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To the student

Mathematical modeling for us will mean using mathematical techniques to un-
derstand phenomena in the real world. To develop your modeling ability, I will
present mathematical techniques and physical principles. This is material for
you to learn. I will also focus on the more subtle art of making sensible physical
and mathematical approximations. This is a skill to be practiced and nurtured.
It requires intelligence, and a combination of skepticism and faith.

There are several reasons to build mathematical models. The most obvious
is their predictive ability. We may want to know whether an newly designed
airplane will fly before spending a billion dollars building a prototype. Equally
important as motivation is human curiosity. Why does a vortex form when
you drain a bathtub?1 In both cases, the process starts with guesses at the
important physical processes involved. It proceeds to write equations using the
laws of physics. The last step is to figure what solutions of these equations look
like. This may be done by finding a formula for the solution (rare), finding a
good approximation, or by numerical computation or simulation.

To a large extent, modeling is the process of simplification and approxi-
mation. These go together, since the simpler model never tracks the more
complicated one exactly. Finding the right level of complexity is an art form.
To quote Albert Einstein: ”Everything should be a simple as possible, but no
simpler.” It is common to make radical simplifications, particular when look-
ing for a qualitative model. Among people who compute turbulent fluid flows,
turbulence modeling is known as: ”replacing ignorance with fiction.”

An example of mathematical approximation

Throughout this class we will be ignoring “small” terms in equations as part of
the model simplification process. I will start the class with an example of this,
together with ways to assess the accuracy of the approximation and construct
more accurate approximations to take into account the term we have dropped.
The equation is

x + .1 · x2 = 2 . (1)
1There is a wonderful Simpsons episode that addresses this question.
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The point is that because .1 is small, we may want to neglect it in first approx-
imation. If we do this, we get

x ≈ x0 = 2 .

The first approximation is x0, the second is x1 and so on, like floors in a French
building. In mathematics jargon x0 is often called the “zeroth” approximation.
To explore the accuracy of this approximation, we first reformulate (1) in a way
that emphasizes (to math nurds) the importance of .1 being small:

x + εx2 = 2 with ε = .1. (2)

More math jargon is the term “perturbation”. We may regard the εx2 term as a
perturbation of the “unperturbed” equation x = 2. Then assessing the accuracy
of the x0 = 2 approximate solution is is the same as figuring out the effect of
the perturbation.

Our first approach to this will be to use the approximation x0 = 2 to estimate
the size of the perturbation. After all, if x ≈ 2 then x2 ≈ 4. With this, we get
hopefully better approximation, x1 by solving:

x1 + εx2
0 = 2 ,

which gives
x1 = 2− εx2

0 = 2− ε · 4 = 2− .4 = 1.6 .

It is clear that we can continue this process. If x1 is closer to x than x0, then
it will give a better estimate of the perturbation. With this, we could define a
still better approximation, x2, using x1 to estimate the perturbation:

x2 + εx2
1 = 2 ,

so that
x2 = 2− .1 · (1.6)2 ≈ 1.75 .

The actual “exact” value of x2 is 1.744. I rounded the answer to 1.75 = 1 3
4 to

indicate that I do not believe the last 4 is correct or even close. For example, I
have no particular confidence that the exact answer, x, is less than 1.75. It is
usual to report only those decimal digits you believe in. It is clear that you can
continue this process of finding improved approximations. The first homework
asks you to do so.

Review of Taylor series

Taylor series have many uses in pure and applied mathematics.2 For us right
now, they are a useful systematic way to construct mathematical approxima-
tions. The Taylor series3 for a function f(x) about a point, x0, is

f(x) = f(x0)+(x− x0) f ′(x0)+(x− x0)
2 f ′′(x0)/2+· · ·+(x− x0)

n f (n)(x0)/n!+· · · .
2The technical journal published by the Courant Institute of Mathematical Sciences of

NYU is called the Communications of Pure and Applied Mathematics.
3If you are rusty on Taylor series, I recommend the Schaum’s Outline of Calculus. In gen-

eral, I have found the Schaum’s Outline series very useful for reviewing areas of mathematics.
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Here, f ′ is the derivative of f , f ′′ is the second derivative, and f (n) is the nth

derivative. If x − x0 is small, this gives a set of approximations of increasing
accuracy:

f0(x) = f(x0)
f1(x) = f(x0) + (x− x0) f ′(x0)

f2(x) = f(x0) + (x− x0) f ′(x0) + (x− x0)
2
f ′′(x0)/2

and so on.

The first approximation just says that if x hasn’t changed too much, maybe
f hasn’t changed much either. The f1 approximation graphically represents
the straight line tangent to the graph of f(x) at the point x0. It is easy to
see in a graph that this is closer to the curved graph than the horizontal line
approximation f0. Often we call f1 the “linear” approximation to f(x) about
x0. However, there are pureists who prefer to call the function f1(x) affine
because it is not linear in the sense of linear algebra. An affine function is linear
in the linear algebra sense only of the graph passes through the origin. The f2

approximation represents a parabola. If you draw carefully, you will see that
the parabola is closer to the graph than the straight line corresponding to the
linear (affine) approximation.

For example, if f(x) = sin(x) and x0 = π/3 then

f(x0) = sin(x0) = sin(π/3) =
√

3
2

= .8660 .

f ′(x0) = cos(x0) = cos(π/3) =
1
2

= .5 .

f ′′(x0) = − sin(π/3) = −
√

3
2

= −.8660 .

For x = π/4, f(x) = sin(x) = sin(π/4) = 1/
√

2 = .7071, the Taylor series
approximations are (with ∆x = x− x0 = −π/12 = −.2618)

f0 = .8660 error = .8660− .7071 = .1589.
f1 = .8660 + ∆x · .5 = .7351 error = .7351− .7071 = .0280.

f2 = .8660 + ∆x · .5 + ∆x2 · (−.8660)/2 = .7054 error = .7354− .7071 = −.0017.

At least in this instance, the accuracy of the approximation improve as we take
more terms.

The coefficient of (x− x0)n is called the nth Taylor series coefficient. Often
it is possible to find the first few coefficients without having a formula for f(x).
This may allow us to approximate f(x), at least for x values close enough to
x0. This is often possible when f(x) is defined as the solution to an equation
involving x in some way, as we shall see.
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Back to the example

Let us see how these ideas work in the example of equation (2) above. The first
thing we must do is switch all the letters. We want to find x for a given ε rather
than f for a given x. Our function is x(ε) rather than f(x). We will find the
Taylor series coefficients for the expansion of x(ε) about ε = 0. These will be
called a0, a1, a2, and so on. That is, we suppose that

x(ε) = a0 + εa1 + ε2a2 + · · · .

The corresponding approximations are

x0 = a0 (= 2) (3)
x1 = a0 + εa1 (4)
x2 = a0 + εa1 + ε2a2 (5)

and so on.
The coefficients a0, a1, · · ·, can be found by substitution of the approxima-

tions into the defining equation (2) and matching powers of ε one by one. For
example, substituting (3) into (2) gives

a0 + εa2
0 = 2 .

Since a0 does not depend on ε, we cannot satisfy this equation exactly. Instead,
we satisfy the part that does not depend on ε. This leads back to a0 = 2.

The next coefficient can be found by substituting (4) into (2). This gives

a0 + εa1 + ε(a2
0 + 2εa0a1 + ε2a2

1) = 2 ,

or, after combining coefficients of like powers of ε,

a0 + ε(a1 + a2
0) + 2ε2a0a1 + ε3a2

1 = 2 .

We choose a0 and a1 so that the lowest powers of ε are cancelled. In this case,
those powers are ε0 ≡ 1 and ε1 = ε. The ε0 equation is formed by equating the
coefficients of ε2 on either side of the equation. The left is a0 and the right side
is 2. That gives

a0 = 2 .

The ε1 equation is formed by equating coefficients of ε1 on either side of the
equation. The left side has a1 + a2

0 while the right side has 0 (the coefficient of
ε in 2 = 2 + 0 · ε is 0). This gives

a1 + a2
0 = 0 , or a1 = −a2

0 = −4 .

The final x1 approximation, with ε = .1 is

x ≈ x1 = a0 + a1 · ε = 2 + (−4) · .1 = 1.6 .
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This is the same as the x1 we got in the earlier method.
The two methods give different x2 approximations. In the present method,

we have to compute, by squaring (5),

x2
2 = a2

0 + 2εa0a1 + ε2a2
1 + 2ε2a0a2

2ε3a1a2 + ε4a2
2 .

We will soon examine how much of this laborious computation was actually
necessary. For now, we simply substitute it into (2) and combine coefficients of
like powers of ε:

a0 + ε(a1 + a2
0) + ε2(a2 + 2a0a1)

+ ε3(a2
1 + 2a0a2) + ε42a1a2 + ε5a2

2 = 2 .

Now we have three unknown coefficients, a0, a1, and a2, so we can match the
first three powers of ε. This gives the a0 and a1 equations that we we got in
constructing x1. The ε2 equation, which determines a2, is

a2 + 2a0a1 = 0 , or a2 = −2a0a1 = (−2) · 2 · (−4) = 16 .

With this, the x2 approximation is x2 = 2− 4ε + 16ε2. Finally, with ε = .1, we
get

x ≈ x2 = 2− 4 · .1 + 16 · .01 = 1.76 .

5


