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Class 4, Ito integral for Brownian motion

1 Introduction

[In this Class 4 (this lecture), Wt will be standard Brownian motion (no drift),
Xt will be a process defined from Wt using an indefinite Ito integral, Yt will be a
process or function defined as an “ordinary” indefinite integral, and Zt = Xt+Yt
will be a processes defined using both kinds of integral.]

Imagine betting on a Brownian motion path. Let time be broken into small
time steps of size ∆t, with tk = k∆t. At time tk, you can “buy” ftk “shares”
of the Brownian motion. Then you watch until time tk+1. You get ftk∆Wtk =
ftk(Wtk+1

−Wtk). You started betting at time t = 0 and Xtk is the amount you
have at time tk. That is

Xtk =

k−1∑
j=0

ftj
(
Wtj+1

−Wtj

)
. (1) dIi

The gain (or loss) in the next time period is

Xtk+1
−Xtk = ftk

(
Wtk+1

−Wtk

)
. (2) dId

The betting amounts ftk can be random (independent of the Brownian motion
path), or they can be random in that they depend on the Brownian motion
path. But ftk cannot depend on the future of the Brownian motion path. The
Brownian motion path up to time t is W[0,t]. By “not knowing the future” we
mean that there is a function F (w[0,t], t), which is the strategy for betting at
time t, and the bet is given by the strategy: ftk = F (W[0,tk]).

The Ito integral with respect to Brownian motion is the limit of a sum like
(
dIi
1) as ∆t→ 0. This is written

Xt =

∫ t

0

fs dWs . (3) Ii

The informal Ito differential is the limit as ∆t→ 0 of the difference expression,
which is the gain/loss over one period

dXt = ft dWt . (4) Id

The Ito differential is a convenient but informal way of expressing the integral
relation

Xt2 −Xt1 =

∫ t2

t1

fs dWs .
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The expression (
Ii
3) the special case of this with X0 = 0. The Ito integral

expression (
Ii
3) is an indefinite integral, but we could fix the endpoints and think

of a definite Ito integral.
Suppose gt is another function and we consider the ordinary (Riemann)

indefinite integral

Yt =

∫ t

0

gs ds . (5) iRi

This can be put in informal differential form as

dYt = gt dt . (6) Rd

For an applied mathematician creating a mathematical model of something,
the differential expression (

Rd
6) is not just an informal expression of the integral

relation (
iRi
5). The differential expression means that for small ∆t,

∆Y = Yt+∆t − Yt ≈ gt∆t . (7) delY

The ≈ does not mean that the difference between ∆Y and gt∆t is small. Both
∆Y and gt∆t are small already. It means that the difference between ∆Y and
gt∆t is tiny, which means that even when you add it up, the result is small.
When you add up the small contributions∑

tj<t

gtj∆t

you get approximately Yt − Y0, which is not “small” (does not go to zero when
∆t → 0). The the difference ∆Y − gt∆t is tiny in that even when you add it
up, the result still is small (goes to zero as ∆t→ 0. The mathematical theorem
is

lim
∆t→0

Yt − Y0 −

∑
tj<t

gtj∆t

 = 0 .

The differential form of tiny is

Yt+∆t − Yt − gt∆t
∆t

→ 0 as ∆t→ 0 .

This is also written in “little oh” notation as Yt+∆t − Yt = gt∆t + o(∆t). In
other words, O(∆t) (big Oh) is small and o(∆t) (little oh) is tiny, at least when
talking about the indefinite Riemann integral (

iRi
5).

The difference between small and tiny is: “What does it add up to?” This
is big Oh versus little oh for the Riemann differential (

Rd
6). It is more subtle for

the Ito differential (
Id
4). Even a term that is O(∆t) can be tiny if its expected

value is zero. Use the notation ∆W = Wt+∆t −Wt. The small/tiny rules are

∆W = small

∆t = small

∆t2 = tiny

(∆W )
2 −∆t = tiny .
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Much of ordinary calculus is ignoring the tiny O(∆t2). But R = (∆W )
2 −∆t

is not tiny in the sense of being O(∆t2). In fact (Exercise in Assignment 4) the
absolute value is (in expectation) order ∆t,

E
[ ∣∣∣(∆W )

2 −∆t
∣∣∣] = C∆t .

But E[R] = 0. In a sum like (
dIi
1) terms of order ∆t with expected value zero

can add up to something small because of cancellation: the positive terms and
negative terms approximately cancel. The cancellation is accurate enough that
the sum goes to zero in the limit ∆t→ 0.

The Ito differential (
Id
4) and the “Riemann differential” [not a standard term,

maybe Newton Leibnitz differential would be better?] (
Rd
6) may be used together

to describe a diffusion process. Suppose Zt is a random process that satisfies

dZt = gtdt+ ftdWt . (8) dZ

Then (we will see this class) the infinitesimal mean of Z is gt and the infinitesimal
variance is f2

t . As before, the formal expression (
dZ
8) is equivalent to the integral

expression

Zt = Z0 +

∫ t

0

gs ds+

∫ t

0

fs dWs . (9) dXi

The combination of Riemann and Ito differentials in (
dZ
8) allows us to model

any diffusion process in terms of its infinitesimal mean and (square root of its)
infinitesimal variance.

Why the infinitesimal mean is g: As we go further into the course we will
define infinitesimal mean and variance more precisely, but maybe not entirely
precisely. The infinitesimal mean at time t refers to the expected value for a
short period in the future, conditioned on what is known up to time t. “What
is known up to time t” is the path up to that time, W[0,t]. The conditional
expectation is E[dZ|W[0,t]]. To be slightly more precise choose a small ∆t that
will go to zero and (the “small oh” is for a “tiny” error term)

E
[

∆Z |W[0,t]

]
= gt ∆t + o(∆t) . (10) EdZ

This is because the Ito part (Xt) makes no contribution. If Xt is the Ito integral
part (

Ii
3), then (see (

dId
2)), we have

E
[

∆X |W[0,t]

]
≈ E

[
(Wt+∆t −Wt)ft |W[0,t]

]
) .

[The next two points represent one of the most important ideas of Stochastic
Calculus!] (i) Since ft is a function of W[0,t], when the path up to time t is
known, then ft also is known. For that reason

E
[

(Wt+∆t −Wt)ft |W[0,t]

]
) = ft E

[
(Wt+∆t −Wt) |W[0,t]

]
) .

(ii) The independent increments property implies that the increment (Wt+∆t−
Wt) is independent of everything up to time t. In particular, its conditional
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expected value is still zero. If you condition a random variable on an independent
random variable, you don’t change its expected value. Therefore

E
[

(Wt+∆t −Wt) |W[0,t]

]
) = 0 .

Altogether (the “little oh” accounting for tiny errors in this argument, “tiny”
in the technical sense)

E
[

∆X |W[0,t]

]
= o(∆t) .

The Riemann integral part has dYt = gt dt, which may be expanded to

E
[

∆Y |W[0,t]

]
= gt ∆t+ o(∆t) .

This explains the overall infinitesimal mean formula (
EdZ
10).

Why the infinitesimal variance is f2
t . The reasoning here will be even less

formal than for the infinitesimal mean. We will build tools over the next few
classes to understand this better. The infinitesimal variance is (we have already
seen) equivalent to the expected square

var
(

∆Z |W[0,t]

)
= E

[
(∆Z)

2 |W[0,t]

]
+ o(∆t) .

Also, ∆Y = O(∆t), being a regular integral. On the other hand ∆X ≈ ∆Wft.
If ft is not zero, then ∆X is on the order of

√
∆t because ∆W is on the order

of
√

∆t. As we said when talking about the infinitesimal mean,

E
[

(∆X)
2 |W[0,t]

]
≈ E

[
(∆W )

2
f2
t |W[0,t]

]
≈ f2

t E
[

(∆W )
2 |W[0,t]

]
≈ f2

t ∆t .

This leads to
E
[

(∆Z)
2 |W[0,t]

]
= f2

t ∆t+ o(∆t) . (11) EdZ2

This shows (suggests, if you’re not convinced yet) that integral expressions like
(
dXi
9) are able to represent any diffusion process.

A process that may be represented in the form (
dXi
9) is an Ito processes. A

diffusion process is an Ito process that also has the Markov property. Markov
means that the distribution of the future depends only on the present, not the
past. More specifically, the distribution ∆Z depends on Zt only, not on Zs or
Ws for s < t. This means that the infinitesimal mean and variance in (

dZ
8) depend

on Zt only. Tradition tells us to call them a(z) and b(z). Thus, an Ito process
is a diffusion if it satisfies a differential relation of the form

dZ = a(Z)dt+ b(Z)dWt . (12) sde

This is a stochastic differential equation (usually called SDE). [We will write X
for Z most of the time after this class.]

dZ = a(Z)dt+ b(Z)dWt . (13) sde
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A process Zt is a solution if

Zt =

∫ t

0

a(Zs) ds+

∫ t

0

b(Zs) dWs .

You create an SDE model of a stochastic process by deciding what the infinitesi-
mal mean a(z) and infinitesimal variance µ(z) = b2(z) should be. An important
point is that only the infinitesimal variance µ(z) is relevant to modeling. You
have to take the square root b(z) =

√
µ(z) to write the SDE, but you get the

“same process” if you use −
√
µ(z) instead. We will come back to this point in

future classes.
Ito’s lemma is a stochastic calculus version of the chain rule from ordinary

calculus. It answers the question: if Xt depends on t in some stochastic way, and
if u(x) depends on z in some differentiable way, then how does u(Xt) depend on
t? Ito’s lemma for Brownian motion is about processes of the form Zt = u(Wt, t),
with a smooth function u(w, t). Ito’s lemma for Brownian motion is a formula
for dZt:

du(Wt, t) = ∂wu(Wt, t)dWt + ∂tu(Wt, t)dt+
1

2
∂2
wu(Wt, t)dt . (14) IlBm

When we prove Ito’s lemma, we will prove it in the integral version

u(Wt, t)− u(W0, 0) =

∫ t

0

∂wu(Ws, s) dWs (15) IlidW

+

∫ t

0

[
∂tu(Ws, s) +

1

2
∂2
wu(Ws, s)

]
ds (16) Ilidt

This is an Ito process representation (
dXi
9) of Zt = u(Wt, t) with

ft = ∂wu(Wt, t)

gt = ∂tu(Wt, t) +
1

2
∂2
wu(Wt, t) .

We will use these formulas constantly for the rest of the course.
One can derive (maybe “motivate” is more accurate) Ito’s lemma by choosing

a small ∆t, expanding ∆u in Taylor series to include all terms that formally
are of size ∆t or bigger, and then replacing (∆W )2 with ∆t. This is justified
by the claim (look for support for this claim in the next week or two) that
(∆W )2 − ∆t is tiny. It amounts to replacing (∆W )2 with its expected value.
We write ∆u = u(Wt + ∆Wt, t + ∆t) − u(Wt, t). We leave out arguments Wt

and t, so we write just u for u(Wt, t), etc. We take ∆W to be on the order of√
∆t, so |∆W |3 is on the order of ∆t

3
2 . This makes |∆W |3 a tiny o(∆t) term.

The same reasoning suggests that |∆W |∆t = o(∆t) and, for a simpler reason,
∆t2 = o(∆t). We expand in a two variable Taylor series and write error terms
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in big Oh notation. We use absolute values for ∆W because it can be negative.

u(Wt + ∆Wt, t+ ∆t)− u = ∂wu∆W +
1

2
∂2
wu(∆W )2 + ∂tu∆t

+O(|∆W |3) +O(|∆W |∆t) +O(∆t)2

= ∂wu∆W +
1

2
∂2
wu∆t+ ∂tu∆t

+O(|∆W |3) +O(|∆W |∆t) +O(∆t)2

+
1

2
∂2
wu
(
(∆W )2 −∆t

)
= ∂wu∆W +

(
1

2
∂2
wu+ ∂tu

)
∆t+ o(∆t) .

The “tiny” o(∆t) term on the last line is the sum of the four term above.

2 Geometric Brownian motion

The theory of option pricing in quantitative finance often uses a model for St,
which is the price of a share of stock at time t. The model is geometric Brownian
motion

dSt = rStdt+ σStdWt . (17) gBm

This model is built on the natural hypothesis that the expected “return” (the
rStdt term) and the “risk” (the σStdWt) should be proportional to St. That
way it doesn’t matter if you replace each share of stock with price St with, say,
two shares of stock with price 1

2St. In finance, the parameter r is called the
risk free rate. I will probably call rStdt the “expected return”, but a finance
person knows the story is more complicated. The parameter σ is the volatility,
or just vol. The geometric Brownian motion SDE expresses the intention that
E[dSt|·] = rStdt and E[dSt|·] = σ2S2

t dt. We write E[· · · |·] to mean the expected
value conditional on knowing S[0,t], or, equivalently (we will see), to knowing
W[0,t].

If Wt were a “nice” function of t, so dW
dt were well defined, then we could

rewrite the SDE (
gBm
17) as a differential equations class would write it

(wrong)
St
dt

= rSt + σSt
dWt

dt
. (wrong)

The solution would be (check this)

(wrong) St = S0e
rt+σWt . (wrong)

This formula does not satisfy the geometric Brownian motion SDE (
gBm
17). We

see this using Ito’s lemma on the function u(w, t) = S0e
rt+σw. The derivatives
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are

u(w, t)
∂w−→ σS0e

rt+σw

∂w−→ σ2S0e
rt+σw

u(w, t)
∂t−→ rS0e

rt+σw

We use St = u(Wt, t) and plug into Ito’s lemma (
IlBm
14). The result is

(wrong) dSt = σStdWt +
1

2
σ2Stdt+ rStdt . (wrong)

The right side here differs from the right side of the geometric Brownian motion
SDE (

gBm
17) by an extra term 1

2σ
2tStdt.

You can fiddle around trying to see how to fix the first try S0e
rt+σWt . Our

Ito calculation showed that dS of this is too big, so this is too big. Eventually
we realize that you can cancel the 1

2σ
2Stdt term by subtracting it from the

exponential. [We will have a better method than trial-and-error when we do
the more general Ito lemma.] So we try

St = S0e
rt− 1

2σ
2t+σWt . (18) Stf

We check this applying Ito’s lemma to the function u(w, t) = e(r− 1
2σ

2)t+σw. It
works! The solution to the geometric Brownian motion SDE (

gBm
17) is the corrected

exponential formula (
Stf
18).

Quant finance people use the solution representation formula (
Stf
18) for op-

tion pricing. The Derivative Securities class will have details, but we want to
calculate expectations of final time payouts

E[ v(ST )] .

The random variable Wt is Gaussian with mean zero and variance t. We can
evaluate expectations by putting in this PDF and integrating. The backward
equation for this expectation is (except for one term) the Black Scholes equation
of quant finance. There is an example in Assignment 4.

The solution formula (
Stf
18) for geometric Brownian motion has some conse-

quences that may seem surprising. Consider the special case r = 0. The SDE
dS = σSdW may be considered a model of a the long time inter-generational
behavior of a “fair” economy. Suppose ∆t represents one generation. You are
born with wealth S and you leave your one child wealth S(1 + σ∆W ). [Every
generation consists of a parent and a child who gets the parent’s wealth.] The
system is fair in the sense that the expected change is zero. But the solution
formula is St = S0e

− 1
2σ

2t+σWt . For large t, Wt is on the order of
√
t, which is

a smaller order than t. It seems natural (and we will show) that [Almost surely
means with probability 1.]

−1

2
σ2t+ σWt → −∞ as t→∞ almost surely .
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Therefore St → 0 as t → ∞ almost surely. In this supposedly fair economy
almost every family has wealth going to zero. Since the total wealth doesn’t
change (because the expected change is zero), this can only be because the
wealth concentrates in the hands of a small number of families. This point is
made by economists in more complicated ways.

Suppose you try to evaluate E[St] by simulation and Monte Carlo. The
expectation is E[St] = mt = S0e

rt, which you can see be evaluating the in-
finitesimal mean and variance in the geometric Brownian motion SDE (

gBm
17). If

you generate sample paths, the probability that a sample path gives a value as
large as the mean is

Pr(St > mt) = Pr(Wt >
1

2
σ2t) .

We will see that this is “exponentially” unlikely. The probability goes to zero
exponentially as t → ∞. The expected value is determined by paths that are
exponentially rare. Find the mean by simulation under these conditions is called
rare event simulation. The best way to do this is not by direct simulation.
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