Mathematical modeling.

Final assignment, take home exam, due May 5 at 6pm.

1. Estimate the x value so that $x+1 / x=5$ to within 1%. Do all arithmetic by hand. Explain your strategy.
2. A ball under the influence of gravity has $\ddot{h}=-g$ where $h(t)$ is the height of the ball over the table and $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$ is the gravitational constant.
a. Check that as long as the ball is above the table (i.e., between bounces) its total energy, $E=\frac{1}{2} \dot{h}^{2}+g h$, is constant.
b. Suppose I drop the ball onto the table and it bounces up with energy E_{0}. Find a formula for the maximum height and the time until the next bounce.
c. Suppose that the first bounce goes $2 f t$. above the table and that the ball looses 5% of its energy each bounce. About how long will it take until the bounces are less than an inch high? I am asking for the time, not just the number of bounces.
3. There is a motor that goes faster when it gets more gas but slows down because of friction. The simplest model would be

$$
\dot{v}=-f v+a g
$$

where v is the speed of the motor, f is a friction coefficient, a is an acceleration coefficient, and g is the amount of gas it gets. We want to use "feedback" to keep the speed at around \bar{v}. Let us suppose that the feedback takes the form

$$
\dot{g}=r(\bar{v}-v),
$$

where r is a feedback coefficient. This is an impatient feedbacker; he turns the gas knob at a rate proportional to the deviation of the speed of the motor from its desired speed.
a. Find the values of g and v that correspond to $\dot{v}=0$ and $\dot{g}=0$.
b. Show that the simpler feedback $g=r(\bar{v}-v)$ does not achieve $v=\bar{v}$ in steady state.
c. Suppose that f and a are fixed but the designer gets to choose r. Find the range of r values corresponding to
(i) monotone approach to equilibrium
(ii) oscillatory approach to equilibrium
(iii) instability.
4. We have the following formulae for computing x_{n+1}, x_{n+1}, and x_{n+1} from x_{n}, y_{n}, and z_{n} (pay attention to the extra - in the y equation):

$$
\begin{aligned}
x_{n+1} & =\frac{\frac{1}{2} x_{n}+y_{n}}{1+z_{n}^{2}}-y_{n} z_{n} \\
y_{n+1} & =\exp \left[\frac{1}{2} x_{n}-y_{n}\right]-1 \\
z_{n+1} & =-\frac{1}{2} z_{n}+\log \left[1+x_{n}^{2}+y_{n}^{2}\right]
\end{aligned}
$$

a. If we start with x_{0}, y_{0}, and z_{0} small, do we expect the iterates x_{n}, y_{n}, and z_{n} to get larger or smaller as n increases? Form an expectation on the basis of an eigenvalue analysis of the linearized system.
b. Use a computer (Matlab, ...) to confirm of refute this expectation?
c. Use the linearized analysis to show that some of the x_{n}, y_{n}, and z_{n} converge to zero faster than others. This will involve looking at the eigenvectors corresponding to the various eigenvalues. Is this confirmed by the computation? [d.] Plot $\log \left(\left|x_{n}\right|\right)$ as a function of n. Why is this somewhat irregular? Can you explain the overall downward trend in a quantitative way in terms of the eigenvalues?
5. There are two bags of marbles, each with 100 marbles. In the inspected bag, all marbles weigh exactly 3 g . In the uninspected bag, about 20% weigh 2.8 g or less. I choose a bag at random with each equally likely to be chosen. I draw 5 marbles from that bag and find that they each weigh 3 g . What is the probability that I chose the inspected bag?
6. X and Y are independent exponential random variables with rate constant 1. what is the probability that $X>1$ given that $X+Y>2$?
7. A double server queue has two servers serving a single queue of customers. If there are two or more customers, each server is busy serving a customer. If there is just one customer, one of the servers serves that customer while the other is idle. We mark time in multiples of a discrete increment, so we write $t=0,1,2, \ldots$. In a time increment, a customer that is being served leaves with probability p, with all choices being independent. If there are two customers being served, the probability that both leave is p^{2}. There are only n queue slots. If a new customer arrives when there are already n customers in the system, that customer gets "bumped"; we never hear from her again. At each time increment, a new customer arrives with probability q.
a. Write out the transition matrix for the case $n=3$. This corresponds to a 4 state Markov chain.
b. Write a Matlab program to generate the transition matrix when $n=$ 10.
c. When $p=.1, q=.19$, and $n=10$, what is the steady state probability of a customer getting bumped and how long does it take for this steady state value to be reached? Use Matlab to compute powers of the transition matrix.

