Final Exam

1. For each of the following, indicate whether the statement is true or false and explain your answer. The explanation may be a few words or a few sentences.
a. We have a large $n \times n$ unsymmetric matrix, A. Computing the $L U$ factors takes no more than five times as much time as performing back and forward substitution.
b. A function $f(x)$, for $x \in R^{n}$, is called strictly convex if the Hessian matrix is positive definite for every x. If f is strictly convex then f can have at most one local minimum.
c. If a function $f(x)$ is a unique local minimum then f is convex and the Hessian matrix will have an $L L^{t}$ factorization for every x.
d. We are solving the initial value problem $\dot{x}(t)=f(x), x(0)$ given. We wish to compute $x(T)$ for some T. In exact arithmetic it is possible to achieve any given accuracy by taking time step Δt small enough.
e. If I had a $2 G H z$ computer that performed exact arithmetic, there would be no incentive to use a higher order method, such as the fourth order Runge Kutta method, rather than forward Euler.
f. We have a normal computer using double precision floating point arithmetic and a smooth function $f(x)$ that can be evaluated to full machine precision for any x. We want the integral $I=\int_{0}^{1} f(x) d x$ as accurately as possible. The greatest accuracy achievable using Simpson's rule and the trapezoid rule are about the same.
2. I need to compute the values of $f(x)=e^{x}-1$ to high relative accuracy when x is close to zero. I will use double precision arithmetic and need 10 correct digits as long as x is not a denormalized (also called subnormal) number. The code will be roughly
```
#define EPS ??? (the question)
double f, x;
... ( get an x value )
if ( abs( x ) > EPS )
    f = exp(x) - 1;
else
    f = x + (1.d0/2)*x*x + (1.d0/(2*3))*x*x*x + ... + (n-th term)
```

Assume that $\exp (\mathrm{x})$ computes e^{x} to full double precision accuracy. Double precision arithmetic has 51 fraction bits.
A. What is the largest $E P S$ so that the if branch gives 10 digits whenever it is executed? It is OK to be off by up to factor of 2 in $E P S$.
B. How many Taylor series terms do you need in the else branch to get 10 digits of accuracy whenever $|x|<E P S$. It is OK to be off by one.
3. A computer code of some kind was used to calculate a function of x. Some of the computed values are listed below.
A. Estimate the condition number of the problem of computing $f(x)$ when $x=12.846$.
B. In single precision arithmetic (23 fraction bits), how many of the computed digits of $f(12.846)$ are likely to be correct?

x	f
12.845	112.65
12.846	0.2496
12.847	-105.71
12.848	-201.42

4. We need to compute $A=\int_{0}^{1} f(x) / \sqrt{|x-a|} d x$ where $f(x)$ is smooth and easy to evaluate but we may have $a \in[0,1]$.
A. If we apply the trapezoid rule or Simpson's rule to the function $g(x)=f(x) / \sqrt{|x-a|}$, will we achieve more than first order accuracy?
B. Suppose we have a panel $I=\left[x_{*}, x_{*}+\Delta x\right]$ that may or may not contain a and we approximate $f(x)$ by its two term Taylor approximation $f_{*}(x)=f\left(x_{*}\right)+f^{\prime}\left(x_{*}\right)(x-$ $\left.x_{*}\right)$ in the panel. For what p is

$$
\int_{I} f(x) / \sqrt{|x-a|} x=\int_{I} f_{*}(x) / \sqrt{|x-a|} d x+O\left(\Delta x^{p}\right)
$$

for any a and and x_{*} as $\Delta x \rightarrow 0$?
C. Suggest a method for computing A that uses only the mesh point values $f_{k}=$ $f(k \Delta x)$ with $\Delta x=1 / n$ for some n that achieves greater than first order accuracy.
5. We are using Newton's method to solve a nonlinear system of n equations. The Jacobian matrix is reasonably conditioned at the solution. The residuals after iterations 4 and 5 are respectively . 234 and .0447 . Estimate the residual after iteration 6.
6. We have a probability density $f(x)=\frac{\cos (x)}{\text { sqrtx }}$ for $0<x<\pi / 2$ and $f(x)=0$ otherwise. Suggest a rejection strategy for sampling this random variable. Hint: suppose U is a standard uniform random variable such as is supplied by the computer random number generator. What is the probability density function for $X=U^{2}$?
7. We are using Monte Carlo to estimate a number, A. We are unable to create a random variable, Y whose expected value is exactly A. However, there is a "step size", h, and a family of random variables whose bias has an asymptotic error expansion $E\left[Y_{h}\right] \sim$
$A+h^{1 / 2} A_{1}+h A_{2}+h^{3 / 2} A_{3}+\cdots$ We have a procedure float randY (float h) so that successive calls produce independent samples $\left(Y_{h}^{(1)}, Y_{h}^{(2))}, \ldots\right)$ of Y_{h}. Sketch a Monte Carlo code that uses randY (h) and randY ($2 * \mathrm{~h}$) to produce an estimate of A with bias $O(h)$ rather than $O\left(h^{1 / 2}\right)$.

