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Class 5, multi-component diffusions

1 Introduction

A stochastic dynamic model can have more than one component. Financial
models used for planning investments, to take one example, model the simulta-
neous price changes of multiple assets. Engineering models need many variables
to model the many moving parts of the device.

A multi-component stochastic process with d components (d is for dimen-
sion) is a random function of time, writtenXt ∈ Rd. We writeXt = (X1,t, . . . , Xd,t)
when we need to talk about the individual components. If we have to do linear
algebra, we may treat Xt as a column vector

Xt =



X1,t

...
Xj,t

...
Xd,t

 .

The component Xj,t might represent price of asset j at time t, or it might
represent the distance between car j and car j + 1 at time t.

Much of what this course has said about one component diffusions applies
in a straightforward way to multi-component diffusions, but there are some
new issues that do not arise in one component problems. We use p(x, t) to
denote the PDF of Xt. This looks the same as before, but now there are d
variables x = (x1, . . . , xd). The infinitesimal mean is as before, except that in
the expression both sides have d components. Choose ∆t > 0 and define the
change to be ∆X = Xt+∆t −Xt. The infinitesimal mean is defined by

E[ ∆X | Xt = x] = a(x)∆t+ o(∆t) .

The “infinitesimal variance” is now a d × d matrix we call the infinitesimal
covariance

E
[

∆X∆Xt | Xt = x
]

= µ(x)∆t+ o(∆t) .

The expected value of a vector or matrix function in these formulas is done
“componentwise”. Note that if ∆X is a column vector then ∆X∆Xt is a d× d
matrix, so its expected value, which is approximately µ(x)∆t, is a d×d matrix.

A d component diffusion process satisfies an SDE of the form

dXt = a(Xt)dt+ b(Xt)dWt . (1)
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The drift coefficient (the infinitesimal mean) a(x) is a d component column
vector. The Brownian motion is an m component multi-dimensional Brownian
motion. The dimension of the driving Brownian motion is the number of sources
of noise. To be stochastic, there needs to be at least one source, so m ≥ 1. Many
SDE models have m = d, which usually gives a non-degenarate diffusion. Other
SDE models have m < d, which leads to a degenerate diffusion. A model with
m > d can always be replaced in a simple way by a model with m = d. There
is no reason to study diffusions with more sources of noise than components.
The noise coefficient b(x) is a d ×m matrix. It is related to the infinitesimal
covariance (we will see) by

µ(x) = b(x)bt(x) . (2)

For single component diffusions, this is the µ = b2 formula we had before. For
d components, the right side is a d ×m matrix multiplying an m × d matrix,
which gives a d× d matrix. µ is singular (degenerate) if m < d.

The generator of the diffusion process is a partial differential operator. If
g(x) = g(x1, . . . , xd), then

Lg(x) =

d∑
j=1

aj(x)∂xjg(x) +
1

2

d∑
j=1

d∑
k=1

µjk(x)∂xj∂xk
g(x) . (3)

This turns into the generator formula we had before when d = 1. You will come
to think of this as the natural version for d ≥ 1. The value function is for simple
expected values is

f(x, t) = Ex,t[ v(XT )] . (4)

The backward equation for this value function is

∂tf(x, t) + Lf(x, t) = 0 . (5)

The backward equation has this form for every Markov process, unless the
Markov process is so weird that it doesn’t have a generator at all. Each Markov
process has its own generator. The generator for a multi-component diffusion
process has the form (3).

There are two general ways to get information about multi-component diffu-
sions, numerical solution of backward equations and numerical simulation. The
backward equation (or any PDE) requires a grid. Grids in high dimensions are
impractical, so numerical solution of the backward equation is only practical for
problems with a small number of components. More than four is likely to be
impractical unless you have a very big computer. More than six wi probably im-
practical even with a big computer. Numerical simulation is practical for more
complicated systems. As we have seen already, Monte Carlo results are noisy.
It takes many sample paths to get an accurate average. Stochastic calculus can
help design better simulation strategies. In finance, the simplest thing of a given
type is often called “vanilla”. [Vanilla is the simplest flavor of ice cream.] Fancy
simulation methods can give results that are more accurate than those from
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vanilla methods. We will see in this course examples of two fancier simulation
strategies, control variates and importance sampling. Importance sampling for
SDE problems often uses the Girsanov re-weighting theorem, which comes later
in the course.

Let p(·, t) be the PDF of Xt. This is the same as the one component case dis-
cussed in earlier classes, except that now there are d coordinates x = (x1, . . . , xd)
as arguments to p. A steady state of the SDE (1) is a function p(x) so that if
Xs ∼ p(·) then Xst ∼ p(·) also. It is a theorem that unless the SDE is de-
generate in some obvious way (more degenerate than just being a degenerate
diffusion), and if there is a steady state, then

p(·, t)→ p(·) as t→∞ .

If there is a steady state, then the probability density converges to that steady
state as t → ∞. While the PDF has a limit, the path Xt continues to have
random fluctuations. A statistical steady state is a steady state for the PDF, not
forXt. A steady state is sometimes called an equilibrium for the SDE. [Physicists
use the term equilibrium for a steady state only if the SDE is “reversable”,
whatever that means.] A diffusion process in finance is called an equilibrium
model if the SDE has a steady state. Stock price models are not equilibrium
models, because the PDF for a stock keeps spreading as t→∞. But models of
interest rates can be equilibrium models if there is a long term PDF of interest
rates. The long term mean may be 3% or so with fluctuations around this value
not decreasing nor growing as t→∞.

Linear multi-component diffusions can behave in many different ways. Im-
portantly, it is possible to understand properties of linear diffusion processes in
more detail than is possible for non-linear diffusions. In particular, the auto-
covariance structure (covariance between Xt1 and Xt2) may be calculated using
the matrices describing the diffusion. If you observe a time series that you want
to model, and if that time series is not Markov in itself, you might think of
modeling it as one component of a linear multi-component diffusion. You might
look for a diffusion that produces the auto-covariance structure of your time
series.

2 Sources of noise

A “standard” m−component Brownian motion is

Wt =

W1,t

...
Wm,t

 .

Each component process Wj,t is a standard Brownian motion (E[∆Wj ] = 0, and
E[∆W 2

j ] = ∆t) as described in classes 1 - 4. The components are independent.
This means that the time t covariance matrix is (with I being the m×m identity
matrix)

cov(∆W ) = E
[

∆W∆W t
]

= ∆tI .
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You can define m−component Brownian motion directly. It’s a random process
with Xt ∈ Rm with the independent increments property and ∆W ∼ N (0,∆tI).
This is the same thing. If one-component random variables are each one dimen-
sional Gaussians, and if they are independent, then they form a multi-component
Gaussian.

A multi-component diffusion, Xt, that is driven by an m−component stan-
dard Brownian motion is said to have m sources of noise. Each independent
component of Wt is an independent source of noise. Being “driven by” means
thatXt satisfies the SDE (1) with an n×m noise coefficient matrix b(x). A “driv-
ing force”, or “external force” (or “exogenous input”, if you’re an economist) in
a differential equation is a term F (t) so that ẋ = f(x) + F (T ). In differential
form, it would be dx = f(x)dt + F (t)dt. For diffusions, this takes the form of
b(x)dWt.

Independent noise sources in (1) create correlated noise for the components
dXj . You can think of a two component diffusion as

dX1 = a1(X)dt+ noise1

dX2 = a2(X)dt+ noise2 .

As an example, think of X1,t and X2,t as the prices of stock 1 and stock 2. The
noise that drives stock 1 is not independent of the noise that drives stock 2.
If stock 1 goes up, there is an increased likelihood that stock 2 goes up. The
noise coefficient matrix b(x) in the SDE (1) creates these correlations. In the 2
component case, they are

dX1 = a1(X)dt+ b11(X)dW1,t + b12(X)dW2,t

dX2 = a2(X)dt+ b21(X)dW1,t + b22(X)dW2,t .

Comparing these expressions, we see

noise1 = b11(X)dW1,t + b12(X)dW2,t

noise1 = b21(X)dW1,t + b22(X)dW2,t .

If b11 6= 0 and B21 6= 0, then W1,t “drives” both components. This creates a
correlation between noise1 and noise2. When you’re building a diffusion process
model for something, you may know the noise coefficient matrix and calculate
the infinitesimal covariance, or you may know the infinitesimal covariance and
invent a b that creates it. In the second case, modeling using the SDE (1) may
seem a little artificial.

There is a “uniqueness theorem” that says that if two diffusion processes
have the same infinitesimal mean a(x), and the same infinitesimal (co)variance
µ(x), then they are the same process (more precise statement in a future class).
[Something is “unique” if there is only one of that something. An equation
has a unique solution if it has only one solution. The equation x2 = 2 has
two solutions. The equation x3 = 2 has a unique solution (if you allow only
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real numbers x). An SDE has a unique solution (unless it’s a bad SDE). The
uniqueness theorem for diffusion processes is about probability distributions in
path space, which we talk about in later classes.] But there are different b(x)
noise coefficient matrices that give the same infinitesimal covariance µ(x) =

b(x)bt(x). In fact if b(x) and b̃(x) = b(x)q(x), with qqt = I, then b and b̃ lead
to the same infinitesimal covariance matrix. For non-degenerate diffusions, if
bbt = b̃b̃t, then there is a q so that b̃ = bq.

3 Linear systems

A linear system is an SDE of the form

dXt = AXtdt+BdWt . (6)

If the initial data X0 is Gaussian, then Xt is Gaussian for later times (we will see
this). Linear processes like this have many uses. For one thing, you may just be
modeling a linear system or one that is approximately linear. Otherwise, systems
like this are convenient ways to make noise (random processes) with interesting
correlation structure. When you’re trying to model random time series that you
don’t understand well (fluctuations in prices, wind patterns, etc.), you may just
want to “build” a linear model that has a similar “correlation structure”.

A linear diffusion may have a steady state or not. A steady state probability
density is u(x) so that if Xt ∼ u then Xt+s ∼ u for s > 0. The time dependent
PDF for any diffusion satisfies a forward equation (a PDE described in a future
class). If Xt ∼ u(·, t), then u(·, t) satisfies that forward equation. It may happen
that there is a u(x) so that u(x, t) → u(x) as t → ∞. This u(x) is the steady
state. Much of this section is about linear diffusions that have a steady state.

For any time series, the lag t auto-covariance function (sometimes called the
matrix auto-covariance function) is the lag t covariance matrix

C(t) = lim
s→∞

cov(Xs, Xs+t) . (7)

The limit exists (we will see in a moment) if and only if there is a steady state.
It may happen that you do not “observe” the whole state Xt ∈ Rn, but only
one component (say, X1,t) or a “linear functional” Yt = vtXt, where v ∈ Rn
represents a linear combination of the components Xj,t. The time series you
observe may be just Yt instead of the whole Xt. This time series has “correlation
structure” given by the scalar auto-covariance function

Cv(t) = lim
s→∞

cov(Ys, Ys+t) (8)

If you have a Yt with a complicated auto-covariance structure, you can try to
build matrices A and B so that the resulting scalar auto-covariance function
matches what you see.

Much of what we need to know about solutions and auto-covariance functions
for the SDE (6) is determined by the ODE

dx = Axdt , equivalently ẋ = Ax . (9)
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Much of the information we need about this is determined by the eigenvalues
of A. Here is a quick review of this stuff. Many students will be familiar with
this material, though possibly with different notation. The solution of the linear
ODE system (9) may be expressed in terms of a matrix function S(t) called the
fundamental solution. This is a matrix that satisfies

d

dt
S(t) = AS(t) , S(0) = I .

The solution is
xt+s = S(t)xs .

The fundamental solution St advances the solution by a time t.
The fundamental solution may be constructed in terms of the eigenvalues

and eigenvectors of A. The precise formula will be next week, but it involves
a lot of numbers related to eigenvectors, and the functions eλjt, where the λj
are the eigenvalues of S. The eigenvalues generally are complex, which we write
λj = µj + iωj , with µj and ωj being real. These are the real part and imaginary
part of λj , and written µj = Re(λj) and ωj = Im(λj). The exponential of a
complex number may be written as

eλjt = eµjteiωjt = eµjt (cos(ωjt) + i sin(ωjt)) .

The exponential eλjt is an exponentially growing if µj = Re(λj) > 0 and expo-
nentially decaying if Re(λj) < 0. You can plot the point λj in 2d by giving it
coordinates (µj , ωj). The points with µ = 0 correspond to the “y axis”, which
is the imaginary axis. A point with µ < 0 is in the left half plane. A point
with µ > 0 is in the right half plane. An eigenvalue λj in the left half plane cor-
responds to stable dynamics in that eλ+jt converges to zero exponentially. An
eigenvalue λj in the right half plane corresponds to strongly unstable dynamics
in that eλ+jt grows exponentially. The matrix A is stable if all its eigenvalues
are in the left half plane. The matrix A is unstable if it has any eigenvalues in
the right half plane. An eigenvalue on the imaginary axis is called neutrally sta-
ble because the exponential neither grown nor decays. For the linear SDE (6),
there is good reason (explained next week) to classify the system as unstable.
If A is a stable matrix, then S(t)→ 0 exponentially as t→∞.

The ODE
ẋt = Axt + Ft (10)

is called homogeneous. The English word “homogeneous” means “all the same”.
A group of rocks is homogeneous if they all have the same color, size, and shape.
The rocks are inhomogeneous if they have different sizes or shapes, etc. If the
“forcing function” F (t) depends on t, in that it is different for different values
of t, then the equation (10) is “inhomogeneous”. As often happens, the math-
ematical meaning is a bit different from the meaning in ordinary language. In
economics, the function F (t) might be called exogenous, which means “specified
from the outside”. In an economic model, a function is exogenous if it is deter-
mined by something outside the model and endogenous if it is determined by
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the model itself. You might say that x(t) is determined endogenously by (10)
from the exogenous F .

The solution of the inhomogeneous ODE system (10) satisfies

xt = S(t)x0 +

∫ t

0

S(t− t′)Ft′ dt′ . (11)

This formula is called Duhamel’s principle. Suppose A is stable. Then xt
“forgets” the initial data x0 because the contribution S(t)x0 converges to zero
exponentially. In the integral, the forcing with small t′ (time close to zero) also
carries exponentially small weight. The forcing carries more weight when t− t′
is not large, which is for t′ close to t. That is, xt “knows most” about forcing
that happened “recently” (t′ close to t) and has little memory of forcing that
happened long ago.

You can verify the Duhamel formula (11) by differentiating the right side
with respect to t. The integral depends on t in two ways, through the upper
limit of integration and through S(t− t′). With some algebra, you see that the
x given by the Duhamel formula (11) satisfies the inhomogeneous ODE (10).
But the formula is natural without this mathematical verification. The ODE
is linear, so the sum of solutions is a solution. In the integral part of (11),
the contribution S(t− t′)Ft′dt′ is the influence of the force between times t′ and
t′+dt′ on xt. The delay between t′ and t is t−t′, which is how long the influence
at time t′ has been acting. That explains the S(t − t′). The ODE is linear, so
the total solution is given as a sum (an integral) of all the individual influences
at times t′ < t.

The linear SDE (6) has exogenous forcing Wt. If we put this into Dummel’s
formula, the result is

Xt = S(t)X0 +

∫ t

0

S(t− t′)dWt′ . (12)

Now the right side is an Ito integral involving the Brownian motion Wt. We can
verify this formula using Ito’s lemma, but its intuition should make it believable
for now.

The point is: If A is a stable matrix if and only if the linear SDE 6 is an
equilibrium model. An equilibrium model must “forget” the initial distribution
(because the limit distribution is the same no matter what the initial distribution
was). If X0 = x0 is deterministic, then because S(t) → 0 exponentially, the
influence of x0 on Xt disappears as t→∞.
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