Assignment 3, due February 9.

1. Here we work with Taylor series and approximate solutions. This is a typical situation in applied modeling. There is a function (here $g(t)$), that we we have a definition of but not a formula. We want to build tools that explore such functions.
a. Find the first three terms of the Taylor series of $f(t, x)=e^{t \sin (x)}$ as a function of t about $t=0$.. Think of $\sin (x)$ as a parameter. That is, take the Taylor series of $e^{a t}$ and then set $a=\sin (x)$ when you have the series.
b. Define

$$
g(t)=\int_{0}^{2 \pi} e^{t \sin (x)} d x
$$

Find the Taylor series for $g(t)$ for small t up to and including the t^{2} term. Do this by integrating the three terms in the Taylor series from part a.
c. For small t, is $g(t)$ greater or less than one? Does this depend on whether t is positive or negative?
d. Use the answer to part b and part c to solve one of the following two equations approximately

$$
1.1=g(t), \quad .9=g(t)
$$

2. Consider the iteration

$$
x_{n+1}=\frac{x_{n}}{2+x_{n}^{2}}
$$

Use a computer to automatically generate and plot the first 20 iterates, starting with $x_{0}=1$. Make a \log plot (the vertical axis on a log scale). What do you notice about this plot?
3. Consider the iteration

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n}^{2}+5 y_{n}}{4+5\left(x_{n}^{2}+y_{n}^{2}\right)} \\
y_{n+1} & =-\left(x_{n}+y_{n}\right)
\end{aligned}
$$

a. Use first partial derivatives to make a linear approximation to this iteration when x_{n} and y_{n} are small. Formulate this "linearized" iteration in terms of a 2×2 matrix, A.
b. Find the eigenvalues of A.

$$
\text { Continued on the next page } \Longrightarrow
$$

c. From the eigenvalue information, what do you expect solutions to look like? Do the grow of decay? Do they do so in a simple monotone way?
d. Write a program to compute the first 20 iterates, starting with $x_{0}=$ 10^{-5} and $y_{0}=0$. Try various plots to see how the computed iterates look, relative to your prediction in part c.

