {0, 1}Λ̂, may be
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thought of as the set of ‘unfrustrated’ bond occupation configurations. This term,
borrowed from the spin glass literature, simply means that for the Ising Hamiltonian
restricted to occupied bonds,

H(nb)((sx)) = 1
2

∑
b=〈x,y〉∈Λ̃

(−Jbnbsxsy), (1.7)

there is some spin configuration (sx) which simultaneously minimizes each summand.
A key feature of the measure µ, given by (1.3), is that the conditional distribution,

µ((sx) | (nb)), for the Sx’s given the Nb’s is particularly simple: consider the clusters
determined by the given (nb). Any two sites u, v in the same cluster (which we write
as u ↔ v) are connected by a path of occupied bonds (with non-zero interactions
on every edge) which, because of the conditioning on Ũ in (1.3), requires that Su =
ηu,vSv where ηu,v((nb)) is the product of the signs of the Jb’s along the occupied
path between u and v. Two different paths will give the same η providing (nb) ∈ U .
For future use, we extend the definition of ηu,v ((nb)) to be 0 if u and v are not in
the same cluster for the given (nb). Thus the relative signs of all the spin variables
in a single (nb)-cluster are determined by (nb) but the spin of any single variable
may be either +1 or −1. The conditional distribution µ((sx) | (nb)) corresponds to
making the ±1 choices for each (nb)-cluster by independent flips of a fair coin. (The
conditional distribution µ((nb) | (sx)) is also very simple (Swendsen and Wang 1987),
but we will not make use of that.)

Expressing µ as the product of the marginal µn and the above conditional allows
one to express µs expectations (which we write Es) in terms of µn expectations
(which we write En). This is the sense in which the FK model gives a representation
of the Ising model. For example,

Es(SuSv) = En(ηu,v), (1.8)

which, in the ferromagnetic case (where ηu,v can only be +1 or 0) becomes the well
known formula

Es(SuSv) = µn(u ↔ v). (1.9)

To continue our presentation, we now introduce boundary conditions. The sim-
plest type of boundary condition is an assignment s̄ = (s̄z) of ±1 spin values to the
sites z in ∂Λ, the set of sites outside of Λ which are nearest neighbors of sites in Λ.
Here it is convenient to replace Λ by Λ∗ = Λ ∪ ∂Λ and Λ̂ by Λ̂ ∗, the union of Λ̂
and bonds 〈x, y〉 with x ∈ Λ and y ∈ ∂Λ; i.e., µ will be replaced by a measure µs̄

on Ω∗ = {−1, +1}Λ∗ × {0, 1}Λ̂∗
. The definition of µs̄ is just like that of µ, except

that in Step 1, S′
x is set to s̄x for each x ∈ ∂Λ. In the formulas for the marginal

distributions, (1.4) is replaced by the usual Ising model Gibbs distribution formula
with boundary condition s̄, while (1.5) remains essentially the same. We note how-
ever that in the definition of U (and Ũ) the spins in ∂Λ are always fixed by s̄, and
further that �((nb)) only counts clusters which do not touch ∂Λ (or equivalently for
the definition of µn, counts all clusters touching the boundary as a single cluster).

Note that even in the ferromagnetic case, U is generally not all of {0, 1}Λ̂∗
since

occupied paths of Jb > 0 bonds are not allowed to connect the s̄z = +1 and s̄z = −1
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parts of the boundary. Of course U will be all of {0, 1}Λ∗
in the ferromagnetic case

if s̄z ≡ +1 or s̄z ≡ −1; the resulting marginal distributions are denoted µ+
s , µ−

s and
(for either +1 or −1) µw

n (w for ‘wired’).
The conditional distribution µ((sx) | (nb)) remains as it was in the free boundary

condition case except that no coin is tossed for clusters touching the boundary since
their spin values are already determined by (nb) and s̄ (and the signs of the Jb’s).
In the ferromagnetic case, the (finite volume) magnetization at site u (in Λ) is then

E+
s (Su) = µw

n (u ↔ ∂Λ) = −E−
s (Su), (1.10)

where of course µ ↔ ∂Λ means that the (nb)-cluster containing the site u touches
the boundary.

Here are some easily derived comparison inequalities. For a given Λ, write µind
n,(pb)

and µw,F
n,(pb)

to denote the two probability measures on {0, 1}Λ̂∗
given respectively

as the Bernoulli product measure with parameters (pb), and as the wired b.c. ferro-
magnetic (Jb ≥ 0) FK-measure with the same parameters. Write µ1 	 µ2 to denote
stochastic ordering between measures; i.e., to denote that

∫
f dµ1 ≤ ∫

f dµ2 for any

coordinate-wise increasing real function f on {0, 1}Λ̂∗
. Then

µind
n,(h(pb))

	 µw,F
n,(pb)

	 µind
n,(pb)

, (1.11)

where
h(pb) =

pb

2(1 − pb) + pb
. (1.12)

These inequalities can be derived using only the fact (Harris 1960) that for the inde-
pendent percolation measure µind

n , increasing functions f and g positively correlated.
Using the facts that these FKG inequalities are also valid for µw,F

n and further that
the density of (a non-ferromagnetic) µs̄

n,(pb)
with respect to µw,F

n,(pb)
is, according to

(1.5), proportional to the decreasing function 1U , it follows that

µs̄
n,(βJb)

	 µw,F
n,(pb)

; (1.13)

here we use (βJb) as a subscript on the left-hand side because of the dependence
on the signs of the βJb’s (and not just on their magnitudes through the pb’s). We
note that the obvious analogue of (1.13) is valid when both sides have free boundary
conditions; analogues involving more general boundary conditions will be discussed
in Section 3 below.

One consequence of inequalities such as (1.13) is that the spin correlations of a
non-ferromagnetic Ising model are dominated by those of the associated ferromagnet.
This domination was already noted (in a homework problem) by Griffiths (1971).
In Section 3 we derive some other consequences.
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2. The Phase Transition for Dilute Ferromagnets

Throughout this section we restrict attention to ferromagnetic Ising and FK models.
For fixed (Jb: b ∈ Ẑ

d), we denote in this section by µ+
s and µw

n the infinite volume
limits (Λ → Z

d) of the corresponding finite Λ measures defined in the last section;
these limits are known to exist by various monotonicity in Λ arguments, based on
the ferromagnetic nature of the interactions. The infinite volume limit of (1.10) is

E+
s (Su) = µw

n (u ↔ ∞), (2.1)

where u ↔ ∞ denotes the event that the (nb)-cluster containing site u is infinite.
Other arguments (Lebowitz and Martin-Löf 1972) based on FKG inequalities, show
that ferromagnetic Ising models have a unique infinite volume Gibbs distribution if
and only if E+

s (Su) = 0 for all u and thus by (2.1) if and only if

µw
n (some cluster is infinite) = 0. (2.2)

Thus, for ferromagnetic systems, a phase transition for the Ising model (in the sense
of a transition from unique to multiple infinite volume Gibbs distributions) is pre-
cisely equivalent to a percolation phase transition for the corresponding wired b.c.
FK measure. We denote by βc = βc((Jb: b ∈ Z

d)) the critical inverse temperature
for this phase transition.

For the remainder of this section, we follow the analysis of Aizenman et al. (1987)
which shows how this fact may be combined with the comparison inequalities (1.11)
to yield an elegant analysis of disordered, but still ferromagnetic, Ising models.
In these models, the interactions (Jb: b ∈ Ẑ

d) will be non-negative i.i.d. random
variables on some probability space (Ω,F , P ). The critical inverse temperature βc

does not depend on any finite number of the Jb’s and hence, by the Kolmogorov
zero–one law is a.s. a constant.

Let us denote the density of active bonds by p′ = P (Jb 
= 0) (which we assume is
strictly positive) and denote the critical value for standard nearest neighbor indepen-
dent bond percolation on Z

d by pc. The percolation probability (for the independent
model) is

θ(p) = µind
n,(p)(u ↔ ∞), (2.3)

where µind
n,(p) denotes the Bernoulli product measure on {0, 1}Ẑ

d

corresponding to
the independent percolation model with occupation density p. We recall that by the
definition of pc, θ(p) = 0 for p < pc and θ(p) > 0 for p > pc, but there is still no
proof that θ(pc) = 0 for all d (≥ 2).

There are two facts about the dependence of βc on the distribution of Jb (includ-
ing its dependence on p′) which are easily derived without use of the FK represen-
tation: first, that if (d ≥ 2 and) P (Jb < ε) = 0 for some ε > 0, then βc < ∞, and
second that if θ(p′) = 0 then βc = ∞ (i.e., there is (a.s.) a unique infinite volume
Ising model Gibbs distribution for any β < ∞). The next theorem, based on the FK
representation, improves these results considerably. It was used in Aizenman et al.
(1987) primarily to analyze the rate of divergence of βc(p′) as p′ ↓ pc in the classic
dilute ferromagnet, where Jb takes on only the values 0 and 1.



252 CHARLES M. NEWMAN

Theorem 1. (Aizenman et al. 1987) For a given distribution of Jb and value of β,
define two constants:

p = E(1 − e−βJb) , p = E

(
1 − e−βJb

2e−βJb + 1 − e−βJb

)
. (2.4)

The infinite volume Ising model Gibbs distribution is (a.s.) unique if p < pc and is
(a.s.) non-unique if p > pc. Thus βc < ∞ if and only if p′ ≡ P (Jb 
= 0) > pc.

Proof. According to the FK-percolation criterion for the Ising phase transition, we
need to show that the non-percolation property (2.2) for µw

n = µw
n,(pb)

is (a.s.) valid
when p < pc and (a.s.) invalid when p > pc. (We then leave the proof of the last
statement of the theorem to the reader.) Let us consider the probability measure

µ̃n = E(µw
n,(pb)

), (2.5)

where as usual E denotes expectation with respect to the probability measure P
for the Jb’s; µ̃n represents the marginal distribution of the FK bond occupation
variables when the Jb’s are not conditioned on. It suffices to show that

µ̃n(some cluster is infinite) =
{

0, if p < pc,
1, if p > pc,

(2.6)

since this implies the corresponding identity for P -a.e. µw
n,(pb)

. Now we use (the
infinite volume limit of) the comparison inequalities (1.11) and average them over
the (pb)’s to obtain

µind
n,(p) = Eµind

n,(h(pb))
	 µ̃n 	 E µind

n,(pb)
= µind

n,(p) , (2.7)

from which the proof is easily completed. The equalities of (2.7) are basically triv-
ial; e.g., in the Jb = 0 or 1 case, they may be restated as follows. If bonds are
independently declared active with probability p′ and then active bonds are inde-
pendently declared occupied with probability p, the resulting occupied bonds form
an independent percolation model with occupation probability pp′. �

To complete this section we briefly mention another type of disordered ferromag-
net where an FK representation has been used (Aizenman et al. 1993). This is the
quantum Ising model on Z

d with random couplings and a random transverse field. A
Feynman–Kac type approach (see Aizenman and Nachtergaele 1993) represents this
quantum model in terms of a classical Ising model, where the Ising spin variables
are indexed by Z

d × R. The disorder in this representation remains d-dimensional,
so that nearest neighbor couplings, which depend (randomly) on the location in Z

d,
do not depend on the R-coordinate (the ‘time’). There is an FK representation
for this classical Ising model which is related to independent percolation models on
Z

d × R in essentially the same way as in the discrete index setting. These percola-
tion models are related to the graphical representation of contact processes in the
same way as ordinary percolation is related to oriented percolation; in particular
the d-dimensional disorder corresponds exactly to the random environment natural
for a contact process on Z

d. We note that by using the natural string of identities
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and comparison inequalities provided by the FK representation, one new result for
the original disordered quantum model is shown in Aizenman et al. (1993) to fol-
low from a known result of Liggett (1992) about the contact process in a random
environment. [Warning: In Section 4 of Aizenman et al. (1993), the definition of B
being an encounter region should be modified to include the requirement that the
event GB occurs; without this change, the combinatorial part of the proof of Prop.
4.1 there (uniqueness of the infinite cluster) would be incorrect.]

3. Spin Glasses: Results on Uniqueness

The spin glass models we will consider (Edwards and Anderson 1975) are Ising
models with nearest neighbor interactions (Jb: b ∈ Ẑ

d) which are i.i.d. symmetric
random variables on some (Ω,F , P ), as likely to be negative as positive. A good
special case to keep in mind is where Jb = +1 or −1, each with probability 1

2 . A
standard review article on spin glasses is Binder and Young (1986). In the next
section we will discuss the open problem of proving that for d and β sufficiently
large, there is (a.s.) non-uniqueness of the Gibbs distribution for such models; here
we consider the converse issue.

It seems generally accepted in the physics literature (see Binder and Young 1986)
that, for d = 2, there should be (a.s.) a unique Gibbs distribution for all β < ∞ (at
least for reasonable distributions of the Jb’s such as Gaussian or the ±1 valued case).
It is an interesting open problem to prove this conjecture; it should be noted that
an analogous result was proved for the d = 2 random field Ising model in Aizenman
and Wehr (1990). Since we are unable to resolve the d = 2 large β problem, we
will instead show how FK methods lead to some small progress on the rather less
interesting issue of general d and moderate values of β.

First we note that in any dimension, uniqueness for sufficiently large β can
be proved (under some restrictions on the distribution of the Jb’s) by Dobrushin–
Shlosman techniques, which are insensitive to the signs of the interactions (see Do-
brushin 1968 and Dobrushin and Shlosman 1985). Let us denote by βF

c , the critical
temperature for the associated disordered ferromagnet in which each spin glass in-
teraction Jb is replaced by |Jb|. (For the case of ±1 valued Jb’s, this ferromagnet
will of course not be disordered.) It seems intuitively clear that uniqueness for the
ferromagnet should imply uniqueness for the spin glass (in particular, for β < βF

c ),
but this does not seem to follow from the above mentioned techniques. We will now
show that such a result can be derived by FK techniques. The result in fact has
nothing to do with disordered systems at all:

Theorem 2. For a given set of real valued interactions {Jb: b ∈ Ẑ
d}, uniqueness

of the infinite volume Gibbs distribution at inverse temperature β for the associated
ferromagnetic interactions, {|Jb|: b ∈ Ẑ

d}, implies uniqueness at the same β for the
original interactions.

Proof. The proof uses the FK representation, the comparison inequality (1.13) and
a coupling argument (based on a generalization of (1.13)). All but the coupling have
been discussed previously (see Newman 1991) and that argument is similar to one
used recently by van den Berg and Maes (1992). Let SA =

∏
u∈A Su for any fixed
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finite A ⊂ Z
d and let Λ be a (varying) finite subset of Z

d containing A; it suffices to
show that for the original set of interactions, any two choices of boundary conditions
s̄ = s̄(Λ) and s̄′ = s̄′(Λ) have

E s̄
s,Λ(SA) − E s̄′

s,Λ(SA) → 0 as Λ → Z
d. (3.1)

Here we have added a subscript to indicate dependence on Λ. The idea is to express
each of the two expectations as (asymptotically) the same mixture (over regions Λ̃)
of free boundary condition expectations.

We begin by noting that it easily follows from the FK representation that for a
given Λ̃ ⊂ Λ, conditioned on the bond occupation variables other than those entirely
in Λ̃, if nb = 0 for every b between Λ̃ and ∂Λ̃, then the conditional distribution for the
bonds and spins in Λ̃ is just the volume Λ̃ measure with free boundary conditions.

Now for the Λ in question, we wish to couple the measures µs̄
n,Λ for the original

interactions with b.c. s̄ and µw,F
n,Λ for the ferromagnetic interactions |Jb| and wired

boundary condition; i.e., realize the corresponding variables N s̄
b and Nw,F

b on the
same probability space (Ω′,F ′, P ′). Let us denote by Cw

Λ the Nw,F
b -cluster of ∂Λ, i.e.,

the set of sites in Λ which are connected to ∂Λ by a path of bonds with Nw,F
b = 1. We

need our coupling to have two properties. First, that if Λ\Cw
Λ = Λ̃ 
= ∅, then N s̄

b = 0
for every b between Λ̃ and ∂Λ̃; this would follow from the pointwise domination
N s̄

b (ω′) ≤ Nw,F
b (ω′). Second, that conditional on Λ \ Cw

Λ = Λ̃ 
= ∅, the conditional
distribution of (N s̄

b : b = 〈x, y〉 with x, y ∈ Λ̃) is the free boundary condition FK
measure on Λ̃. It is a standard fact that the first property follows from (1.13); we
claim that both properties can be had simultaneously by a sequential construction
(i.e., one bond b at a time) using (1.13) and a family of analogous inequalities
involving more general boundary conditions, which we now discuss. Further details
needed to justify our claim are left to the reader; we note that some care should
be taken in choosing the (random) order of bonds in the construction so that the
second property needed for the coupling will be valid. We also note that the coupling
construction is quite similar to the one used by van den Berg and Maes (1992).

First we note that two fixed spin boundary conditions related by an overall spin
flip, s̄ and −s̄, give rise to exactly the same FK measure. Thus the boundary
conditions appearing in (1.13) are really defined by an assignment of relative signs
to the sites on the boundary. The generalized boundary conditions we consider are
as follows. Let Λ be a finite subset of Z

d and let Λ̂ ′ be a non-empty subset of Λ̂, the
set of nearest neighbor bonds between sites in Λ. A general boundary condition θ for
the FK measure µθ

n,(βJb)
on {0, 1}Λ̂ ′

is specified by a partition of Λ into non-empty
subsets Λ1, Λ2, . . . , Λm and an assignment ti of relative signs to the sites within each
Λi with at least two sites. The formula for this measure is given by (1.5), where
�((nb)) treats all sites in Λi as already being in the same cluster, for each i, and where
the definition (1.6) for U is modified to allow only (sx: x ∈ Λ) which respect all the
ti’s. The free boundary condition case corresponds to the partition of Λ entirely
into individual sites (so no ti’s are assigned) while the s̄ boundary condition on the
boundary ∂Γ of some region Γ corresponds to taking Λ = Γ∗ (= Γ ∪ ∂Γ), Λ̂ ′ = Γ̂ ∗

(see the definition following (1.9) above), Λ1 = ∂Γ, all other Λi’s as individual sites
of Γ and finally t1 as the relative sign assignment given by s̄.
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The analogues of (1.13) are as follows, for a given Λ and Λ̂ ′. Let κ′ be a boundary
condition in which each t′i is the assignment that all sites in Λ′

i have the same sign.
The ferromagnetic FK measure with such a ‘partially wired’ boundary condition,
µκ′,F

n,(pb)
, still obeys the FKG inequalities. Now let κ be another boundary condition

whose partition of Λ into Λ1, Λ2, . . . is a refinement of the κ′ partition into Λ′
1, Λ′

2, . . .
(i.e., each Λ′

j is a union of some of the Λi’s). Then, with no restriction on the
assignments t1, t2, . . . for κ, we claim that

µκ
n,(βJb)

	 µκ′,F
n,(pb)

. (3.2)

To verify this domination, note that the density of the left-hand side with respect
to the right-hand side is proportional to 1U · 2�−�′ , which is a decreasing function
because both 1U and � − �′ are decreasing. The domination then follows from the
FKG inequalities for the right-hand side.

By using our coupled bond measure and then constructing Ising spins by the usual
coin tossing procedure for the N s̄

b -clusters, we may express the b.c. s̄ expectation as
mostly a mixture of free b.c. expectations:

E s̄
s,Λ(SA) =

∑
Λ⊇Λ̃⊃A

µw,F
n,Λ (Λ \ Cw = Λ̃) · E

s,Λ̃
(SA) + µw,F

n,Λ (A ↔ ∂Λ)θ, (3.3)

where θ is the conditional expectation of SA given that the Nw,F
b = 1 bonds connect

A to ∂Λ. A similar formula will be valid for the other b.c. s̄′ with the same right-
hand side except that θ will be replaced by θ′. Since |θ|, |θ′| ≤ 1 (because SA = ±1),
(3.1) will follow from

µw,F
n,Λ (A ↔ ∂A) → 0 as Λ → Z

d , (3.4)

for fixed A. But this is equivalent to the lack of percolation in the infinite volume
limit of µw,F

n,Λ which is equivalent to uniqueness of the ferromagnetic infinite volume
Gibbs distribution, as explained at the beginning of Section 2. �
Remarks. The proof of Theorem 2 immediately yields the following specific bound
on the influence of boundary conditions:

for A ⊂ Λ , |E s̄
s,Λ(SA) − E s̄ ′

s,Λ(SA)| ≤ 2
∑
x∈A

E+,F
s,Λ (Sx) . (3.5)

Essentially the same arguments show that at any β where there is a unique infinite
volume Gibbs distribtuion µF

s for (β|Jb|), the correlation decay properties of the
unique Gibbs distribution µs for (βJb) are controlled by:

|Es(SASB) − Es(SA)Es(SB)| ≤
∑
x∈A
y∈B

EF
s (SxSy). (3.6)

Finally, we remark that for i.i.d. Jb’s with an arbitrary (not necessarily symmetric)
common distribution, an explicit high temperature regime with a.s. uniqueness and
exponential decay of correlations can be easily obtained by combining (i) (3.5)–(3.6),
(ii) the Aizenman et al. (1987) analysis of random ferromagnets (see Theorem 1 and
especially (2.7) above), (iii) known results about standard (subcritical) independent
percolation and (iv) some elementary arguments.
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4. Spin Glasses: Non-Results on Non-Uniqueness

As mentioned previously, it is an open problem to prove that for spin glasses in
sufficiently high dimensions, there are (a.s.) multiple infinite volume Gibbs distri-
butions for large β. (See Reger et al. 1990 for numerical results with d = 4.) The
proof of Theorem 2 suggests (but does not prove) that a necessary condition for
non-uniqueness of Gibbs distributions is the occurrence of percolation in infinite
volume FK measures. We note that for non-ferromagnetic models, there is neither
a specially distinguished boundary condition (such as wired in the ferromagnetic
case) nor a guarantee of a single infinite volume limit (as Λ → Z

d) for any particular
choice of boundary conditions. Thus, to consider percolation or any other property
of infinite volume FK measures, we must worry about what procedure we use to
specify an infinite volume FK measure for each (or almost each) ω in the probability
space for the Jb’s. This same issue will arise again when we discuss later the various
types of non-uniqueness which could occur in spin glasses.

For a finite volume Λ, we will expand the types of boundary conditions we con-
sidered in Section 1 (for spins or bonds or for both together) beyond free and specific
s̄ to include also a mixture over choices of s̄ (for the given Λ); also if Λ is a cube
(or rectangular parallelipiped) we will allow periodic (or antiperiodic in one or more
coordinate directions) boundary conditions. We will often have cause to distin-
guish between boundary conditions which do or do not depend on ω; of course the
boundary condition will in general depend on Λ. When taking subsequence limits as
Λ → Z

d, we will also distinguish between subsequences which do or do not depend
on ω.

One way to obtain an infinite volume spin and bond measure for almost ev-
ery ω is to choose a (measurably) ω-dependent boundary condition for each Λ,
consider the resulting joint distribution (for a given β) on Ω × {spin and bond
configurations} and take some subsequence limit which will be a measure, denoted
by P ∗, on Ω×{+1,−1}Z

d ×{0, 1}Ẑ
d

(with the natural product σ-field). (It is best at
this stage to assume that Ω is the canonical product space R

Ẑ
d

.) By construction,
the subsequence of Λ’s chosen does not depend on ω here. Clearly the marginal
distribution of P ∗ on Ω will just be P and it is not difficult to see that for P -a.e.
ω, the conditional distribution µω

s of the spin variables (given ω) will be an infinite
volume Gibbs distribution for the interactions (Jb(ω)). We will focus attention first
on the conditional distribution of the bond occupation variables µω

n (given ω), which
is our infinite volume FK-measure. The next theorem is a slight extension of a result
in Gandolfi et al. (1992).

Theorem 3. (Gandolfi et al. 1992) Let µω
n be an infinite volume FK-measure on

{0, 1}Ẑ
d

, obtained as described above, but with ω-independent boundary conditions.
Let p̄ = E(1− e−β|Jb|) and let pc be the critical value for standard independent bond
percolation on Z

d, as in Theorem 1. If 1
2 p̄ > pc, then a.s. (i.e., for P -almost every

ω)
µω

n(some cluster is infinite) = 1; (4.1)

in particular (4.1) will be the case for sufficiently large β if d > 2 and P (Jb = 0) = 0.
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Remark. As will be clear from the proof, (4.1) is also valid for large β when
P (Jb = 0) = 0, for spin glass models on any lattice where the critical value for
standard bond percolation is strictly below 1

2 ; this includes Z
2×{0, 1}. It is an open

problem to extend this result to Z
2; this would not contradict the conjecture that

there is uniqueness of spin glass Gibbs distributions for d = 2 for reasons we will
discuss below.
Proof. We will show that (4.1) is a consequence of 1

2 p̄ > pc; the final statement of the
theorem then follows from the facts that p̄ → P (Jb 
= 0) as β → ∞ and that pc < 1

2
for d > 2. As in the proof of Theorem 1, we will prove the a.s. validity of (4.1)
by averaging µω

n over ω, yielding the marginal distribution of the bond variables,
µ̃n = E(µ·

n), and then showing that

µ̃n � µind
n,(p̄/2). (4.2)

To prove (4.2) for the infinite volume measure µ̃n, it suffices to prove the anal-
ogous inequality for the corresponding measure µ̃κ

n on the finite region Λ with the
specified (ω-independent) boundary condition κ. µ̃κ

n, which is an average over ω’s of
FK measures µκ

n,(βJb)
may be obtained by first taking the conditional expectation

given all the |Jb|’s (which we denote µ̄κ
n,(pb)

) and then averaging over the |Jb|’s (or
pb’s). We claim that (a.s.)

µ̄κ
n,(pb)

� µind
n,(pb/2); (4.3)

since the average (over pb’s) of the right-hand side of (4.3) is just µind
n,(p̄/2) (recall the

equalities of (2.7)), the desired (4.2) would follow.
By a standard argument, (4.3) would be a consequence of the family of inequal-

ities (for all bonds b∗, and all nb = 0 or 1 for b 
= b∗)

µ̄κ
n,(pb)

(Nb∗ = 1, Nb = nb for b 
= b∗)

µ̄κ
n,(pb)

(Nb∗ = 0, Nb = nb for b 
= b∗)
≥

1
2p

1 − 1
2p

. (4.4)

Since (given the |Jb|’s) the signs of the Jb’s are i.i.d. symmetric ±1 valued random
variables, the left-hand side of (4.4) may be expressed (using (1.5)) as

pb

∑
α(C+

α 2−HαI+
α (1) + C−

α 2−HαI−α (1) )
(1 − pb)

∑
α(C+

α I+
α (0) + C−

α I−α (0))
, (4.5)

where the α’s denote possible choices of signs for (Jb: b 
= b∗), C±
α equals the Z−1

n

appearing in (1.5) for the specified (Jb: b 
= b∗) and Jb = ±|Jb|, Hα = 0 or 1
according to whether the endpoints of b∗ are already connected by the nb-bonds for
b 
= b∗ or not (taking boundary conditions into account properly), and I±α (0) (resp.
I±α (1)) is 1 or 0 according to whether for the specified Jb’s, the bond configuration
with given nb for b 
= b∗ and nb∗ = 0 (resp. nb∗ = 1) belongs to U (again with
boundary conditions taken into account). Note that due to the independence of
the boundary condition on the sign of Jb∗ , I+

α (0) = I−α (0), that I±α (0) = 0 implies
I±α (1) = 0; that I±α (0) = 1 and Hα = 1 implies I±α (1) = 1, and finally that I±α (0) = 1
and Hα = 0 implies that exactly one of {I+

α (1), I−α (1)} is 1. To obtain (4.4) it suffices
to show that for each α with I±α (0) = 1,

pb

(1 − pb)
C+

α 2−HαI+
α (1) + C−

α 2−HαI−α (1)
C+

α + C−
α

≥
1
2pb

1 − 1
2pb

. (4.6)
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For Hα = 1, the left-hand side is (pb/2)/(1 − pb) which obeys the inequality; for
Hα = 0, the left-hand side is bounded below by

pb

1 − pb
min

(
C+

α

C+
α + C−

α
,

C−
α

C+
α + C−

α

)
. (4.7)

The desired inequality then follows from

max
(

C+
α

C−
α

,
C−

α

C+
α

)
≤ e−β|Jb| =

1
1 − pb

. (4.8)

We leave this last inequality as an exercise for the reader (who may consult Gandolfi
et al. 1992). �

We suggested early in this section that FK-percolation should be a necessary
condition for non-uniqueness of Gibbs distributions in spin glasses, and Theorem 3
shows that FK-percolation does occur for high β, at least for d ≥ 3. Although
there does not appear to be a proof available (it would be of interest to have such a
proof), it seems that, unlike ferromagnetic models, FK-percolation should not be a
sufficient condition for non-uniqueness in spin glasses. To see how this could be so,
let us see how FK-percolation might be consistent with decay of the Ising spin-spin
correlation, Es(SuSv), as ‖u − v‖ → ∞.

Let us denote by µn the infinite volume FK measure under consideration (say
with free or periodic b.c.); the key idea is the distinction between the general FK
formula (1.8) for Es(SuSv) and the FK connectivity function, µn(u ↔ v), which is
only equal to Es(SuSv) in the ferromagnetic case. The connectivity function is

µn(u ↔ v) = µn(ηu,v = +1) + µn(ηu,v = −1) (4.9)

while
Es(SuSv) = µn(ηv,v = +1) − µn(ηu,v = −1) . (4.10)

By uniqueness of the infinite FK-cluster (see Corollary 2 of Gandolfi et al. 1992),
the connectivity function would not decay in the presence of percolation, but there
seems to be no reason why this could not happen simultaneously with an asymptotic
cancellation of the two terms of (4.10) as ‖u−v‖ → ∞ leading to decay of Es(SuSv).

This raises the question of whether, without proving non-uniqueness of Gibbs
distributions, one might at least be able to show (for appropriate β and d) slower
than exponential decay of Es(SuSv). This would demonstrate a phase transition in
decay properties since one can show exponential decay for small β.

Despite the lack of results on non-uniqueness for spin glasses, let us discuss
briefly some of the types of non-uniqueness which might possibly occur (for large
d and β). We base our discussion on the analysis of Newman and Stein (1992).
First, it might be that there is (a.s.) non-uniqueness which is physically irrelevant
because of ‘weak uniqueness’ (see van Enter and Fröhlich 1985 and Campanino et al.
1987). This would mean that if µw

s and µ′ω
s are two infinite volume Gibbs measures,

obtained (like in Theorem 3) by two different ω-independent boundary conditions
(e.g., periodic and antiperiodic), then µw

s = µ′w
s for P -a.e. ω; further µω

s would be
an extremal Gibbs distribution (for (Jb(ω))) for P -a.e. ω. A similar situation occurs
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at high temperatures in very long range spin glasses (Fröhlich and Zegarlinski 1987,
Gandolfi et al. 1993).

Another possibility (see Huse and Fisher 1987 and Fisher and Huse 1987) is that
(a.s.) there are exactly two extremal Gibbs distributions, related to each other by a
global spin flip. In that case, for boundary conditions like free or periodic (which are
unchanged by a global spin flip), µω

s would be the symmetric mixture of these two
extremal distributions. A third possibility (Binder and Young 1986), based on the
Parisi analysis (Parisi 1979) of the Sherrington–Kirkpatrick spin glass (Sherrington
and Kirkpatrick 1975), is that, even with free or periodic b.c., many extremal Gibbs
distributions would make their appearance. Presumably this would mean that µω

s ,
obtained as discussed before Theorem 3, would have a decomposition into many
extremal Gibbs distributions. On the other hand, it was argued by Newman and
Stein (1992) that under this scenario, if one first fixes ω and then tries to take an
infinite-volume limit, the result would be many different subsequence limits with the
subsequences necessarily ω-dependent. It is an open problem to effectively sort out
all the various possibilities.
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