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Class 8, More differential equations

1 Introduction

This week we return to the subject of diffusions and partial differential equa-
tions, PDEs. One goal for the week is relations between different PDEs for the
same diffusion. A highlight of this is the duality relation between the forward
and backward equations. A related goal is qualitative properties of solutions.
Qualitative properties (the solution exists, it is unique, it is differentiable, etc.)
may not lead directly to solution formulas, but they are essential to understand-
ing the nature of solutions and designing solution algorithms. Another highlight
is ways to derive PDEs to evaluate things about diffusion processes and ways to
find things about diffusion processes that may be used to evaluate the solution
of a PDE.

2 Backward and forward equation, duality

The backward equation, in Section 2 (this section) is the PDE

∂tf(x, t) + Lf(x, t) = 0 . (1)

Here, L is the generator, which is defined by

Lg(x) =
1

2

d∑
i=1

d∑
j=1

µij(x)∂xi
∂xj

g(x) +

d∑
i=1

ai(x)∂xi
g(x) . (2)

This is related to the SDE

dXt = a(Xt)dt+ b(Xt)dWt . (3)

The noise coefficient matrix b(x) is related to the infinitesimal covariance µ(x)
by

µ(x) = b(x)bt(x) , µij(x) =

m∑
k=1

bik(x)bjk(x) . (4)

Here, m is the number of sources of noise, which may be less than d, the number
of components of X. The m Brownian motions (the m components of Wt) are
assumed to be independent standard Brownian motions. Any correlations in the
noise driving different components of Xt is built into the coefficient matrices
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b(x). A concrete version of the backward equation comes from putting the
generator formula (2) into the abstract backward equation (1):

0 = ∂tf(x, t) +
1

2

d∑
i=1

d∑
j=1

µij(x)∂xi∂xjf(x, t) +

d∑
i=1

ai(x)∂xif(x, t) . (5)

The unknown function f(x, t) can be the value function corresponding to a
payout:

f(x, t) = Ex,t[V (XT )] . (6)

These facts were derived in previous classes and will be reviewed in future
classes.

The forward equation is satisfied by the PDF of Xt. Suppose p(·, t) is the
PDF of Xt. This satisfies (derivation below)

∂tp(x, t) =
1

2

d∑
i=1

d∑
j=1

∂xi
∂xj

[µij(x)p(x, t)]−
d∑

i=1

∂xi
[ ai(x)p(x, t)] . (7)

The linear operator on the right is the adjoint of the generator and is written
L∗. The adjoint operator acts on a function q(x) by

L∗q(x) =
1

2

d∑
i=1

d∑
j=1

∂xi
∂xj

[µij(x)q(x)]−
d∑

i=1

∂xi
[ ai(x)q(x)] . (8)

The abstract form of the forward equation, which corresponds to the abstract
backward equation (1) is

∂tp(x, t) = L∗p(x, t) . (9)

If the initial data, p(x, 0), is given, [”Data” is the plural of ”datum”. A datum
is one number or one piece of information. Data means a lot of information.
We should say the data ”are” given, but we often don’t.] then the evolution
equation (9) or (7) determines p(x, t) for t > 0.

The relationship between L and L∗ is called duality. This is a generalization
of the relation between a matrix A and its transpose At. Duality is a simple
way to derive the forward equation. We already have a derivation for the back-
ward equation. That derivation, plus duality, gives the simplest derivation I
know for the forward equation. A fancier version of duality, one with boundary
conditions, will help derive boundary conditions for backward equations. One
can write L in “operator form” as

L =
1

2

d∑
i=1

d∑
j=1

µij(x)∂xi
∂xj

+

d∑
i=1

ai(x)∂xi
. (10)

This expresses L as a sum of “variable coefficients” µij(x) and ai(x) multiplying
“differential operators” ∂xi

∂xj
, which are “second order”, and ∂xi

, which are first
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order. You get the original expression (2) by applying the operator L here to the
function g. There does not seem to be a clear way to write L∗ in simple operator
form. Instead, the expression (8) expresses the action of L∗ on a function q.

Here is the mathematical relation between the operators L and L∗. This
relation makes it easy (see below) to derive one equation from the other. The
L2 inner product between functions q(·) and g(·) is

〈q, g〉 =

∫
Rd

q(x)g(x) dx . (11)

If there is just one component of X, then this is

〈q, g〉 =

∫ ∞
−∞

q(x)g(x) dx .

This inner product is a function analogue of the vector inner product. If u and
v are n−component column vectors, then

〈u, v〉 = utv =

n∑
k=1

ukvk .

The function version (11) is similar to this, but with the sum replaced by an
integral. If L is a linear operator, the adjoint is defined implicitly by

〈L∗q, g〉 = 〈q, Lg〉 . (12)

This is supposed to be satisfied for “every” pair of functions q and g. More on
the word “every” below. If you have an operator L, then for every pair q and
g the number 〈q, Lg〉 is defined. The adjoint operator, L∗, is an operator so
that if you instead calculate L∗q, then 〈L∗q, g〉 always is the same number. The
point is to find L∗.

If A is an n×n matrix, the adjoint definition A∗ is that for every pair u ∈ Rn

and v ∈ Rn, this relation is satisfied:

〈u,Av〉 = 〈A∗u, v〉 .

We can figure this out using matrix algebra (associativity, transpose reverses
order, A = (At)t):

〈u,Av〉 = ut (Av) = ut
(
At
)t
v =

(
Atu

)t
v = 〈

(
Atu

)
, v〉 .

This proves the relationship A∗ = At. The abstract adjoint of a matrix is
just the matrix transpose. [Warning: The notation A∗ sometimes refers to the
complex conjugate transpose of a complex matrix. In this sense, if A has entries
aij then A∗ has entries aji. Here, A∗ is the abstract adjoint of A “with respect
to the inner product” 〈u, v〉 = utv.]

The calculation of L∗ from L is an exercise in integration by parts. The
idea is to move all derivatives from g to q, which puts the integral 〈q, Lg〉,
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which involves just q(x), into the integral 〈L∗q, g〉, which just involves g(x).
The operator L (10) is the sum of many parts, so we consider them one by one.
The term ai(x)∂xi

and the integral involving it∫
q(x)ai(x)∂xi

g(x) dx .

We integrate by parts with respect to xi and neglect boundary terms. The
result is ∫

q(x)ai(x)∂xi
g(x) dx = −

∫
[∂xi

(ai(x)q(x))] g(x) dx .

Instead of q and ai(x)∂xi
g(x), we have ∂xi

(ai(x)q(x)) and g(x). For the dif-
fusion terms µij(x)∂)xi∂xj

, it takes two integrations by parts to remove both
derivatives from g.∫

q(x)µij(x)∂xi∂xjq(x) dx = −
∫ [

∂xj (µij(x)q(x))
]

[∂xig(x)] dx

=

∫ [
∂xi

∂xj
(µij(x)q(x))

]
∂xi

g(x) dx .

If you apply this reasoning to all the terms in (2), you get all the terms in (8).
These integration-by-parts arguments are a little informal in that we did not

say which functions q and g are allowed and we did not say why it is possible
to ignore the boundary terms. [Calculations with symbols that may not be
justified are often called “formal” rather than the more proper “informal”. That
is because they are deductions using the forms of equations and symbols rather
than their actual meanings.]

To be concrete, suppose we work in one dimension. Think about the informal
computation ∫ ∞

−∞
q(x)a(x)∂xg(x) dx .

Think of q(x) as a typical probability density for a diffusion process and g(x)
as a typical value function. In our examples, q(x) goes to zero exponentially as
x → ±∞. The value function may not go to zero, but many of our examples
grow only like a power of x as x→ ±∞. The integral over an infinite interval,
sometimes called an “improper” integral (is something wrong with it?). It is
defined as the limit of proper integrals∫ ∞

−∞
q(x)a(x)∂xg(x) dx = lim

R→∞

∫ R

−R
q(x)a(x)∂xg(x) dx

Integrate by parts in the proper integral and you get proper boundary terms∫ R

−R
q(x)a(x)∂xg(x) dx = q(x)a(x)g(x)

∣∣∣R
−R
−
∫ R

−R
∂x [q(x)a(x)] g(x) dx
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The integration by parts calculations over infinite intervals are essentially equiv-
alent to the statement that the boundary terms go to zero as R → ∞. For
example, q(x)a(x)g(x) → 0 as R → ∞. In our examples, q(x) goes to zero ex-
ponentially while a(x) and g(x) grow at most like a power of x. The exponential
“beats” the power and the product goes to zero.

3 Deriving the forward equation from the back-
ward equation

Suppose f(x, t) is the value function (6) and p(·, t) is the PDF of Xt. Suppose
we fix the distribution of X0, which means fixing the time zero PDF p(x, 0). At
the same time, we consider the value functions corresponding the “any” payout
function. That means that there are many functions f(x, t) and only one p(x, t).
We use the fact that every such f satisfies the backward equation (1) to show
that p satisfies the forward equation (9). This is the duality argument.

For any payout V , and any intermediate time t between 0 and T , we have

E[V (XT )] =

∫
p(x, t)f(x, t) dx .

The left side (this is the main point) is independent of t, so the right side is
also. Its derivative with respect to t is zero. The calculations are shorter in the
abstract inner product notation:

0 =
d

dt
〈p(·, t), f(·, t)〉

= 〈∂tp(·, t), f(·, t)〉+ 〈p(·, t), ∂tf(·, t)〉 .

This calculation used the Leibnitz rule (product rule) for differentiation of the
inner product (11). You can verify this by writing the inner product as an
integral and using the “fact” that d

dt

∫
(· · · ) =

∫
∂t(· · · ). The backward equation

(1), in the form ∂tf(·, t) = −Lf(·, t), applies to the second term on the right.
After that substitution, some algebra using the properties of inner products and
adjoints:

0 = 〈∂tp(·, t), f(·, t)〉 − 〈p(·, t), Lf(·, t)〉
= 〈∂tp(·, t), f(·, t)〉 − 〈L∗p(·, t)f(·, t)〉

0 = 〈 [ ∂tp(·, t)− L∗p(·, t)] , f(·, t)〉 .

This last equation is true for “every” function f . A property of inner products is
that if 〈u, v〉 = 0 for every v, then u = 0. This is clearly true if you can take v =
u, which would give 〈u, u〉 = 0. A property of inner products is that 〈u, u〉 > 0
unless u = 0. The situation with p(·, t) and f(·, t) is more complicated because
we do not know that there is a payout V (x) so that f(·, t) = p(·, t). However,
it is possible find a T and a V so that the corresponding f approximates p as
accurately as you want. Just take T close to t and V (x) close to p(x, t). The
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conclusion is that [· · · ] = 0. This is ∂tp(·, t)−L∗p(·, t) = 0, which is the forward
equation (9).

You might wish for a more direct derivation of the forward equation. The
backward equation was derived using simple Taylor expansions, combined with
the infinitesimal mean and covariance. The forward equation (7) involves the
same quantities, but its derivation is, almost literally, backwards. It is possible
to derive the forward equation directly, but the calculations are more compli-
cated. Besides, duality is important enough that it is worthwhile to show off
what you can use it for.

4 Probability flux

The probability flux, also called probability current, is a vector quantity F (x, t) =
(F1(x, t), . . . , Fd(x, t)) associated to the evolution of the probability density
p(x, t). Suppose D ⊂ Rd is a region, such as a solid ball or solid cube or
some other shape. We use Γ to denote the boundary of D. If D is a solid ball,
then Γ is the sphere. [For mathematicians, the unit ball is the set ‖x‖ ≤ 1 and
the unit sphere is the set ‖x‖ = 1. The sphere is the boundary of the ball.] The
amount of probability in D is

Pr(Xt ∈ D) =

∫
D

p(x, t) dx .

For diffusions, probability can enter or leave D only by crossing Γ. This is
related to the fact that Xt is a continuous function of t, so Xt must cross Γ if
it enters or leaves D.

The probability flux (or current) describes the “flow” of probability density.
Suppose x is a point in Rd and dS is a little piece of a surface. Suppose n =
(n1, . . . , nd) is the normal vector to the piece of surface and dA is its surface
area. Then the amount of probability crossing dS per unit time is F ·ndA, which

also may be written ntF dA or
(∑d

j=1 Fj(x, t)nj

)
dA. The rate of change of the

probability of D is the integral over the boundary of D

d

dt

∫
D

p(x, t) dx = −
∫

Γ

F t(x, t)n(x)dA(x) . (13)

Explanations: The minus sign on the right side assumes that n(x) is the outward
facing normal to Γ. Then F tn > 0 if F also points out of D. If flux (also called
current) is flowing out of D, then the probability of being inside D is decreasing.
In that situation (outward pointing flux, decreasing probability), the signs of
the two sides agree. The integral on the right involves the element of surface
area dA. In d dimensions, this is a d−1 dimensional “area”. For d−2, D is two
dimensional and Γ is one dimensional (a curve). In that case dA is a unit of arc
length on the curve. In four or more dimensions it may be hard to visualize.
The boundary of a four dimensional body is a three dimensional surface.

It might help your intuition about probability, and the flow of probability,
to think about probability density. One meaning of “density” is the number of
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particles per unit length, area, volume, etc. Imagine dust in air with a density
of 6 dust particles per cubic centimeter. This means that in a region that is
10 cm on a side (volume = 1000 cm), there are around 6 (particles/cm3) ×
1000(cm3) = 6000 particles. A probability density measures probability per
unit volume. You can turn this (approximately) into a number density by
imagining a large number of independent samples from a probability density.
Then the number of “particles” in a region is (approximately) proportional to
the probability of the region. In a diffusion process, the noise and drift keep
these particles in constant motion. If you have a piece of surface dS, some
particles will cross from right to left and some from left to right (some cross one
way, others cross the opposite way). The net number crossing (right crossings
minus left crossings) is proportional to to the probability flux across the surface,
which is the product of F (flux), n (unit normal to dS), and dA (the area). If
there is no noise, then all the particles near a point x move by approximately
a(x)dt in time dt. If there is noise and the particles move independently, then
each particle near x moves to a different nearby spot in time dt. The net flux
resulting from this random motion is F .

The divergence theorem gives the formula∫
Γ

F t(x)n(x) dA(x) =

∫
D

div(F )(x)dx =

∫
D

d∑
j=1

∂xj
Fj(x, t) dx .

Therefore, the integral probability flux formula (13) is equivalent to∫
D

∂tp(x, t) dx = −
∫
D

d∑
j=1

∂xj
Fj(x, t) dx .

This formula is true for every domain D. Therefore, it must be true pointwise,
which means that the integrands must be equal for every x and t. Thus, the
integral formula (13) is equivalent to the local flux formula

∂tp(x, t) = −
d∑

j=1

∂xj
Fj(x, t) . (14)

But we already have a formula for ∂tp(x, t), the forward equation (7). These
are consistent only with the flux formula

Fj(x, t) = −1

2

d∑
i=1

∂xj [µij(x)p(x, t)] + aj(x)p(x, t) . (15)

Thus, the forward equation (7) may be formulated as saying that the probability
density p(x, t) is the density of a quantity that satisfies a local conservation law
(14) with a flux (or current) given by a generalized Fick’s law (or Fourier law)
(15).

The two terms in the flux formula (15) have different interpretations. For
one dimensional Brownian motion, the first term simplifies to − 1

2∂xp(x, t). We
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used this formula in an earlier class when we were talking about hitting times.
It says that probability flows “downhill” from regions where p is large to regions
where it is smaller. If there is a high density of particles on one side of Γ and
a low density of particles on the other side, then more particles will cross from
the high density side to the low density side than will go the other way. The
net flux will be from high density to low density. If the infinitesimal variance µ
is constant, then the rate of flux is proportional to the infinitesimal variance –
faster diffusing particles move faster downhill the probability gradient. If µ is
not a constant, you must put µ(x) inside the derivative. The flux involves ∂x(µp)
rather than µ(x)∂xp. This may be understood from the martingale property of
diffusions (see below), but I don’t have a simple explanation here. The part of
the flux that comes from the noise term in the SDE is the diffusive flux (related
to diffusion) and is

F dif
j (x, t) = −1

2

d∑
i=1

∂xj [µij(x)p(x, t)] .

The other term in the flux is the advective flux

F adv
j (x, t) = aj(x)p(x, t) .

This is the flux that would remain if the noise coefficient in the SDE were zero.
In that case, a particle would be carried by the drift velocity a(x). The flux
would be equal the drift velocity (which is a(x)) multiplied by the probability
density. Advection and convection (I’m not sure what the difference is) refer to
heat or a chemical being carried along by a moving fluid (air or water). Without
noise, the the “diffusing” particles (with diffusion coefficient equal to zero) are
simply advected by the drift velocity. The full probability flux is the sum of the
diffusive flux, coming from the noise in the SDE, and the advective flux.

The probability flux is helpful for defining boundary conditions. If a diffusion
process is confined to a region of space, then the probability flux across the
boundary must equal to zero. [Warning: this statement is true in a simple
way in one dimension and for many multi-dimensional problems. For other
multi-dimensional problems it is possible to have a “boundary flux” that carries
probability along the boundary. This flux does not act in the interior but does
play a role in the boundary condition for p. It is sometimes called an oblique
boundary condition.]

5 Properties of the forward and backward equa-
tions

The forward equation (7) and the backward equation (5) have differences that
may be easier to remember if you understand some of their implications. One
difference is the sign of the diffusion term. For one dimensional Brownian mo-
tion, the backward equation becomes ∂tf = − 1

2∂
2
xf and the forward equation
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is ∂tp = 1
2p. The minus sign in the backward equation makes it “well posed”

(discussed next week) for propagating the value function backward in time. The
plus sign in the forward equation makes that one well posed for propagating the
probability density forward in time. The signs of the advection terms also have
interpretations, which are explored in next week’s assignment.

Another difference arises only when the infinitesimal mean and covariance
are not constant These are the “coefficients” in the forward and backward equa-
tions. They are differentiated in the forward equation but not the backward
equation. You can see why the coefficients are not differentiated in the back-
ward equation by asking what the the value function f(x, t) must be if the
payout V (x) = v is constant. In that case, obviously, f = E[v] = v, no mat-
ter what µij(x) and aj(x) are. The backward equation handles this by first
differentiating f and then multiplying by coefficients. If ∂xjf = 0 for all j (f
is constant “in space”), then ∂tf = 0 also. Constant “functions” satisfy the
backward equation.

The forward equation has its derivatives on the “outside”, which is seen
clearly in the flux formula (14). This enables the probability flux interpretation
of the forward equation. If you integrate the forward equation in any of its
forms (7) or (14), you get

d

dt

∫
Rd

p(x, t)dx = 0 .

This is consistent with the fact that the integral on the left side is equal to 1
for all t.

But why are there two derivatives on the outside in the diffusion term in the
forward equation? This is consistent with the fact that the diffusion process is
a martingale. Without drift, the SDE for a diffusion process is

dXt = b(Xt)dWt .

With no dt part, this describes a martingale (more on this point in coming
weeks). Therefore

d

dt
E[Xt] =

d

dt

∫
Rd

xp(x, t)dx = 0 .

In more than one dimension x is a vector, so this is supposed to hold for each
component xk. Using the forward equation (with no advection term), we can
calculate

d

dt

∫
Rd

xkp(x, t)dx =

∫
Rd

xk∂tp(x, t)dx

=
1

2

∫
Rd

xk

d∑
i=1

d∑
j=1

∂xi∂xj [µij(x)p(x, t)] .

As before, you integrate by parts to put the derivatives on the xk. First move
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∂xj , and you get

−1

2

∫
Rd

d∑
i=1

d∑
j=1

(∂xj
xk)∂xi

[µij(x)p(x, t)] dx .

Clearly, (∂xj
xk) = 1 if j = k and (∂xj

xk) = 0 otherwise. Therefore, the sum
over j just gives the j = k term and the integral becomes

−1

2

∫
Rd

d∑
i=1

∂xi [µik(x)p(x, t)] dx .

This integral is equal to zero because it is the integral of a derivative. If the
diffusive flux involved µij(x)∂xi

p(x, t), then after the integration by parts we
would have

−1

2

∫
Rd

d∑
i=1

µik(x)∂xi
p(x, t) dx .

This is not the integral of a derivative. In fact, another integration by parts
makes this

1

2

∫
Rd

d∑
i=1

[ ∂xi
µik(x)] p(x, t) dx .

If µ(x) is not constant, then this will not be zero in general.
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