New topic: 1D problems

\[\min \int_a^b F(t, u(t), \dot{u}(t)) \, dt \quad u : [a, b] \to \mathbb{R}^n \]

- geodesics, as a key example
- importance of \(F \) being convex w.r.t \(u \)
- role of 2nd variation; conjugate pts

[Students taking Mechanics will see additional examples there, associated with solving eqns of Hamiltonian mechanics by "action minimization"][3]

Reasonable source for most of this material: Jost+Li-Jost, Sections 1.1-1.3 and 2.1.

Key example: geodesics. By defn: a geodesic is a curve that (locally) minimizes arc length. In local coordinates, if the curve is \(\tilde{x}(t) \),

\[
1 \dot{x}^2 = \left| \dot{x}(t) \right|^2 \, dt = \left(\sum g_{ij}(x(t)) \ddot{x}_i \ddot{x}_j \right)^{1/2}
\]

where \(g_{ij} \) is the Riemannian metric's associated problem

\[L = \int_a^b \left| \dot{x}(t) \right| \, dt \]
(note: we're interested in critical pts, not just minima).

Two issues:

1. This has the form \(\int F(x(t), \dot{x}(t)) \, dt \), but \(F \) is not smooth in \(\dot{x} \) near \(\dot{x} = 0 \).

2. Arc length is width of parametrization, so would plan chooses a "curve" but not any particular parametrization (thus: a dramatic but geometrically-natural failure of uniqueness).

Both issues can be fixed by considering instead the different functional

\[
E = \frac{1}{2} \int_a^b \dot{x}^2 \, dt
\]

where \(\dot{x}^2 = \sum q_i(x(t)) \dot{x}_i(t) \dot{x}_i(t) \). To see why, observe that for any parametrized curve \(\vec{x}(t) \),

\[
L[\vec{x}] \leq \sqrt{2(b-a)} \sqrt{E[\vec{x}]}
\]

(with strict inequality unless \(\dot{x}^2 \) is constant), as a consequence of

\[
\int_a^b \dot{x} \, dt \leq \left(\int_a^b \dot{x}^2 \, dt \right)^{1/2} \left(\int_a^b 1 \, dt \right)^{1/2}
\]
Thus
\[\min \text{ value of } L \leq \sqrt{2(b-a)} \cdot \left(\min \text{ value of } E \right)^{1/2}. \]

But opposite \(\neq \) is easy: given any curve with length \(L \), its constant-speed parametrization has
\[|\dot{x}| = \frac{L}{b-a}, \quad \text{to} \]
\[\frac{1}{2} \int_a^b |\dot{x}|^2 \, dt = \frac{1}{2} (b-a) \frac{L^2}{(b-a)^2} = \frac{1}{2(6a)} \frac{L^2}{2} \]
Thus
\[\left(\min \text{ value of } E \right)^{1/2} \leq \frac{1}{2(6a)} \left(\min \text{ value of } L \right) \]

Conclusion: minimizers of \(E \) has min length and constant speed.

(Exercise: use the EL eqn for \(E \) to give a different proof that extremals - even critical pts! - of \(E \) have constant speed, by showing that \(\frac{\dot{x}}{L} |\dot{x}|^2 = 0 \) if \(x(t) \) solves the EL eqn.)

Key properties of geodesics:

a) They're smooth
b) They're locally paths of shortest length
c) Globally, they may not be paths of shortest length (e.g., on a sphere the geodesics are arcs of great circles)
Rule: Discussed assumed we had a single "coordinate chart" valid along entire curve. Locally true, but not necessarily globally so. In general, must use different local charts on different parts of curve (see §22.1 of Joy/Ho-Po for detail on what this means).

Properties (a) - (c) are not special to geodesics; so it's natural to discuss them more generally, in terms of form

\[\int_a^b F(t, u(t), \dot{u}(t)) \, dt \]

where \(u: [a, b] \to \mathbb{R}^n \). Note that EL eqn in this setting is

\[\frac{\partial F}{\partial u_j} - \frac{d}{dt} \frac{\partial F}{\partial \dot{u}_j} = 0 \quad 1 \leq j \leq n \]

Discussion of (a) = smoothness of solutions; we clearly need some condition on \(F \), since for \(u: [7, 1] \to \mathbb{R} \)

\[\min_{u(-1) = 0, \ u(1) = 0} \int_{-1}^{+1} (u^2 - 1)^2 \, dt \]

is solved by

\[\therefore \]

\[\min_{u(-1) = 0, \ u(1) = 1} \int_{-1}^{+1} (u - 1)^2 u^2 \, dt \]

is solved by
Convenient hypothesis is that $F(t,u,p)$ is smooth enough (I won't try to define minimal conditions - see Fost+Li; Fost+Li in such things) and strictly convex in p. The point: the EL eqn can be written as

$$\frac{\partial F}{\partial u_i} - \frac{\partial^2 F}{\partial u_i \partial t} - \sum_{k} \frac{\partial^2 F}{\partial u_i \partial u_k} u_k = \sum_{k} \frac{\partial^2 F}{\partial u_i \partial u_k} u_k,$$

which we can solve (inverting the strictly pos. def. matrix $\frac{\partial^2 F}{\partial u_i \partial u_k}$) to see that \ddot{u} is bounded if \dddot{u} is bounded. Higher claims can be handled similarly (differentiate eqn in t).

Proceeding arg is a bit sloppy, since it assumes \dddot{u} exists. Let's explain why strict convexity \Rightarrow it must exist. Consider

$$\phi_i(t,u,p,q) = \frac{\partial F}{\partial p_i} - q_i$$

and observe that \ddot{p} solves $\phi(t,u,p,q) = 0$ iff it achieves

$$\max_{\dot{p}} \langle q, \dot{p} \rangle - F(t,u,p),$$

(Here t, u, q enter only as parameters, maximizing \dot{p} is unique if F is strictly convex; arg has an implicit hypothesis that $F(t, u, p)$ grows faster than
linearly as $|p| \to \infty$, so optimal p in preceding formula exists [$p = \infty$ is not optimal].

Implicit in these hypotheses that $\frac{\partial F}{\partial p}$ has full rank, so we can (locally) solve $p^* \Phi = 0$ for p as for other vars, say

$$\frac{\partial F}{\partial p_j} = \delta_j \quad \forall j \iff p_j = \psi_j(t, u, \Phi)$$

Now, we know $\Phi = 0$ when $\Phi = \frac{\partial F}{\partial p}$. Evaluating this at $p = \bar{u}$ gives

$$\bar{u}(t) = \psi_j(t, u(t), \frac{\partial F}{\partial u}(t, u, \bar{u}))$$

RHS is differentiable (using EL eqn to know differentiability of $\frac{\partial F}{\partial u}$) so LHS is differentiable (in t).

Rest of these notes discuss pth (b) & (c) (local minimality, conjugate pts, etc).

Brief summary:

1) 2nd variation provides a convenient necessary condition for minimality.

2) Importance of convexity is visible here too: if F is not convex in p, then 2nd var. test is sure to fail.
3) as we work in longer time intervals (e.g. $[a,b]$), with a fixed $+ b^+$ failure of local optimality can be detected by 2nd order test

(Suflit errors in optimality are also interesting of course, but they would lead us too far astray.)

Defn of 2nd order: given a solution $\gamma(t)$ of the EL eqn, it is natural to consider

$$\frac{d^2}{ds^2} \int_a^b F(t, u+\delta u, \dot{u}+\delta \dot{u}) \, dt$$

$$s=0$$

where $\delta \gamma(t)$ is arbitrary (except perhaps for retractor case to balance controls). This reduces to

$$Q[\gamma] = \int_a^b F_{uu} \gamma \delta \gamma + 2 F_{u\gamma} \gamma \delta \gamma + F_{\gamma \gamma} \delta \gamma \delta \gamma \, dt$$

where, for example,

$$F_{uu} \gamma \delta \gamma = \sum \frac{d^2 E}{du_i du_j} (t, u, \dot{u}) \gamma_i(t) \gamma_j(t).$$

Focusing on case when $u(a)$, $u(b)$ are fixed (so $\gamma(a) = \gamma(b) = 0$) we see that

$$u \in loc \min \Rightarrow Q[\gamma] \geq 0 \text{ for all } \gamma \text{ s.t. } \gamma(a) = \gamma(b) = 0.$$
Importance of convexity is 2-fold.

First: If \(F_p \geq c_0 I \) with \(c_0 > 0 \) (this is a little stronger than strict convexity) then

\[
F_p \dot{\gamma} \circ \dot{\gamma} \geq c_0 \| \dot{\gamma} \|^2
\]

and it's easy to see that \(Q \) is strictly positive if \(\sqrt{c} - a \) is small enough. (Hint: \(\| \dot{\gamma} \|^2 \leq C(\sqrt{c} - a)^2 \| \dot{\gamma} \|^2 \) if \(\gamma(a) = \gamma(b) = 0 \), with \(C \) depending on \(b - a \).

Second: If, for some \(t_0 \), the matrix

\[
\frac{\partial^2 F}{\partial p_i \partial p_j}(t_0, u(t_0), \dot{u}(t_0))
\]

is not \(\geq 0 \) (roughly: \(F \) is not convex in \(p \) at some point along the curve) then \(\exists \gamma \) s.t. \(Q[\gamma] < 0 \). In fact, it suffices to choose \(\xi \in \mathbb{R}^n \) s.t.

\[
\sum \frac{\partial^2 F}{\partial p_i \partial p_j}(t_0, u(t_0), \dot{u}(t_0)) \xi_i \xi_j < 0
\]

and then take \(\gamma(t) \) supported in a (small) neighborhood of \(t_0 \) at

\[
\dot{\gamma}(t) \in \{ 0, \pm \xi \}
\]

Pictorial:

\[
\begin{align*}
&x \quad \downarrow \quad t_0 \quad \downarrow b \\
&\dot{\gamma} = \begin{cases}
\xi, & t_0 - 3 < t < t_0 \\
-\xi, & t_0 < t < t_0 + 3
\end{cases}
\end{align*}
\]
If ϵ is small enough then $Q[E]$ is strictly negative (since $\int_{\gamma} \tilde{p}$ scales like ϵ and is negative, while the other terms in Q scale like ϵ^2).

On long "time intervals" local optimality can be lost.

Recall example of geodesics on a sphere.

We can detect loss of optimality using the 2nd order quadratic form.

Observe that it makes sense to ask: does E_L for

$$
\min_{\gamma} \int_{\gamma} \left(\dddot{x} + \ddot{x} \right) dt \\
\text{subject to:} \\
\gamma'(a) = 0 \\
\gamma'(b) = 0 \\
\gamma(t) \in \text{a non-zero sub-$g(t)$?} \quad \text{(Such $g(t)$ solves the "homogeneous" 2nd order ODE)}
$$

$$
\dddot{x} + \ddot{x} - \frac{\partial}{\partial t} \left(\dddot{x} \right) - \frac{\partial}{\partial t} \left(\ddot{x} \right) = 0
$$

and is called a "Jacobi field".) If such $g(t)$ exists, we say b is conjugate to a.

Thus: After 1st conjugate pt, an extremal (ie a rel of E_L eq) ceases to be a minimizer.
Pf: Let b_0 be conjugate to a, and $b > b_0$.

Try

\[\gamma = \begin{cases} \text{nonzero Jacobian held on } (a, b_0) \\ 0 \text{ on } (b_0, b) \end{cases} \]

I claim that the 2nd variational evaluated at this γ vanishes.

Accepting this for a moment, the rest is easy: the γ just defined is not C^2, so it cannot minimize the 2nd variational (note: we have assumed that $F_{pp} > 0$ so the term $F_{pp} \gamma \delta \gamma$ in the 2nd variational makes the form is strictly convex). Thus I come other $\gamma(t)$ for which 2nd variational is negative.

To see why 2nd variational at (*) vanishes, consider

\[\phi(t, \gamma, \delta \gamma) = F_{uu} \gamma \delta \gamma + 2 F_{up} \gamma \delta \gamma + F_{pp} \gamma \delta \gamma \]

and observe that

\[\phi(t, \alpha \gamma, \alpha \delta \gamma) = \alpha^2 \phi(t, \gamma, \delta \gamma) \]

So (by differentiating at $\alpha = 1$)

\[\gamma \cdot \phi_{\gamma} + \gamma \cdot \phi_{\delta \gamma} = 2 \phi \]
Integrating:

\[\int_a^b \Phi(t, \eta, \dot{\eta}) \, dt = \int_a^b \Phi(t, \eta, \dot{\eta}) \, dt \]

\[= \frac{1}{2} \int_a^b \eta \dot{\eta} + \dot{\eta} \dot{\eta} \, dt \]

\[= \frac{1}{2} \int_a^b \eta \left(\dot{\eta} - \frac{\partial}{\partial t} \Phi \right) \, dt \]

using that \(\eta(a) = \eta(b) = 0 \). But because \(\eta \) is a restriction of a\(2^n \) variational quadratic form on \([a, b] \) (giving min value 0), so it solves the ELE eqn:

\[\eta \dot{\eta} - \frac{\partial}{\partial t} \Phi = 0 \quad \text{on } [a, b] \]

Therefore

\[\int_a^b \Phi(t, \eta, \dot{\eta}) \, dt = 0 \]

as asserted.

I only proved in these notes that \(2^n \) var is \(> 0 \) on short intervals. But it is also true that crit ps are minimizers on short intervals if \(\Phi \) is ps def.

For special case of geodesics on \(S^2 \subset \mathbb{R}^3 \),
The antipodal pt is the conjugate pt. To see why, observe that

a) for antipodal pts, there is a 1-pert family of shortest paths (great semicircles)

b) if there's a 1-pert family of minimizers \(u^\theta(t) \), then \(\gamma = \frac{d}{d\theta} u^\theta \) is a Jacobi field.

Point (a) is obvious. For (b): each \(u^\theta \) solves EL

\[
F_u(t, u^\theta, \dot{u}^\theta) = \frac{d}{d\theta} F_p(t, u^\theta, \dot{u}^\theta)
\]

differentiate \(\gamma \) w.r.t. \(\theta \) to get

\[
F_{u\gamma} \gamma + F_{u\dot{u}} \dot{\gamma} = \frac{d}{d\theta} \left(F_{u\gamma} \gamma + F_{u\dot{u}} \dot{\gamma} \right)
\]

with \(\gamma = \frac{d}{d\theta} u^\theta \). This is precisely the equation characterizing a Jacobi field (note that \(\gamma = 0 \) at end points, i.e. poles).

[More conceptual pt: value of \(\int_0^v F(t, u^\theta, \dot{u}^\theta) \) wrt initial \(\theta = 0 \), both 1st and 2nd derivatives vanish wrt \(\theta \). So (assuming \(u^\theta \) is extremal) \(\gamma = \frac{d}{d\theta} u^\theta \) achieves value 0 at the 2nd variate field. Since the min value is zero, then \(\gamma \) must be a Jacobi field.]
Suggested Exercises:

1. Show directly (using the EL eqns) that any extremal for \(\int_a^b 1 \times 1^2 \, dt \) has constant speed (see pp. 2-3).

2. Show that if \(b \) is conjugate to \(a \) then

\[
\min\left\{ \int_a^b F \, \gamma + 2 \int_a^b \dot{\gamma} \cdot \vec{F} + \int_a^b F \, \delta \dot{\gamma} \, \delta \dot{\gamma} = 0 \right. \\
\left. \gamma(a) = 0 \right. \\
\left. \gamma(b) = 0 \right. \\
\right\}
\]

3. When studying waves it is useful to consider paths that minimize "travel time," where the wave speed \(v(x) \) is a known function of location \(x \). Show that this amounts to considering geodesics in the metric

\[
g_{ij} = \frac{1}{v^2(x)} \delta_{ij}.
\]

4. In these notes we focused on Dir 6c, i.e., \(\min \int_a^b F(t, u, \dot{u}) \, dt \) subject to \(u(a) = \alpha \) and \(u(b) = \beta \) being given. Suppose instead we impose \(u(a) = \alpha \) and \(u(b) \in M \) where \(M \) is a submanifold. What end condition does the EL get at \(t = b \)? What is the proper notion of Jacobi field in this case?
(5) Show that the only critical pts of
\[\int_a^b u_x^2 + (u - 1)^2 \]
(no boundary condition!) with non-negative 2nd variation are the "trivial ones" namely, \(u = -1 \) and \(u = +1 \). (Hint: let \(u \) be a critical point. Show that \(y = u_x \) achieves value 0 in the 2nd variation quadratic form. Then argue that this \(y \) can't be a minimizer of that quadratic form.)