(1) Let u solve $u_t - \Delta u = f(u)$ in a bounded domain Ω, with $u = 0$ at $\partial \Omega$ (and with enough smoothness to apply the maximum principle). Suppose $f(0) = 0$, and let $m \leq 0$ and $M \geq 0$ have the property that the interval $[m, M]$ is invariant for the ODE $\frac{da}{dt} = f(a)$ (in the sense that if $a(0) \in [m, M]$ then $a(t) \in [m, M]$ for all $t > 0$). Show that this interval is invariant for the PDE as well (in the sense that if $u(x, 0) \in [m, M]$ for all x then $u(x, t) \in [m, M]$ for all x and all $t > 0$). [Hint: to show that $u \geq m$, start by showing that $\phi = u - m$ satisfies a relation of the form $\phi_t - \Delta \phi + c(x, t) \phi \geq 0$, for a suitable function $c(x, t)$.

(2) In Lecture 10 we made repeated use of the following Lemma: Suppose a nonnegative real-valued function $a(t)$ satisfies a differential inequality $\frac{da}{dt} \leq f(a(t))$ with initial condition $a(0) = a_0$, and some C^1 function f that’s strictly positive and increasing on $[a_0, \infty)$. Then $a(t) \leq \alpha(t)$ for all $t > 0$, where α solves the ODE $\frac{d\alpha}{dt} = f(\alpha(t))$ with the same initial data $\alpha(t) = a_0$. Prove it.

(3) This problem guides you through a semigroup-based proof that when $f : \mathbb{R} \to \mathbb{R}$ is C^1 with $f(0) = 0$, the 1D nonlinear heat equation

$$u_t - u_{xx} = f(u) \quad \text{for } t > 0, \text{ with } u = u_0(x) \text{ at } t = 0$$

has a unique local-in-time solution in $C([0, T], H^1)$ for any $u_0 \in H^1$. (Here and throughout this problem, I write H^1 for the space $H^1(\mathbb{R})$.)

(a) Show that when $\Delta u = u_{xx}$ is the 1D Laplacian, $e^{t\Delta}$ is a bounded linear map from H^1 to itself, with operator norm at most 1 (in other words, $\|e^{t\Delta} u\|_{H^1} \leq \|u\|_{H^1}$).

(b) Show that if $u \in C([0, T], H^1)$ then

$$\int_0^t e^{(t-s)\Delta} f(u(s)) \, ds \in C([0, T], H^1).$$

(c) Now consider the iteration

$$u^{n+1}(t) = e^{t\Delta} u_0 + \int_0^t e^{(t-s)\Delta} f(u^n(s)) \, ds,$$

with $u^0(x) = 0$. Show that if $T > 0$ is small enough the iteration converges in $C([0, T], H^1)$.

PDE, Spring 2020, HW5. Distributed Thursday 4/9/2020, due Friday 4/24/2020 (two full weeks from distribution). Upload your solution using the Assignments tool in NYU Classes; if possible, please provide a single pdf. Corrections and additions 4/19: I added a hint for problem 1; in Problem 2, I added the hypotheses that f is C^1 and increasing; in Problem 4(b), in the sentence starting “Your task is to show . . .”, I corrected a typo in the integral form of the PDE $u_t - \Delta u = u^3$; in Problem 5, I corrected the characterization of the Galerkin approximation by inserting the variable coefficient $a(x)$ where it belongs; and in Problem 6, I changed the PDE at the beginning of the problem to $u_t - \Delta u = u^3$, since that is what I had mind when writing the rest of the problem.
(d) Conclude that our initial value problem has a unique solution in $C([0,T],H^1)$.

(Note: the strategy outlined here amounts to an application of the contraction mapping fixed point theorem. The overall outline of the argument should be familiar from your study of ODE.)

(4) I argued in Lecture 10 (using the scale-invariance of the equation) that for the initial-value problem $u_t - \Delta u = u^3$ in \mathbb{R}^n, a well-posedness result in $L^p(\mathbb{R}^n)$ should need $p > n$. This problem shows that there is indeed such a well-posedness result when $p > n$.

(a) Let Δ be the Laplacian in \mathbb{R}^n. Show that if $u \in L^p(\mathbb{R}^n)$ then $e^{t\Delta}u \in L^q(\mathbb{R}^n)$ for $t > 0$, and

$$\|e^{t\Delta}u\|_{L^q} \leq C \frac{1}{t^{\frac{n}{2}}(\frac{1}{p} - \frac{1}{q})} \|u\|_{L^p},$$

where C is independent of t and u. (Note: this amounts to an estimate of the operator norm $\|e^{t\Delta}\|_{L^p \to L^q}$.) [Hint: use the inequality from Real Variables: $\|f * g\|_{L^m} \leq \|f\|_{L^k}\|g\|_{L^l}$ when $\frac{1}{k} + \frac{1}{l} = \frac{1}{m} + 1$.]

(b) Show that the strategy of Problem 3 applies also here, for initial data $u_0 \in L^p(\mathbb{R}^n)$ with $p > n$. (Your task is to show that for sufficiently small $T > 0$, there is a unique $u \in C([0,T],L^p)$ such that $u(t) = e^{t\Delta}u_0 + \int_0^t e^{(t-s)\Delta}u^3(s)\,ds$ for $0 \leq t \leq T$.)

(5) Let us examine the accuracy of a specific Galerkin scheme for the initial-value problem

$$u_t - \nabla \cdot (a(x)\nabla u) = 0 \text{ in } \Omega, \text{ with } u = 0 \text{ at } \partial \Omega \text{ and } u = u_0 \text{ at } t = 0.$$

We assume Ω is a bounded domain in \mathbb{R}^n (with nice enough boundary), and take as the Galerkin space V_N the span of the first N eigenfunctions of the constant-coefficient Dirichlet Laplacian. (More carefully: let $\{\phi_j\}$ be an orthonormal basis for L^2 satisfying $-\Delta \phi_j = \lambda_j \phi_j$ in Ω and $\phi_j = 0$ at $\partial \Omega$, ordered so that $\lambda_j \leq \lambda_{j+1}$; then V_N is the span of $\{\phi_j\}_{j=1}^N$.) As a reminder: the Galerkin approximation u_N is characterized by the properties that $u_N(t) \in V_N$,

$$\int_\Omega (\partial_t u_N) v \,dx + \int_\Omega \langle a(x)\nabla u_N, \nabla v \rangle \,dx = 0 \quad \text{for all } v \in V_N,$$

and

$$u_N(0) = \pi_N(u_0) = \text{orthogonal projection of } u_0 \text{ to } V_N \text{ using the } L^2 \text{ inner product.}$$

(a) Show that $w_N = u_N - \pi_N(u)$ satisfies an estimate of the form

$$\frac{d}{dt} \int_\Omega |w_N|^2 \,dx + C_1 \int_\Omega |w_N|^2 \,dx \leq C_2 \int_\Omega |
abla u - \nabla \pi_N(u)|^2 \,dx,$$

where C_1 and C_2 are positive constants.
(b) Show that any function \(u \in H^1_0(\Omega) \cap H^2(\Omega) \) is well-approximated in \(H^1 \) by its \(L^2 \) projection to \(V_N \), in the sense that
\[
\int_\Omega |\nabla u - \nabla \pi_N(u)|^2 \, dx \leq \frac{1}{\lambda_N} \int_\Omega |\nabla \nabla u|_2^2 \, dx.
\]

(c) When \(\partial \Omega \) is nice enough, it is known that \(\lambda_N \sim C \Omega N^{2/n} \). (This is known as Weyl’s law. You can find a formula for \(C \Omega \) in Section 6.5 of Evans. A proof can be found in volume 1 of Courant & Hilbert’s Methods of Mathematical Physics, which is available online through Bobcat.) Also: for initial data \(u_0 \in H^1_0(\Omega) \cap H^2(\Omega) \), the PDE solution \(u \) remains uniformly bounded for all time in this space. (This is part of the basic existence theory; see e.g. Theorem 5 of Evans’ Section 7.1.) Using these facts together with (a) and (b), prove that
\[
\|u_N(t) - u(t)\|_{L^2(\Omega)} \leq CN^{-1/n}
\]
with a constant \(C \) that’s independent of time.

(d) Now suppose \(u \) is smoother, specifically that \(\int_\Omega |\Delta^k u|^2 \, dx \) is uniformly bounded in time for some integer \(k \geq 2 \). Can you adjust the preceding arguments to get a better estimate for \(\|u_N(t) - u(t)\|_{L^2(\Omega)} \) than the one stated in part (c)?

(6) Now let’s consider the analogue of Problem 5 for the semilinear heat equation
\[
u_t - \Delta u = u^3 \text{ in } \Omega, \text{ with } u = 0 \text{ at } \partial \Omega \text{ and } u = u_0 \text{ at } t = 0,
\]
when \(\Omega \) is a bounded domain in \(\mathbb{R}^3 \) (with sufficiently nice boundary). We assume that
\[
\sup_{0 \leq t \leq T} \int_\Omega |\nabla \nabla u|^2 \, dx \leq M
\]
for some constant \(M \). (This amounts to taking \(u_0 \in H^2(\Omega) \) and assuming the solution has not blown up by time \(T \).) As in Problem 5, we denote by \(u_N \) the solution of the Galerkin approximation obtained using the first \(N \) eigenfunctions of the Dirichlet Laplacian; it is determined by the conditions that \(u_N(t) \in V_N \) for all \(t \) and
\[
\int_\Omega (\partial_t u_N) v \, dx + \int_\Omega (\nabla u_N, \nabla v) \, dx = \int_\Omega u_N^3 v \, dx \quad \text{for all } v \in V_N,
\]
together with the initial condition
\[
u_N(t) = \pi_N(u_0)
\]
(as before, \(\pi_N \) denotes orthogonal projection from \(L^2(\Omega) \) to \(V_N \) using the \(L^2 \) inner product).

(a) Let \(w_N = u_N - \pi_N(u) \). In Problem 5 we relied on an energy estimate involving \(\frac{d}{dt} \int_\Omega |w_N|^2 \, dx \), and this problem can be done that way too. However when I sketched the local-in-time existence theory in Lecture 10, I relied mainly on an
energy estimate that involves \(\frac{d}{dt} \int_{\Omega} |\nabla u|^2 \, dx \), so it is natural in this setting look for a related estimate involving \(\frac{d}{dt} \int_{\Omega} |\nabla w_N|^2 \, dx \). Show that in fact
\[
\frac{d}{dt} \int_{\Omega} |\nabla w_N|^2 \, dx + 2 \int_{\Omega} |\Delta w_N|^2 \, dx = -2 \int_{\Omega} (u_N^3 - u^3) \Delta w_N \, dx.
\]
It is convenient to rewrite the integral on the RHS as
\[
\int_{\Omega} (u_N^3 - [\pi_N(u)]^3) \Delta w_N \, dx + \int_{\Omega} ([\pi_N(u)]^3 - u^3) \Delta w_N \, dx = I + II.
\]
(b) Show that
\[
I \leq C \left(\int_{\Omega} |\Delta w_N|^2 \, dx \right)^{1/2} \left(\int_{\Omega} w_N^6 \, dx \right)^{1/6} \left(\int_{\Omega} |u_N|^6 + |\pi_N(u)|^6 \, dx \right)^{1/3}.
\]
As a start toward estimating the last of the three terms in this product, explain why
\[
\left(\int_{\Omega} |\pi_N(u)|^6 \, dx \right)^{1/3} \leq C \int_{\Omega} |\nabla \pi_N(u)|^2 \, dx \leq C \int_{\Omega} |\nabla u|^2 \, dx,
\]
and why in combination with (1) this gives
\[
\sup_{0 \leq t \leq T} \int_{\Omega} |\pi_N(u)|^6 \, dx \leq C_1 M.
\]
(c) Since we expect to show that \(u_N \) is close to \(\pi_N(u) \), in light of part (b) it is natural to expect that
\[
\sup_{0 \leq t \leq T} \int_{\Omega} |u_N|^6 \, dx \leq 2C_1 M. \tag{2}
\]
(Estimates proved using this assumption are valid up to the first time when (2) fails. We’ll see in part (d) that if \(N \) is large enough then it never fails for \(t \in [0, T] \).) Argue using (2) and part (b) that for any \(\varepsilon > 0 \),
\[
I \leq \varepsilon \int_{\Omega} |\Delta w_N|^2 \, dx + C_{\varepsilon, M} \int_{\Omega} |\nabla w_N|^2 \, dx
\]
and
\[
II \leq \varepsilon \int_{\Omega} |\Delta w_N|^2 \, dx + C_{\varepsilon, M} \int_{\Omega} |\nabla \pi_N(u) - \nabla u|^2 \, dx.
\]
Conclude (by arguing as in Problem 5 and using that the spatial dimension is \(n = 3 \)) that
\[
\frac{d}{dt} \int_{\Omega} |\nabla w_N|^2 \, dx \leq C_2 \int_{\Omega} |\nabla w_N|^2 \, dx + C_3 N^{-2/3},
\]
and show using this an estimate of the form
\[
\|u(t) - u_N(t)\|_{H^1_0(\Omega)}^2 \leq C N^{-2/3}
\]
up to the first time that (2) fails. (The constant \(C \) can depend on \(M \) and \(T \), but is otherwise independent of \(u \).)
(d) Show finally that (2) holds for all \(t \in [0, T] \) if \(N \) is sufficiently large, so that
\[
\sup_{0 \leq t \leq T} \|u(t) - u_N(t)\|_{H^1_0(\Omega)}^2 \leq C N^{-2/3}.
\]