Introduction to Mathematical Modeling, Spring 2000

Assignment 5, due March 1.

1. The equation below represents an oscillator with highly nonlinear damping:

$$
\begin{equation*}
\ddot{x}=-\omega^{2} x-\gamma \dot{x}^{3} . \tag{1}
\end{equation*}
$$

a. With $\omega=2, \gamma=1 . \dot{x}(0)=2$, and $x(0)=1$, estimate the first t with $\dot{x}=1.5$ and the x value where this occurs. Do this by computing the Taylor series for \dot{x} and x as a function of t keeping only terms up to order t (i.e., dropping all terms quadratic and higher in t).
b. Estiamte the error in your answer to part a by including terms up to quadratic in t, but not higher. You will have to differentiate the equation (1) with respect to t to get the required coefficients. When you have to solve a quadratic, do it approximately, but in a way that gets terms including order t^{2} correct. This will involve using the Taylor series for the square root function.
c. Now keep $\omega=2$, but take $\gamma=.05, \dot{x}(0)=.5$, and $x(0)=0$. How long will it take until 90% of the energy has dissipated out of the oscillator? How long until 99% of the energy has dissipated away? Contrast these results to those for simple linear friction.
2. In a study of interactin between drugs, research administered varying doses of drugs A and B and measured responses $M 1, M 2$, and $M 3$. Some of the data are in the table below.

Trial	A	B	$M 1$	$M 2$	$M 3$
1	100	32	4.0	59	18.6
2	100	34	4.8	57	16.9
3	110	32	3.7	56	20.2

Make a linear approximation to the three responses to the two dose levels about $A=100, B=32$. Use this to find a dose that keeps $M 2$ below 55 , M3 below 20, and makes $M 1$ as low as possible.
3. (corrected from problem 3 of homework 4) Construct a matrix, $M(t)$ so that

$$
\binom{x(t)}{\dot{x}(t)}=M(t)\binom{x(0)}{\dot{x}(0)}
$$

If everything goes right, the matrix M will have only real entries even though the intermediate quantities U, c, and λ are not real.
4. Here is yet another way an oscillator can lose energy. The mass, m is connected by a spring with spring constant k to a much larger mass, M. This large mass can slide over a surface, but with a large friction coefficient, Γ (Γ is the capital of γ).
a. Assume that M and Γ are large, and that the displacement of the smaller mass is given by $A(t) \sin (\omega t)$. Figure out how fast A decreases, approximately.
b. Express the dynamics of the small mass and large mass system in terms of a 4×4 matrix, A. Find the eigenvalues of A related to decaying oscillation of the smaller mass. See how well this exact result agrees with the approximate result from part a.

