
Stochastic Calculus, Courant Institute, Fall 2019
http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2019/StochCalc.html
Jonathan Goodman, September, 2019

Class 6, linear problems, more

1 Linear diffusions

Continuing from last week, a linear diffusion is one that satisfies an SDE of the
form

dXt = AXtdt+BdWt . (1)

The qualitative behavior is determined by the eigenvalues of A. We will use
eigenvalue and eigenvector analysis to study the qualitative behavior of the
PDF, Xt ∼ p(·, t) and of the auto-covariance function.

While talking about eigenvectors and eigenvalues, we discuss the special
case of a symmetric matrix, which will be called C below, for “covariance”.
One purpose of this discussion is to explain PCA, which is principal component
analysis. PCA is related to variational principles that describe eigenvalues and
eigenvectors of symmetric matrices. These motivate PCA. The orthogonality of
eigenvectors is one example of the fact that orthogonality can be a consequence
of minimizing or maximizing. Another purpose is to explain how to use the
basis of eivenvectors. The eigenvectors of a symmetric matrix “are” (usually
are and always may be taken to be) orthogonal to each other. The eigenvectors
of a general matrix (not necessarily symmetric) do not have to be orthogonal.
In that case, “expansion” in the basis of right eigenvectors requires us to know
left eigenvectors too.

Review, eigenvalues, eigenvectors, expansion

Here is a review of eigenvalue and eigenvector analysis. If this material is com-
pletely new to you, then look in a good linear algebra book. I recommend the
book by Strang and the book by Lax. I do not or explain why everything is
true.

The eigenvalues λj and right eigenvectors uj satisfy

Auj = λjuj . (2)

Even if A is real, the eigenvectors uj and the eigenvalues λj can be complex.
If an eigenvalue is not real, its complex conjugate also is an eigenvalue. The
complex conjugate of λ = µ+ iω is λ = µ− iω. Similarly, the complex conjugate
of a complex column vector is the complex column vector whose entries are the
complex conjugates

u =

u1...
un

 ⇐⇒ u =

u1...
un

 .
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This is not the same as the conjugate transpose, which is the row vector

u =

u1...
un

 ⇐⇒ u∗ =
(
u1 · · · un

)
.

If M is any matrix with complex entries, the conjugate transpose is M∗, which
has entries (M∗)ij = Mji. You take the transpose (take ij instead of ji) and

then the complex conjugate. If M is real (has real entries), then M∗ = M t.
What about uniqueness? If Au = λu and Au′ = λu′ (two different column

vectors, same λ), do we know that u = u′?
Complex conjugation “commutes with multiplication”. You can conjugate

first and then multiply, or you can multiply first and then conjugate. The answer
is the same. If z and w are two complex numbers, then zw = z w. This relation,
applied to the eigenvalue relation (2) leads to

Auj = λjuj .

This justifies the statement earlier, that if λ is an eigenvalue, then λ is an
eigenvector. If λ is not real, then λ is a different number. Eigenvalues and
eigenvectors come in complex conjugate pairs. The matrix A is diagonalizable
if there are n distinct right eigenvectors u1, . . ., un that are linearly indepen-
dent. The right eigenvector matrix is the matrix whose columns are the right
eigenvectors:

U =

 | |
u1 · · · un
| |

 .

Saying that the uj are linearly independent is the same as saying that V = U−1

exists. The eigenvalue matrix is a diagonal matrix with eigenvalues on the
diagonal:

Λ =


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn


The eigenvector/eigenvalue relations (2) may be written in matrix form as

AU = UΛ . (3)

The columns of the matrix on the left side are Auj , since

A

 | |
u1 · · · un
| |

 =

 | |
Au1 · · · Aun
| |

 .
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The columns of the matrix on the right side are λjuj , since (check this)

 | |
u1 · · · un
| |



λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn

 =

 | |
λ1u1 · · · λnun
| |

 .

The columns being equal are the eigenvalue/eigenvector relations (2).
If you multiply the matrix eigenvalue relation (3) from the left and from the

right by V = U−1, the result is

V A = ΛV . (4)

The rows of V are the left eigenvectors of A, just as the columns of U are the
right eigenvectors. Denote row j of V by vj . Then

V =

−− v1 −−
...

−− vn −−


The matrix equation (4) is

−− v1 −−
...

−− vn −−

A =


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn


−− v1 −−

...
−− vn −−

 .

Multiplying the two sides as before, we get−− v1A −−
...

−− vnA −−

 =

−− λ1v1 −−
...

−− λnvn −−

 .

The fact that row j on the right and left are equal is the left eigenvector/eigenvalue
relation

vjA = λjvj . (5)

The left eigenvector is a row vector that goes on the left of A.
The matrix equation that V = U−1 may be written as V U = I. We write
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this in more detail as

−− v1 −−
...

−− vn −−


 | |
u1 · · · un
| |

 =


v1u1 v1u2 · · · v1un

v2u1 v2u2
...

...
. . .

vnu1 · · · vnun



=


1 0 · · · 0

0 1
...

...
. . .

0 · · · 1


Compare elements and you see that

vjuk = δjk =

{
1 if j = k
0 if j 6= k

. (6)

These are biorthogonality relations. A left eigenvector vj is orthogonal to every
right eigenvector except uj . Different left or right eigenvectors do not have to
be orthogonal to each other.

If there is a basis of right eigenvectors (A is diagonalizable), then any vector
may be represented as a linear combination (weighted sum) of right eigenvectors.
For any x ∈ Rd, there are weights wk so that

x =

d∑
k=1

wkuk . (7)

This may be described by saying that x has been expanded in the basis uk
with expansion coefficients wk. The term expansion in this context refers to
representing a general object, x in this case, in terms of a fixed collection of
objects, uk in this case. Taylor series is another kind of expansion, where a
function f(t) is represented as a sum of powers of t:

f(t) =

∞∑
k=0

wkt
k .

In this case, the expansion coefficients wk are given in terms of the derivatives
f (k)(0). There also are Fourier expansions (representing a function in terms of
functions like uk(t) = eikt) and others.

The expansion coefficients wk in the right eigenvector expansion (7) are
found using the left eigenvectors vk:

wk = lkx . (8)

You can find this formula using the bi-orthogonality relations (6). Basic linear
algebra tells us that if there are d linearly independent vectors uk, then they
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are a basis, and therefore any x may be represented in terms of them as in (7).
We multiply both sides of (7) by vj and use the bi-orthogonality relations:

vjx = vj

(
d∑
k=1

wkuk

)
.

On the right, we take vj inside the sum. We move it past the coefficient wk,
which is just a number. The result is

vjx =

d∑
k=1

wk (vjuk) .

All the terms in this sum are zero, except the term k = j, which is 1. Therefore
vjx = wj , which is the expansion coefficient formula (8).

The eigenvector expansion (7) is useful for understanding solutions of the
differential equation

d

dt
x = Ax . (9)

Let xt be a solution. Then the expansion coefficients are “time dependent” (are
functions of t):

xt =

d∑
k=1

wk,tuk , wk,t = vkxt .

The coefficients satisfy differential equations, which we find by substituting the
expansion into the differential equation (9). On one side, we have

d

dt
xt =

d∑
k=1

dwk,t
dt

uk .

On the other side, we have

Ax = A

(
d∑
k=1

wk,tuk

)

=

d∑
k=1

wk,tAuk

Ax =

d∑
k=1

λkwk,tuk .

Therefore
d∑
k=1

dwk,t
dt

uk =

d∑
k=1

λkwk,tuk .
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Both sides represent expansions of the same vector in the same eigenvector
basis, therefore the expansion coefficients are the same (expansion coefficients
are unique). This gives, for each k = 1, . . ., d,

dwk,t
dt

= λkwk,t .

Of course, the solution is
wk,t = eλktwk,0 . (10)

The solution to the linear differential equation (9) is represented in terms of
exponentials involving the possibly complex eigenvalues λk and possibly complex
initial expansion coefficients wk,0. An example of this is in Assignment 7.

Symmetric matrices, principal components

The eigenvalues and eigenvectors for symmetric matrices have more structure
than for general matrices. They may be used for linear SDE if A is symmet-
ric (which happens in certain applications). They also may used for principal
component analysis of covariance matrices, as we will see.

The variational formulation is one way to understand the special features
of the symmetric eigenvalue/eigenvector problem. A variational formulation
of a math problem is a formulation that gives the answer as a maximizer or
minimizer of something. Variational principles not only explain some properties
of solutions, they also explain why solutions exist at all. It is easier to show that
one function has a minimum or a maximum than it is to show that a system
of equations in many variables has a solution. The variational formulation of
the symmetric eigenvalue problem explains the fact that eigenvalues are real
and the eigenvectors for different eigenvalues are orthogonal. It explains that
there is a full basis of orthogonal eigenvectors even when there are “multiple
eigenvalues” (more than one eigenvalue being equal).

The Rayleigh quotient is the function that is maximized or minimized to find
eigenvalues and eigenvectors. Let C be a symmetric d × d matrix and x 6= 0 a
d−component real column vector. The Rayleigh quotient is

R(x) =
xtCx

xtx
. (11)

[This is named for Lord Rayleigh, an English lord, whose actual name was
John William Strutt. He was a Cambridge professor in the late 1800’s and early
1900’s. His book Theory of Sound (where you can read about Rayleigh quotients
and many other things) is still in print.]

The numerator Q(x) = xtCx is the quadratic form based on C. For d = 1,
we could write Q(x) = Cx2. For higher dimensions, xtCx is a number. It
satisfies the binomial theorem in the sense that

Q(x+ y) = (x+ y)tC(x+ y) = xtCx+ 2xtCy + ytCy .
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This is true only if C is symmetric. Otherwise, the middle term would be
xtCy + ytCx. The middle term involves, B(x, y) = xtCy, which is the bilinear
form related from C. Bilinear means that it is linear as a function of x for every
y and linear in y for every x. That is,

B(ax1 + bx2, y) = aB(x1, y) + bB(x2, y) , for every y , and

B(x, ay1 + by2) = aB(x, y1) + bB(x, y2) , for every x .

If C is a symmetric matrix then B(x, y) is a symmetric function in that B(x, y) =
B(y, x).

Suppose Z = (Z1, . . . , Zd) is a d−component random variable and S =
x1Z1+ · · ·+xd, Zd is a linear combination. Let C cov(Z) be the d×d covariance
matrix of Z. Then the variance of S is the quadratic form involving C:

var(S) = xtCx . (12)

The Rayleigh quotient analysis of the variance of linear combinations is part of
principal component analysis. The eigenvectors of C (or possibly the eigenval-
ues) are principal components of C. If S1 = xt1Z and S2 = xt2Z, then

cov(S1, S2) = B(x1, x2) = xt1Cx2 .

If x1 and x2 are eigenvectors of C, then cov(S1, S2) = 0. Different eigenvectors
of C correspond to different linear functionals S that are uncorrelated.

Here’s the math relating stationary values of the Rayleigh quotient to eigen-
values. If f(x) is any function, then a point x∗ where ∇f(x∗) = 0 is a stationary
point. The corresponding value f(x∗) is the stationary value. A stationary point
can be a local maximum (if f(x∗) ≥ f(y) for y near x∗), a local minimum (if
f(x∗) ≥ f(y) for y near x, or a saddle point. A local maximum is a global
maximum if f(x∗) ≥ f(y) for all y. A local maximum is strict if f(x∗) > f(y)
for y near x∗ and y 6= x∗. A global maximum is strict if f(x∗) > f(y) for all
y 6= x∗.

Stationary points of the Rayleigh quotient R(x) are eigenvectors. The cor-
responding values of R are eigenvalues. The maximum of R is the largest eigen-
value and the minimum is the smallest. All eigenvalues between (λmin < λ <
λmax are saddle points.

Before getting to the good stuff about eigenvalues, we have to ask why the
Rayleigh quotient has stationary points at all. The function f(x) = x3 + x
has no stationary points. There is a basic principle that applies here: if f(x)
is continuous and defined on a subset of Rd that is closed and bounded, then
there is some x where f(x) is a maximum. A subset is S is bounded if there is
an r so that |x| ≤ r for all x ∈ S. Such an r is a upper bound for the sizes of |x|
for x ∈ S. The subset S ⊆ Rn is closed if it contains all its limit points. That
means that if xn ∈ S and xn → x as n→∞, then x ∈ S. An example in d = 1
is the interval [0, 1] which includes the endpoints 0 and 1. If 0 ≤ xn ≤ 1 and
xn → x as n→∞, then 0 ≤ x ≤ 1. If you leave out the endpoint x = 0 to get
S = (0, 1], then the set is no longer closed. The points xn = 1

n have xn → 0.
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But 0 6= S. The function f(x) = 1
x is continuous on this set (0, 1], but it has no

maximum value. Also, the function f(x) = 1− x has maximum value f(0) = 1,
but 0 /∈ S and f(x) < 1 for x ∈ S. This, again, f(x) does not have a maximum
value in S.

These things do not happen for closed and bounded sets. The function
f(x) = 1

x is not continuous on the closed set [0, 1]. It does not even have a
value (you might call it ∞, which is not a number) for x = 0. The function
f(x) = 1 − x has maximum value f(0) = 1. A closed and bounded S ⊆ Rd is
called compact. But it might seem that (0, 1] (the point zero left out) is just
as “compact” as [0, 1] (zero included). In d > 1 dimensions, the unit sphere of

points |x| = (xtx)
1
2 is compact. It is clear bounded (with r = 1). The limit

of a sequence with |xn| = 1 has |x| = 1. This unit sphere is called Sd−1. It is
a theorem that a continuous function on a compact set has a maximum and a
minimum. If you have not seen a proof, I hope the examples make the theorem
seem reasonable. This is an “existence theorem” that says the maximum and
minimum exist. But it does not say how to find them. An existence theorem
that is not “constructive” (contain a recipe for finding it) may seem more like
philosophy than mathematics.

The Rayleigh quotient R(x) defined in (11) is defined for all x ∈ Rd with
x 6= 0. This is not a compact set, so the theorem does not directly apply. The
trick is to realize that R(x) is scale invariant, which means that R(ax) = R(x)
for any number a. The scale invariance is a consequence of the fact that R is a
quotient of two quadratic forms, each of which gets a factor of a2 when scaled.
That is Q(ax) = (ax)tC(ax) = a2xtCx = a2Q(x), and (ax)t(ax) = a2xtx.
These a2 factors cancel in the ratio (11). If x 6= 0 is any vector, then there
is an a so that |ax| = 1. Therefore, the maximum value of R is the same as
the maximum value of R for |x| = 1. The set of vectors with |x| = 1 is called
the unit sphere, and it is compact. But you don’t have to restrict to the unit
sphere when minimizing. Any minimizer (an x∗ ∈ Rd that minimizes R(x)) has
∇R = 0.

The relation between R and eigenvalues comes from the formula for ∇R.
The quotient rule from calculus is one part of this calculation:

∇R(x) = ∇Q(x)

xtx

=
∇Q(x)

xtx
− Q(x)

xtx

∇xtx
xtx

=
∇Q(x)

xtx
−R(x)

∇xtx
xtx

.

We need a formula for ∇Q(x) = ∇xtCx, starting with a formula for xtCx.
First,

xtCx =

d∑
j=1

xj (Cx)j .
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The matrix vector formula gives

(Cx)j =

d∑
k=1

Cjkxk .

We put these together to get

xtCx =

d∑
j=1

(
d∑
k=1

Cjkxk

)

=

d∑
j=1

d∑
k=1

xjxkCjk .

Component i of ∇xtCx is

∂xi

d∑
j=1

d∑
k=1

xjxkCjk =

d∑
j=1

d∑
k=1

(∂xi
xjxk)Cjk .

There are three ways the term ∂xi
xjxk can be different from zero:

1. i = j and j 6= k. Then the result is xk. The sum of these terms is∑
k 6=i

Cikxk .

It’s Cik because j = i.

2. i = k and j 6= k. Then the result is xj . The sum of these terms is∑
j 6=i

Cjixj .

Note that i is the second index here (Cji) and the first index above. This
does not matter if C is symmetric, so Cji = Cij . We can call the sum-
mation variable k instead of j. Adding this sum to the previous one gives
simply

2
∑
k 6=i

Cikxk .

3. i = j = k. Then the result is 2xi. The term is 2Ciixi. This is the term
missing in the sum

∑
k 6=i.

We put it in and get

∂xi
xtCx = 2

d∑
k=1

Cikxk = 2 (Cx)i .
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On the right, we recognize the sum as component i of Cx. This shows that

∇Q(x) = ∇xtCx = 2Cx . (13)

In dimension d = 1, this becomes d
dxCx

2 = 2Cx, which is the formula from
ordinary calculus.

If C is not symmetric, the formula is (you can check this)

∇xtCx = Cx+ Ctx = 2

[
1

2

(
C + Ct

)
x

]
.

The matrix 1
2 (C + Ct) is called the symmetric part of C. The anti-symmertic

part is 1
2 (C − Ct). The symmetric part is a symmetric matrix and the anti-

symmetric part is anti-symmetric (check this). You can see that C is the sum
of its symmetric and anti-symmetric parts. If C is symmetric then C is equal
to its symmetric part and its anti-symmetric part is zero. The gradient of xtCx
involves only the symmetric part of C. In fact, the quadratic form Q(x) = xtCx
only “sees” the quadratic part of C. Since Q is a number, it is equal to its
transpose. Therefore

Q = Qt =
(
xtCx

)t
= xtCt

(
xt
)t

= xtCtx .

Thus the quadratic form based on C and the one based on Ct are the same,
they produce the same values. The average of them also produces this value.
The average is

1

2

(
xtCx+ xtCtx

)
= xt

[
1

2

(
C + Ct

)]
x .

This is the quadratic form based on the symmetric part of C. The conclusion
is: if you have a quadratic form involving a matrix C, you may as well use the
symmetric part of C instead. In other words, any quadratic form is equivalent
to a quadratic form with a symmetric C.

This fact may seem interesting, but it is not necessary to symmetrize (take
the symmetric part) in most applications. If you have a quadratic form that
came from some problem, the matrix C probably was symmetric already. For ex-
ample, a covariance matrix is symmetric. Other quadratic forms arise naturally
in other problems. I don’t know any of them that isn’t naturally symmetric.

Back to the Rayleigh quotient, our gradient formula (13) allows us to com-
pute

∇R =
2

xtx
Cx− 2

xtx
R(x)x . (14)

If we set the gradient to zero to find a stationary point, the result (cancelling
common factors) is

Cx∗ = R(x∗)x∗ . (15)

This implies that x∗ is an eigenvector and λ = R(x∗) is the corresponding
eigenvalue. To summarize: let u1 ∈ Rd be the vector that minimizes R(x) with
‖u1‖ = 1. Then this u1 is an eigenvector of C with eigenvalue λ1 = R(u1). If x
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is any other eigenvector of C, which satisfies Cx = λx, then λ ≥ λ1. This last
claim true because you can calculate the Rayleigh quotient for an eigenvector:

R(x) =
xtCx

xtx
=
xtλx

xtx
= λ .

Since u1 minimized R, the value λ cannot be lower than the minimum, which
is λ1.

The eigenvalues λ2 ≥ λ1 and λ3 ≥ λ2 also have variational principles. For
these we need to talk about orthogonal complements and invariant subspaces, as
well as Rayleigh quotients. If T ⊆ Rd is a subspace, the orthogonal complement
is the set of vectors x ∈ Rd that are orthogonal to T (orthogonal to every vector
in T . It is written T ⊥. We will call it S. It is defined by

x ∈ T ⊥ ⇐⇒ xty = 0 for all y ∈ T .

[“Complement” with an “e” is something that makes something complete. The
subspace S ⊆ Rd completes T in the sense that S and T together span all of
Rd. “Compliment” with an “i” means to say something nice about someone.
Subspaces don’t do that.]

The subspace S is invariant under the “action” of a matrix C if x ∈ S =⇒
Cx ∈ S. The word “invariant” means that C does not change S. Vectors in S
“go to” other vectors in S under the action of C, so the vectors are not invariant.
But the subspace as a whole stays the same. Alas, this is not quite true. Define
the set CS to be “image” of S under the action of C. That is

CS = {Cx | x ∈ S} .

Invariance maybe should mean that CS = S. But our definition is only that S
is invariant if CS ⊆ S. It can happen that this inclusion is strict, which means
that there is some x ∈ S so that x /∈ CS. If S is invariant under the action
of C, then C is a linear transformation on S. The inclusion CS ⊂ S is strict
if and only C is singular (in the sense of singular matrices or singular linear
transformations) as a linear transformation of S.

The variational principles for λ2, is based on the fact that the orthogonal
complement of u1 is invariant under the action of C. [This is an “abuse of
terminology” because the subspace T is replaced by the vector u1, but being
orthogonal to u1 is the same as being orthogonal to the vector space “generated
by u1.] The orthogonal complement of u1 is the set of vectors with xtu1 = 0.
Call this subspace S2. We will see that u2 with Cu2 = λ2u2 is in S2. The
definition is

x ∈ S2 ⇐⇒ xtu1 = 0 .

We will show that S2 is an invariant subspace for C. This is the same as saying
that if xtu1 = 0, then (Cx)tu1 = 0, so Cx ∈ S2 also.

This is a proof by contradiction. We will see that if S2 is not invariant,
then u1 is not the minimizer. More concretely, if there is an x with xtu1 = 0
but (Cx)tu1 6= 0, then ∇R(u1) 6= 0. In fact, not only is the gradient of R
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at u1 not equal to zero, but the directional derivative in the x direction is
not zero. That means that you can find a lower value of R by moving in
the x direction (possibly in the −x direction). Roughly speaking, if xtu1 = 0
(x is perpendicular to u1), then (draw a picture) ‖u1 + εx‖ ≈ ‖u1‖. More
precisely, ‖u1 + εx‖ = ‖u1‖ + O(ε2) (Calculations below). On the other hand,
if (Cx)tu1 6= 0, then (u1 + εx)tC(u1 + εx) = ut1Cu1 +O(ε). If ε is small enough,
the O(ε) is bigger than O(ε2).

The directional derivative/gradient calculation is motivated by the geometry
of the previous paragraph but it skips the O(·) stuff. The gradient formula (14)
leads to (using ut1u1 = 1)

∇R(u1) = 2Cu1 − 2R(u1)u1 .

Suppose xtuu = 0 but xtCu1 6= 0. Then the directional derivative in the x1
direction at u1 is

xt∇R(u1) = 2xtCu1 − 2R(u1)xtu1 6= 0 .

That’s it. If u⊥1 = S2 is not an invariant subspace, then u1 does not minimize
R.

This happens in other places – the minimizer has extra orthogonality prop-
erties. A very simple example: take x ∈ Rd and let T be a subspace. Let y ∈ T
be the point in T closest to x in the sense that ‖x− y‖ = [(x− y)t(x− y)]

1
2 is

minimized over all y ∈ T . Then (x − y) is perpendicular to T (draw a picture
in the plane with T being a line that does not go through x). That is, if z ∈ T ,
then (x− y)tz = 0. It’s a similar proof by contradiction. If (x− y)tz 6= 0, then
‖x− (y + εz)‖ can be made smaller than ‖x− y‖ by taking ε small enough and
with the correct sign.

Now we know that S2 is an invariant subspace for C. That is, C acts on
the vector space S2. We can minimize the Rayleigh quotient over S2 (leave out
x = 0) and find a number λ2 as the minimum value:

λ2 = min
x∈S2,x 6=0

R(x) .

The value is λ2 ≥ λ1. This is because λ1 was the overall minimum and λ2 is the
minimum only considering “people” in S2. We also saw that the minimizer is
an eigenvector. Since S2 is an invariant subspace, if u2 is an eigenvector in S2,
then u2 is an eigenvector in Rd. More simply, the equation Cu2 = λ2u2 holds
in S2, so it also is true in Rd. It is the same C and matrix multiplication means
the same thing.

We can continue in this way. Define S3 to be the orthogonal complement of
the vector space spanned by u1 and u2. Or (this is equivalent), define S3 to be
the orthogonal complement to u2 in S2. Then S3 also is an invariant subspace
for C. Minimizing R over S3 gives u3 and λ3 = R(u3) ≥ λ2 ≥ λ1.

This process stops when we run out of dimensions. The orthogonal comple-
ment to u1 is defined by one constraint, so it has dimension d−1. The dimension
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of S3 is dim(S2)− 1 = d− 2, and so on. The result u1, . . ., ud, all normalized,
all orthogonal, all eigenvectors.

The maximum of R(x) is given by λn = R(un). This is because λ1 ≤ · · · ≤
λn = R(un). Therefore, we could have found the eigenvalues and eigenvectors
starting from the top and working down rather than starting at the bottom and
working up. This would have been

λn = max
x 6=0

R(x)

λn−1 = max
x 6=0,xtun=0

R(x)

etc.

The arguments about orthogonal complements and invariant subspaces apply
equally well if we do it this way (check if you don’t believe this). It may have
been better to do this, given that PCA uses the eigenvalues and eigenvectors
starting from the top. But it’s traditional to take λ1 ≤ λ2 ≤ · · · , so we would
have had to call the first (largest) eigenvalue λn.

Principal component analysis

Principal component analysis, usually called PCA, refers to using the eigenvec-
tors and eigenvalues of C to find components of the random variable X that have
the largest variance. Let X be a d component random variable with covariance
C. The components of X is the eigenvector directions are

Yk = utkX .

The Yk may be called principal components, or the eigenvectors uk may be
called that. The Yk may have a stronger claim to the name because they are
components of X, in the sense of linear algebra. We will call the eigenvectors
principal directions, but that is not a standard term. It is common that a
multi-component random variable is highly variable in some directions and has
less variation in other directions. If v ∈ Rd, the variance corresponding to v
might be var(vtX). This can be increased or decreased by scaling v, which is
cheating. Therefore, we require that ‖v‖ = 1. If we maximize the variance with
this constraint, the problem is

max
‖v‖=1

var(vtX) .

But we have the variance formula (12), so this is λn. The corresponding v is
un. For this reason, Yn = utnX is called the largest principal component of X.

The second largest principal component is a random variable vtX that is
uncorrelated with Yn that has the largest variance. The covariance of Z = vtX
with Yn is vtCun = λnv

tun. The random variables are uncorrelated if v is
orthogonal to un, which is vtun = 0. If we maximize the variance of Z with the
constraint ‖v‖ = 1 and vtun = 0, the answer is (we saw above) v = un−1. This
makes Yn−1 = utn−1X the second largest principal component of X.
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Statisticians talk about explained and unexplained variance. When talking
about data, this is the explained and unexplained sum of squares. Suppose Z
and W are correlated random variables both with mean zero. A linear prediction
of Z using W is a formula Ẑ = βW . The variance of Z is (given that Z has
mean zero)

σ2
Z = E

[
Z2
]
.

The explained variance is the variance of the predictor

σ2
Ẑ

= E
[
Ẑ2
]
.

[Coefficients like β may be called regression coefficients and are often denoted
by β.] The mean square prediction error is

R2 = E

[(
Z − Ẑ

)2]
.

[Here, “mean” means “average” or “expected value”. R2 is the expected value
of the square of the prediction error.] The optimal β is the value of beta that
minimizes the mean square prediction error. The next paragraph has a for-
mula for it. The optimal mean square prediction error is also the unexplained
variance, because of the formula

σ2
Z = σ2

Ẑ
+R2 . (16)

This formula looks like the Pythagorean theorem. Like the Pythagorean theo-
rem, this formula is related to orthogonality. Minimizing the prediction error,
it turns out, is equivalent to making the prediction error “orthogonal to” (un-
correlated to) the estimator.

The calculation of the optimal regression coefficient β will be familiar to
many. You write the mean square prediction error as a quadratic in β, then
optimize the quadratic. That is:

E

[(
Z − Ẑ

)2]
= E

[
(Z − βW )

2
]

= E
[
Z2 − βZW + βW 2

]
= σ2

Z − βcov(Z,W ) + β2σ2
W .

The maximum of this satisfies

2cov(Z,W ) = 2βσ2
W =⇒ β =

cov(Z,W )

σ2
W

.

The covariance of the prediction error with the prediction variable is

cov(Z − Ẑ,W ) = cov(Z,W )− βσ2
W

= cov(Z,W )− cov(Z,W )

σ2
W

σ2
W

= 0 .
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This leads to the orthogonality formula (16), starting with the representation
of Z as the sum of the prediction and the prediction error:

Z = Ẑ +
(
Z − Ẑ

)
.

The expected square is

E
[
Z2
]

= E

[
Ẑ2 + 2Ẑ

(
Z − Ẑ

)
+
(
Z − Ẑ

)2]
= σ2

Ẑ
+ 0 +R2 .

This is the formula (16) writing the total variance as the sum of the explained
variance and the unexplained variance. We review it here because it is important
and because it motivates a similar discussion involving principal components.

Suppose we “predict” the d component random variableX using the k largest
principal components. The predictor is

X̂k = Ynun + Yn−1un−1 + · · ·+ Yn−k+1un−k+1 .

For example, you can check that k = 1, only the one largest principal component,
leads to one term on the right. We want something like the variance to measure
the size of X. Since X is a vector, we can use the 2 norm, which is

‖X‖2 = XtX =

n∑
j=1

X2
j .

But this is random, we use its expected value

S2
X = E

[
XtX

]
.

The size of the prediction is

S2
X̂k

= E
[
X̂t
kX̂k

]
.

The size of the error, measured this way, is

R2
k = E

[(
X − X̂k

)t (
X − X̂k

)]
.

The orthogonality built into the uj leads to approximation formulas like for
linear regression above. Analogous to (16), we have a multi-component version

S2
X = S2

X̂k
+R2

k . (17)

Each of these quantities may be expressed in terms of the eigenvalues of
C (also called principal components, wrongly I would argue, but still). The
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formulas are

S2
X =

n∑
j=1

λj (18)

S2
X̂k

=

n∑
j=n−k+1

λj (19)

R2
k =

n−k∑
j=1

λj (20)

Recall that λj = var(Yj). The “explained sum” involving the principal compo-
nents used (19) is equal to

n∑
j=n−k+1

var(Yj) .

You explain the most of X by using the principal components with the largest
variances. The proof is a calculation that uses orthogonality of the eigenvectors.
One of these calculations will explain how to do the other ones and make the
identities (18) (19) and (20) clear. You can see that our explained/unexplained
thing (17) follows from these. Here is the verification of (20). It uses the trick
that represents the square of a sum as a double sum∑

j

aj

2

=
∑
i

∑
j

aiaj .

R2
k = E

[(
X − X̂k

)t (
X − X̂k

)]

= E

n=k∑
j=1

Yjuj

tn=k∑
j=1

Yjuj


= E

 n=k∑
i=1

n=k∑
j=1

YiYju
t
iuj


=

n=k∑
i=1

n=k∑
j=1

E[YiYj ]u
t
iuj .

The uj are ortho-normal, so utiuj = 0 unless i = j, and then utjuj = 1. Also,
E[YjYj ] = λj . Therefore,

R2
k =

k∑
j=1

λj .

This is it.
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