
Mathematical modeling.

Assignment 7, due March 22.

1. Stirling’s formula is the approximation

n! ≈
√

2πn · nne−n .

Use this to derive the approximation from problem 3 of homework 6.

2. The Poisson (pronounced “pwasson” with an “a” as in “father”, an accent
on the “a”, and a French “on” if possible) process, N(t), is the number
of “arrivals” up to time t if the “interarrival times” are independent ex-
ponential random variables with rate λ. To be more precise, let S1, S2,
. . ., Sk, . . ., be independent samples of the same exponential with rate λ.
The probability density function for each of the Sk is f(s) = λe−λs. Now
the arrival times are T1 = S1, T2 = S1 + S2, . . ., Tk = S1 + · · ·+ Sk. You
can think of the Poisson process like this: first we wait for the first expo-
nential, S1. As soon as that happens, we start waiting for the second one,
S2, and so on. With this, we define N(t) as the number of exponentials
we have seen by time t. That is the same thing as

N(t) = max {k | Tk < t } .

For any particular t, N(t) is a discrete random variable taking values 0,
1, and so on.

a. Find a formula for f0 = Pr(N(t) = 0). This is not too hard because it
only involves S1.

b. In order to have N(t) = 1, we must have S1 in the interval from 0 to t,
and S2 > t− S1. Remember that S2 is independent of S1, so we can
compute the probability that S2 > t−S1 in terms of t, S1, and λ just
thinking of S1 as a parameter. Find an integral over s1 involving the
probability density for S1 and the probability that S2 > t − S1 that
represents f1 = Pr(N(t) = 1). Work this integral to get a simple
formula for f1.

c. Use the same reasoning to get a formula for fk(t) = Pr(N(t) = k) as
an integral involving the density for Sk and fk−1(t−sk). If you work
this integral, you will find a formula for fk(t).

3. Suppose that X1, . . ., XL are independent random variables each uniformly
distributed in the interval [0, 1]. Since there are L numbers uniformly (but
randomly) sprinkled inside the unit interval, it makes sense that we have
to wait about 1/L to get to the first (smallest) one. For that reason, define

T =
1
L

min
j

Xj . (1)
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Use the approximation (
1− a

L

)L

≈ e−a

to show that T is approximately an exponential random variable when L
is large.

Extra credit challenge: Let T1 be the T defined in (1) Define Tn to be
the nth smallest of the Xj , again normalized with the factor 1/L. Show
that when L is large and n is not too large, the Tn are approximately a
Poisson process. You can do this by calculating the probabilities fn(t) =
Pr(N(t) = n).

4. This exercise asks you to verify that the standard normal random numbers
produced by Matlab have the right probability density. For this, we choose
a “bin size”, ∆x, and define the “bin centers” xj = j∆x. The jth bin, Bj ,
is the interval of length ∆x centered at xj . A number, X , is in bin j if it
is closer to xj than to any of the other bin centers. The probability that a
particular X lands in bin Bj is approximately fj = f(xj)∆x. Therefore,
if I generate n independent Xi, the number of them landing in Bj is
approximately n ·fj = n ·f(xj)∆x. Use Matlab to generate n independent
standard normal random variables and put them into bins. It is extremely
unlikely that a standard normal could be as large as 6, so make the bin
centers run from about −6 to 6. Choose ∆x something like .1 or .2.
Choose a range of n values with the largest being the largest you computer
can handle. Make a plot of the actual bin counts and the expected bin
counts. Comment on the results. There are some hints on how to do this
posted with this assignment. You should read them even if you are not
using Matlab. If your system does not have a source of standard normal
random variables, it certainly has a source of uniformly distributed random
variables. Call them Yi, and generate exponential random variables using
Xi = − log(Yi).
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