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Class 9, More differential equations, continued

1 Introduction

First, we finish the material on PDE. Time permitting, we pivot to the more
theoretical material with more careful definitions of the Ito integral. [Alas, time
did not permit.]

You can derive backward equations in many cases using a general generator
formula. Recall that if g(x) is a function that does not depend on t, then the
generator determines the expected change in g in a time ∆t, up to a “tiny” error
term

Ex,t[ g(Xt+∆t)] = g(x) + Lg(x)∆t+ o(∆t) .

If a function depends on t explicitly, then the expected value can change either
because Xt+∆t 6= x or through the direct dependence of f on t. This explains
the two terms in [· · · ] here:

Ex,t[ f(Xt+∆t, t+ ∆t)] = f(x, t) + [ ∂tf(x, t) + Lf(x, t)] ∆t+ o(∆t) . (1)

2 Backward equation for additive functionals

An additive functional is a function of the path of the form

G(X[0,T ]) =

∫ T

0

V (Xt) dt .

It is called additive because it comes from adding contributions for each time
interval (t, t+ dt). It is a path functional because it depends on the whole path,
not just the final value. Functionals like this arise in finance, where you get
a “payment” for each time interval depending on the state during that time
interval. For example, a floating rate loan results in payments that fluctuate
with the short term interest rate. Engineers use functionals like this to evaluate
the total cost corresponding to a stochastic process. For example, it might be
at V (x) is the fuel needed if the state is x.

There is a backward equation whose solution evaluates additive functionals
like this. Starting at time t with state Xt = x, you can ask for the expected
value of the integral starting at time t.

f(x, t) = Ex,t

[∫ T

t

V (Xs) ds

]
. (2)

We derive a backward equation for f using the general relation (1). Note that
f at time t+ ∆t (the left side if (1) involves only the integral in (2) starting at
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t + ∆t. Therefore, we write the integral as the sum of the first part, the part
from t to t+ ∆t and the rest. This gives

f(x, t) = Ex,t

[∫ t+∆t

t

V (Xs) ds

]
+ Ex,t

[∫ T

t+∆t

V (Xs) ds

]
.

The first term on the right is V (x)∆t+ o(∆t). The second term is

Ex,t[ f(Xt+∆t, t+ ∆t)] .

We can use the general formula (1) and combine o(∆t) terms, which gives

f(x, t) = V (x)∆t+ f(x, t) + ∂tf(x, t)∆t+ Lf(x, t)∆t+ o(∆t) .

Now cancel f(x, t) from both sides, divide by ∆t, and use o(∆t)/∆t → 0 as
∆t→ 0. The result is

0 = ∂tf(x, t) + Lf(x, t) + V (x) . (3)

This is the backward equation for an additive functional.
A variation on this theme is an additive functional with a discount rate, r.

The value function for this is

f(x, t) = Ex,t

[∫ T

t

e−r(s−t)V (Xs) ds

]
. (4)

If s > t, a payment at time s has value at time t that is discounted by a factor
e−r(s−t). As with the simple additive functional, we find the backward equation
using the general formula (1) and some analysis to relate the integral starting
at time t to the integral starting at time t+ ∆t. For the simple functional, the
only difference was the integral from t to t+ ∆t. Here, the discount factor also
changes.∫ T

t

e−r(s−t)V (Xs) ds =

∫ t+∆t

t

e−r(s−t)V (Xs)ds+

∫ T

t+∆t

e−r(s−t)V (Xs) ds .

We try to rewrite the second integral to put it into the form of the right side of
(4) for t+ ∆t. We want r(s− (t+ ∆t)) instead of r(s− t). For this, we calculate
the exponent:

−r(s− t) = −r(s− (t+ ∆t) + ∆t) = −r(s− (t+ ∆t))− r∆t .

Therefore, the second integral is∫ T

t+∆t

e−r(s−t)V (Xs) ds = e−r∆t
∫ T

t+∆t

e−r(s−(t+∆t))V (Xs) ds .

The factor e−r∆t represents the fact that on the left a payout is discounted from
time s to time t+∆t, while on the right it is discounted to time t, which is more
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discounting. These preliminaries allow us to repeat the calculation that led to
(3)

f(x, t) = V (x)∆t+ e−r∆tEx,t[ f(x+ ∆X, t+ ∆t]

= V (x)∆t+ e−r∆tf(x, t) + ∆t∂tf(x, t) + ∆tLf(x, t) + o(∆t)

= V (x)∆t+ (1− r∆t+ o(∆t))f(x, t) + ∆t∂tf(x, t) + ∆tLf(x, t) + o(∆t)

0 = V (x)∆t− r∆tf(x, t) + ∆t∂tf(x, t) + ∆tLf(x, t) + o(∆t)

0 = ∂tf(x, t) + Lf(x, t) + V (x)− rf(x, t) . (5)

This is the backward equation for the discounted additive functional (4).
There may be a final payout in addition to the “running” payout. If so, that

is the final condition for f . Otherwise, the final condition is f(x, T ) = 0 because

f(x, T ) =
∫ T
T

(· · · )ds = 0. If the final payout is f(x, T ) = 1, and if the running

payout V (x) = 0, then the value function is f(x, t) = e−r(T−t). This satisfies
the backward equation (5) and has the right final condition. It corresponds
to discounting the payment at time T by the amount of time until you reach
T . To be sure, ∂te

−r(T−t) = ∂te
−rT ert = re−r(T−t). We have ∂tf > 0, which

means that the number we give as the price of a discounted asset (payout) is an
increasing function of t because increasing t means less discounting.

The integral in the discounted additive functional (4) represents the expected
discounted present value of all future payments V (Xs)ds for s > t. If the
discount rate is positive (r > 0), the present value integral may converge as
T →∞. We define the limit value with the hope that it exists

g(x) = lim
T→∞

f(x, t)

= lim
T→∞

Ex,t

[∫ T

t

e−r(s−t)V (Xs) ds

]

g(x) = Ex,t

[ ∫ ∞
t

e−r(s−t)V (Xs) ds

]
. (6)

In finance, an instrument that remains in force forever is called perpetual. The
integral (6) could represent paying a variable rate interest on a loan but never
paying back the “principal” (the money borrowed). The left side is written as
independent of t. The right side “clearly” is independent of t, which you see by
substituting s′ = s− t in the integral. The variable s in the integral represents
“time in the future from now”. With T < ∞, it matters how long until the
integral ends. But here, the integral never ends.

The infinite “time horizon” value function satisfies the PDE

Lg(x) = −V (x) + rg(x) . (7)

You can derive this by setting f(x, t) = g(x) in (5). The term ∂tf is zero
because f does not depend on t. Here is a simple example. The process is one
dimensional Brownian motion with generator L = 1

2∂
2
x. The running payout is

V (x) = 1 if |x| < 1 and V (x) = 0 if |x| > 1.

3



We analyze the three regions x > 1, −1 < x < 1 and x < −1. We construct
the solution “up to unknown constants”, then find the constants to fit the pieces
of the solution together at x = ±1. For x > 1, the value function differential
equation (7) becomes

1

2
∂2
xg(x) = rg(x) .

In a differential equations class, you would learn that there are solutions of the
form g(x) = eµx. This ansatz can be substituted into the differential equation:

1

2
µ2eµx = reµx .

This leads to the algebraic equation for the growth/decay rate

µ2 = 2r , µ = ±
√

2r .

The plus sign gives eµx, which grows exponentially as x→ +∞. On the contrary,
we expect g(x) → 0 as x → ∞, because if you start at X0 = x that is a large
positive number, then it takes a long time before Xs is “in the money” (has
|Xs| < 1 so V (Xs) 6= 0). With discounting, this makes the instrument worth
little. Therefore, we expect

g(x) = Ce−µx , for x > 1 .

The problem is symmetric, in that +x is “the same” as −x. Therefore the value
function should be symmetric in the sense that g(−x) = g(x). This gives

g(x) = Ceµx , for x < −1 .

In the middle region, the differential equation is ∂2
xg = −2 + 2rg. The strat-

egy from differential equations class is to combine a simple specific solution to
the “inhomogeneous” problem, which is the full differential equation, with the
“general solution” (a parameterized representation of all solutions) to the “ho-
mogeneous problem” (the differential equation terms involving g). The specific
solution can be a constant, which makes the second derivative equal to zero.
When you put a constant in for g(x), you get

−2 + 2rconst = 0 , const =
1

r
.

The “general solution” to the homogeneous problem, as we have seen, is C2e
−µx+

C3e
µx. But our solution is symmetric, with g(−x) = g(x). This implies that

the e−µx and eµx terms have the same weight, which is the same as C3 = C2.
Therefore, the solution for |x| < 1 has the form

g(x) =
1

r
+ C2

[
e−µx + eµx

]
.

Finally, we “glue” the solutions together at x = ±1. There are two continuity
conditions, one for g and one for ∂xg. Each gives one equation involving the
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two constants C and C2. Two conditions will determine the two constants
completely. Our solution has a limit as x ↑ 1, which we write as

g(1−) = lim
x↑1

g(x) = lim
x→1,x<1

g(x) .

The limit from above is

g(1+) = lim
x↓1

g(x) = lim
x→1,x>1

g(x) .

Our g is continuous at x = 1 if g(1−) = g(1+). Given our formulas, this is

1

r
+ C2

[
e−µ + eµ

]
= Ce−µ .

We are going to use a system of two linear equations for C and C2, so we rewrite
this in a convenient form for that

e−µC −
[
e−µ + eµ

]
C2 =

1

r
.

Similarly, we calculate

∂xg(1−) = lim
x↑1

∂xg(x)

= lim
x↑1

C2

[
−µe−µx + µeµx

]
= C2

[
−µe−µ + µeµ

]
.

The calculation from the other side is simpler

∂xg(1+) = −Cµe−µ .

The derivative continuity condition is ∂xg(1−) = ∂xg(1+). With the calculated
values, this is

C2

[
−µe−µ + µeµ

]
= −Cµe−µ .

We cancel the common µ factor and write this as the second of two linear
equations

e−µC +
[
−e−µ + eµ

]
C2 = 0 .

We assemble these equations into a system of two equations:

e−µC − [−e−µ + eµ]C2 =
1

r
e−µC + [−e−µ + eµ]C2 = 0

This is too easy. We subtract the second equation from the first and get

−2eµC2 =
1

r
=⇒ C2 = −e

−µ

2r
.

We find C by putting the C2 formula into the second equation and calculating

e−µC + e−µ
e−µ

2r
− eµ e

−µ

2r
= 0 .

This simplifies to

C =
eµ − e−µ

2r
.
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3 Multiplicative functionals

A simple multiplicative functional is a function of the form

G(X[0,T ]) = e
∫ T
0
V (Xs) ds . (8)

These are called multiplicative because they represent products of individual fac-
tors coming from times s and lasting for duration ds. A discrete approximation
would be

exp

[ ∑
t<sk<T

∆sV (Xsk)

]
=

∏
t<sk<T

e∆sV (Xsk
) .

The contributions from times sk are multiplied together, making the functional
literally multiplicative. The limit ∆s → 0 would be a sort of multiplicative
integral, like the ordinary integral might be called an additive integral. The
limit may be written using an ordinary (additive) integral because it uses the
exponential function.

Functionals like this arise in finance as models of accumulation of stochastic
interest rates. If Xs is the state of some model of a relevant part of “the market”,
then the interest rate for that state is V (Xs). The value of an asset changes by
the factor eV (Xs)ds = 1 + V (Xs)ds during the time interval s, s+ ds.

By now, we have a good guess how to derive a backward equation to evaluate
E[G]. The value function is

f(x, t) = Ex,t

[
e
∫ T
t
V (Xs)ds

]
. (9)

We want to relate f(x, t) to f(·, t + ∆t), so we separate the integral into the
parts before and after t + ∆t. The exponential of the sum of the two integrals
is the product of the two exponentials.

e
∫ T
t
V (Xs) ds = e

∫ t+∆t
t

V (Xs) ds e
∫ T
t+∆t

V (Xs) ds

= eV (Xt)∆t+o(∆t) e
∫ T
t+∆t

V (Xs) ds

= [1 + V (Xt)∆t+ o(∆t)] e
∫ T
t+∆t

V (Xs) ds .

This gets inserted into the right side of the value function definition (9). For
that purpose, Xt = x is not random, so that fact comes out of the expectation.
The calculations are similar to the calculations for additive functionals

f(x, t) = [1 + V (Xt)∆t+ o(∆t)] Ex,t

[
e
∫ T
t+∆t

V (Xs) ds
]

= [1 + V (Xt)∆t+ o(∆t)] Ex,t[f(Xt+∆t, t+ ∆t)]

= [1 + V (Xt)∆t+ o(∆t)] [f(x, t) + ∆t∂tf(x, t) + ∆tLf(x, t) + o(∆t)]

= f(x, t) + ∆t [V (x)f(x, t) + ∂tf(x, t) + Lf(x, t)] + o(∆t)

0 = V (x)f(x, t) + ∂tf(x, t) + Lf(x, t) +
o(∆t)

∆t
.
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The last part goes to zero as ∆t → 0 (which is the definition of o(∆t), and we
are left with

0 = ∂tf(x, t) + Lf(x, t) + V (x)f(x, t) . (10)

This is the backward equation that computes expected values of multiplicative
functionals.

Someone interested in modeling physical systems using differential equations
might derive an equation of the form (10). A later class will give an example
of this. The mathematician Marc Kac discovered that the solution may be
expressed as an expected value (9). [Americans pronounce his name “cats”.
The final “c” in Polish is pronounced “ts” in English, and often written “tz”.
For example, you can visit the famous “Katz Deli” on Houston Street with its
huge pastrami sandwiches and long tourist lines.] Kac was led to this formula in
an attempt to understand a related formula by the physicist Richard Feynman
(author of the Feynman Lectures on Physics and Surely You’re Joking, Mr.
Feynman and enough important physics to earn a Nobel Prize). Feynman’s
formula was for the Schrödinger equation, which is related to the backward
equation (10). A later class will explain the reasoning Kac used and why he
was troubled by Feynman’s formula. The value function formula (9) is called
the Feynman Kac formula for the solution of the partial differential equation
(10). But you should be prepared for any formula or equation in these notes to
be called “the Feynman Kac formula”. People can be careless with names of
equations.
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