Introduction to Mathematical Modeling, Spring 2000

Assignment 4, due February 16.

1. The eigenvectors of a matrix, A, are called $u^{(k)}$ and satisfy

$$
\begin{equation*}
A u^{(k)}=\lambda_{k} u^{(k)} \tag{1}
\end{equation*}
$$

where the numbers λ_{k} are the eigenvalues. It is a theorem that if the eigenvalues of A are distince, then the eigenvectors are linearly independent. Since any set of n linearly independent vectors forms a basis in n dimensional space, the eigenvectors form a basis. This means that any vector, y, may be written as a linear combination of the $u^{(k)}$:

$$
\begin{equation*}
y=\sum_{k=1}^{n} c_{k} u^{(k)} \tag{2}
\end{equation*}
$$

To do this in a practical way, we make a matrix, U, out of the eigenvectors $u^{(k)}$ by taking the $k^{t h}$ column of U to be $u^{(k)}$. This is written

$$
U=\left(\begin{array}{ccc}
\mid & & \mid \\
u^{(1)}, & \cdots, & u^{(n)} \\
\mid & & \mid
\end{array}\right)
$$

To name the components of $u^{(k)}$, write

$$
u^{(k)}=\left(\begin{array}{c}
u_{1}^{(k)} \\
\vdots \\
u_{n}^{(k)}
\end{array}\right)
$$

Then, the (j, k) entry of U is $U_{j k}=u_{j}^{(k)}$. In this notation, equation (2) takes the form

$$
y_{j}=\sum_{k} U_{j k} c_{k} \quad \text { for } j=1, \cdots, n
$$

In matrix notation, this is simply

$$
x=U c .
$$

The solution is $c=U^{-1} x$. All this says that we can find the "expansion coefficients" c_{k} by solving a system of equations (or inverting a matrix) involving the eigenvectors.
For the simple harmonic oscillator with linear friction, the differential equation in matrix form is

$$
\dot{y}=A y \quad \text { with } \quad A=\left(\begin{array}{cc}
0 & 1 \tag{3}\\
\frac{-k}{m} & \frac{-\gamma}{m}
\end{array}\right) \quad \text { and } \quad y=\binom{x}{\dot{x}}
$$

Find the eigenvalues and eigenvectors of A. Find the matrices U and U^{-1}. Notes: (i) It will be much easier if you express your answer in terms of ω and μ rather than k, m, and γ. (ii) The answer is not unique. If u is an eigenvector then $2 u$ is also an eigenvector.
2. We want to understand the solution of

$$
\begin{equation*}
\dot{y}=A y \tag{4}
\end{equation*}
$$

in terms ofeigenvalues and eigenvectors. For each t we can use (2. This just leads to

$$
\begin{equation*}
y(t)=\sum_{k} c_{k}(t) u^{(k)} \tag{5}
\end{equation*}
$$

The "expansion coefficients", $c_{k}(t)$, can change with time but the eigenvectors of A do not. Differentiate the expression (5) with respect to t and use the relations (4) and (1) to write differential equations for each of the $c_{k}(t)$. Write the solution to these equations in terms of the (possibly complex) exponential and the values of $c_{k}(0)$.
3. In the case of (3) from part 1 , use the method of part 2 to
a. Write $c_{1}(0)$ and $c_{2}(0)$ in terms of $y_{1}(0)=x(0) y_{2}(0)=\dot{x}(0)$.
b. Write $c_{1}(t)$ and $c_{2}(t)$ in terms of $c_{1}(0)$ and $c_{2}(0)$.
c. Write the components of $y(t)$ in terms of $c_{1}(t)$ and $c_{2}(t)$.
d. Put this together to write $x(t)$ and $\dot{x}(t)$ in terms of $x(0)$ and $\dot{x}(0)$.

In this way, construct a matrix, $M(t)$ so that

$$
\binom{x(t)}{\dot{x}(t)}=M(t)\binom{x(t)}{\dot{x}(t)}
$$

If everything goes right, the matrix M will have only real entries even though the intermediate quantities U, c, and λ are not real.
4. The Fibonacci numbers (named after an early Renaissence Italian monk and amateur mathematician), f_{n} are given as follows

$$
\begin{equation*}
f_{0}=1, \quad f_{1}=1, \quad f_{n+1}=f_{n}+f_{n-1} \text { for } n>1 \tag{6}
\end{equation*}
$$

The first few are $2,3,5,8$.
a. Write a Matlab program to compute and plot the first, say, 30 Fibonacci numbers. Plot them on a log scale and try to estimate the slope of the line that the points are tending to.
b. Let $y^{(n)}$ be defined in terms of the Fibonacci numbers as follows:

$$
y^{(n)}=\binom{f_{n}}{f_{n-1}}
$$

Find the matrix, A so that (6) is equivalent to

$$
y^{(1)}\binom{1}{1} \quad, \quad y^{(n+1)}=A y^{(n)}
$$

c. Find the eigenvalues and eigenvectors of A.
d. Use this information to find a formula for f_{n}. From this formula, what can you say about $\log \left(f_{n}\right) / n$ when n is large? Is this consistent with your answer to part a?

