
Stochastic Calculus, Courant Institute, Fall 2019
http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2019/StochCalc.html
Jonathan Goodman, September, 2019

Class 3, Backward equations

1 Introduction

Backward equations are partial differential equations (PDEs) that are satisfied
by conditional expectations. These conditional expectations may not be the
expected values you’re most interested in, but (1) they may determine the ex-
pectation you actually want, and (2) they may satisfy a partial differential equa-
tion (backward equations) that can solved. The relationship between diffusion
processes and PDEs goes both ways. Sometimes a PDE is solved by simulating
a related diffusion process, sometimes expectations of a diffusion process are
found by solving a PDE.

As a simple example, suppose Xt is a Brownian motion path that will wander
until time T . Then there will be a “payout” v(Xt). The payout function is v(x).
The actual payout depends on the location of the Brownian motion at time T .
The expected payout is

E[v(XT)] .

You can imagine that Xt is the score of a game and that your team wins if
XT > 0, and you want to know the probability that this happens. This fits into
our framework by taking the payout to be the Heavyside function v(x) = 1 if
x > 0 and v(x) = 0 if x < 0.

The expected value depends on the starting point of the Brownian motion,
x0. The probability of winning a game depends on the starting score. There
are several notations for the dependence, including

f(x0, 0) = Ex0
[v(XT)] = E[v(XT | X0 = x0)] .

The subscript x0 in the first expectation means that the expectation is taken
using the probability distribution of Brownian motion paths that start at x0.
We have used that kind of notation before, putting a subscript on the expec-
tation to say which probability distribution is assumed. The expectation E[·|·]
is for conditional expectation. It represents the expected value of the first ex-
pression conditional on the second one. Here, it is the expected value of v(XT)
conditional on X0 = x0.

The probability of winning a game can change while the game is in progress.
Suppose Xt = x for some t < T . The conditional expectation then is written as

f(x, t) = Ex,t[v(XT)] = E[v(XT) | Xt = x)] . (1)

In sports betting, it may be possible to place bets during a game. The odds
offered depend on the progress of the game up to that point. This applies to

1

general payout functions (not just the Heavyside function) and the correspond-
ing conditional expectations (1). The conditional expectation (1) is the value
function.

For Brownian motion, the value function satisfies a backward equation,
which is a PDE related to the heat equation from last week. There are back-
ward equations for other diffusion processes, which feature a partial differential
operator (∂x or ∂2

x are simple partial differential operators) called the generator
of the process. If g is a function of x, we write the generator applied to g as Lg.
The backward equation for the value function (1) is

∂tf + Lf = 0 . (2)

The generator is defined by

(Lg)(x) = lim
t↓0

Ex[g(Xt)]− g(x)

t
. (3)

To explain the left side, L is a linear operator. When L “operates” on a function
g, it produces another function, which is Lg. The left side is the value of the
function Lg at the point x. The expectation on the right is the expected value
of g(Xt) under the condition that X0 = x. Since t is small, Xt will be close to
x and g(Xt) will be close to g(x). If the limit exists, Xt is so close to x that the
expected value differs by O(t). The generator is a differential operator because
g(Xt) = g(x) may be approximated using a Taylor series around Xt = x that
uses only a few terms.

Backward equations “work” for diffusion processes because diffusions are
Markov processes. A random process is a Markov process if “the future depends
on the past only through the present”. Diffusion processes are Markov processes,
and there are others. This class will explain the Markov property, calculate
generators, explain backward equations, and give some examples of how they
can be used.

2 The Markov property and joint densities

To make that more clear, consider the joint probability density for values of a
process Xt at various times. The single time PDF is p(x, t), which is the PDF
of Xt. We write the two time PDF as p(x1, x2, t1, t2). This is the joint density
for the two component random variable (Xt1 , Xt2). For example

E
[

(Xt2 −Xt1)2
]

=

∫ ∫
(x2 − x1)2p(x1, x2, t1, t2) dx1dx2 .

The two-time PDF is a probability density in the first two variables, so, for
example, ∫ ∫

p(x1, x2, t1, t2) dx1dx2 = 1 .

2

The one-time density is the marginal of the two-time density. You can “integrate
out” either x1 or x2, and you can do it at any time t1 6= t or t2 6= t, so

p(x, t) =

∫
p(x, x2, t, t2) dx2 =

∫
p(x1, x, t1, t) dx1 .

These are basic facts about probability densities.
Some conditional probability densities are normalized versions of joint den-

sities. To start, suppose (X,Y) is a two component random variable with PDF
p(x, y). The conditional density of X, conditional on knowing Y = y, may be
written

p(x | Y = y) =
1

Z(y)
p(x, y) .

[This notation, using p for every probability density, is becoming common again
in Bayesian statistics and machine learning.] The normalization constant may
be found by requiring that the conditional density p(x|y) should integrate to 1
in the x variable∫

p(x | Y = y) =
1

Z(y)

∫
p(x, y) dx = 1 =⇒ Z(y) =

∫
p(x, y) dx . (4)

The normalization constant usually depends on y, but it doesn’t have to.
Suppose t2 > t1, which we didn’t assume until now. The conditional density

of Xt2 , conditional on Xt1 = y was called, and still will be called, the transition
density and written

G(y, x, t1, t2) = p(Xt2 = x | Xt1 = y) =
1

Z(y)
p(y, x, t1, t2) .

For standard Brownian motion without drift, this was (here y is a parameter
and x is the variable)

G(y, x, t1, t2) = N (y, (t2 − t1)) =
1√

2π(t2 − t1)
e
− (x−y)2

2(t2−t1) .

A Brownian motion with drift rate a has

G(y, x, t1, t2) = N (y + a(t2 − t1), (t2 − t1)) =
1√

2π(t2 − t1)
e
− (x−y−a(t2−t1))2

2(t2−t1) .

A diffusion process is determined by its transition density.
Some formulas above, particularly the normalization constant formula (4)

may make it seem that conditional densities are complicated. On the contrary,
transition densities and other conditional probability densities are often simpler
than joint densities. For example, suppose Xt is a standard Brownian motion
starting at X0 = 0. The joint density for Xt1 = y and Xt2 = x is

p(x, y, t1, t2) =
1

2π
√
t1(t2 − t1)

e−
y2

2t1 e
− (x−y)2

2(t2−t1 .

3

The conditional density of x given y is

p(x|y, t1, t2) =
1√

2π(t2 − t1)
e
− (x−y)2

2(t2−t1) .

The second formula is simpler. You can get it from the first formula by inte-
grating over y.

The Markov property concerns the joint distribution for three times, which
may be called t1 < t2 < t3. Think of t1 as the past, t2 as the present, and t3 as
the future. The Markov property from the introduction is that the distribution
of Xt3 conditional on Xt1 and Xt2 is independent of Xt1 . This is what it means
to say that the future (the distribution of Xt3 is independent of the past (the
known value of Xt1), once you know the present (the value of Xt2). In terms of
conditional probability densities, this is, for all x1,

p(x3 | x1, x2, t1, t2, t3) = p(x3 | x2, t2, t3) . (5)

The conditional density on the left side involves three times and three locations
(t1, t2, t3, Xt1 = x1, etc.). The conditional density on the right side involves
just two times t2 < t3 and the corresponding locations Xt2 = x2, and Xt3 = x3.
The Markov property applies to conditioning on more than one past time. If
the Markov property (5) is satisfied, then conditioning on more past information
does not change the conditional density in the future. You can prove this using
basic properties of conditional probability, or you can just believe me that it’s
true.

The value function (1) is particularly important if Xt satisfies the Markov
property. The Markov property says that the value function at t2 determines
the value function at t1 if t1 < t2. The first two quantities are equal because
of the definition (1). The second and third are equal because of the Markov
property.

f(x1, t1) = E[v(XT) | Xt1 = x1)] = E[f(Xt2) | Xt1 = x1)] . (6)

We will use this formula every class from now on, probably many times per
class.

This formula is an example of the tower property, which says that the ex-
pected value of the expected value is the expected value. Abstractly, suppose
(Y, Z) is a two component random variable, u(y, z) is some “payout function”,
and the overall expected value is

f = E[u(Y, Z)] .

Define a “value function” to be the expected value of u, conditioned on Y = y,
which is

f(y) = E[u(Y,Z) | Y = y] .

The tower property says that the expected value of the conditional expectation
is the overall expectation,

f = E[f(Y)] .

4

You can prove this using the properties of conditional expectation and marginal
probability.

We can apply this to derive our value function formula (6) by taking Z = Xt3 ,
and Y = Xt2 . The value Xt1 = x1 is just a parameter. Without the Markov
property, the conditional expectation that is called f(y) in the general theory
and f(x2, t2) in our desired formula (6) would depend on x1. But the Markov
property says that the distribution of XT conditioned on Xt2 = x2 and Xt1 = x1

is independent of x1. Therefore we get jus f(x2, t2) with no x1 dependence.

3 Backward equation and generator

Much of stochastic calculus relies on being able to compute the generator of a
process and understanding the relation between the generator and the backward
equation. Here, we first figure out the generator for Brownian motion, then we
use it to get the backward equation for Brownian motion, then we go through
these steps again more generally. You will see a technical theme that is always
important in analysis of diffusion processes. Suppose you have a small ∆t and
the corresponding change in the process is ∆X = Xt+∆t − Xt. Suppose you
want to compute the corresponding change ∆f = f(X + ∆X, t+ ∆t)− f(X, t).
You have to do Taylor expansion up to second order in x and first order in t.
This is because ∆X is on the order of

√
∆t so (∆X)2 is on the same order as

∆t.
Consider the generator formula (3) in the case where Xt is standard Brow-

nian motion. Then Xt = x+Z, where Z ∼ N (0, t). For small t, Z is small and
we can use Taylor series

g(x+ Z) = g(x) + ∂xg(x)Z + 1
2∂

2
xg(x)Z2 +O(|Z|3) .

Here, x and g are not random. Only Z is random. Therefore (Pay attention.
We will do calculations like this a lot, but not with such small steps.)

E[g(Xt)] = E[g(x+ Z)]

= E[g(x) + ∂xg(x)Z + 1
2∂

2
xg(x)Z2 +O(|Z|3)]

= E[g(x)] + E[∂xg(x)Z] + E[1
2∂

2
xg(x)Z2] + E[O(|Z|3)]

= g(x) + ∂xg(x)E[Z] + 1
2∂

2
xg(x)E[Z2] + E[O(|Z|3)]

= g(x) + ∂xg(x) · 0 + 1
2∂

2
xg(x) · t + O(t

3
2)

= g(x) + 1
2∂

2
xg(x)t+ (t

3
2) .

The result, putting this back into the limit (3), is

Lg(x) =
1

2
∂2
xg(x) . (7)

The generator of Brownian motion is the second derivative operator (half of
that).

5

The backward equation (2) is derived from the limit formula (3) using the
tower property (6) in a way we will use again and again. We first put in a small
∆t and then take the limit ∆t→ 0. We use notation from before, Xt = x+∆X.
We assume that E[|∆Xp|] = O(∆t

p
2). This is true for Brownian motion (we

have already seen). We will see later why it is true for other diffusion processes.

f(x, t) = E[f(x+ ∆X, t+ ∆t) | Xt = x]

0 = E[f(x+ ∆X, t+ ∆t)− f(x, t) | Xt = x]

0 = E[f(x+ ∆X, t+ ∆t)− f(x+ ∆X, t) | Xt = x]

+ E[f(x+ ∆X, t)− f(x, t) | Xt = x] .

To proceed, divide both sides by ∆t and figure out what happens as ∆t ↓ 0.
First,

f(x+ ∆X, t+ ∆t)− f(x+ ∆X, t)

∆t
= ∂tf(x+ ∆X, t) +O(∆t) .

When ∆t ↓ 0, the first term on the right converges to ∂tf(x, t) and the second
term converges to zero. Second, apply the definition (3) to the function g(x) =
f(x, t), and with ∆t (here) for t (there), and you get

lim
∆t↓0

f(x+ ∆X, t)− f(x, t)

∆t
= Lf(x, t) .

Together, we get the backward equation (2).
Here’s a Brownian motion example. Suppose the payout function is v(x) =

x2. Suppose t < T . If Xt = x, then XT = x + Z, where Z ∼ N (0, T − t).
Therefore,

f(x, t) = E
[

(x+ Z)2
]

= x2 + (T − t) .

The backward equation for Brownian motion, checking (7), is

∂tf +
1

2
∂2
xf = 0 .

In our case, ∂tf = ∂t[x
2 + (T − t)] = −1 and 1

2∂
2
x[x2 + (T − t)] = 1, so the

equation is satisfied.
If you know the value function f(·, t), then the backward equation determines

f at earlier times t′ < t. The “evolution” specified by the backward equation
goes backward in time. One way to see this is the tower property formula
(6), which gives a formula for f(·, t′) in terms of f(·, t). You may not be able
to calculate the expectation, but it does exist. Another way to see it will be
the finite difference method in Assignment 3. There, you start with the final
condition f(x, T) = v(x) and work backwards in small time steps until you get
to t = 0 (or whatever t is desired).

6

The generator of any diffusion process is determined by its infinitesimal mean
and infinitesimal variance. We keep using the notation ∆X = Xt+∆t−Xt. The
infinitesimal mean will be called a(x) and is defined by

E[∆X] = a(x)∆t+O(∆t2) .

The infinitesimal variance will be called µ(x) and is defined by

var(∆X) = µ(x)∆t+O(∆t2) .

This definition is equivalent to

E
[

(∆X)2
]

= µ(x)∆t+O(∆t2) .

The difference between the variance and the expected square (the two defini-
tions) is that the variance is the expected square, with the mean subtracted out.

If Y is any random variable, then var(Y) = E
[
Y 2
]
− (E[Y])

2
. Apply this with

Y = ∆X and the approximate formula E[∆X] ≈ a(x)∆t, and you get

var(∆X) = E
[

(∆X)2
]
− a(x)2∆t2 .

This shows that the two definitions of µ differ by order ∆t2, which makes them
equivalent.

The general generator calculation is almost the same as the one for Brownian
motion. You use a Taylor expansion up to second order with an error term of
order |∆X|3. The difference is that you then have to evaluate the limit using
infinitesimal mean and variance. If you look back, you will see that we did
exactly this in the Brownian motion case. We knew that a(x) = 0 and µ(x) = 1.
The calculation is (use the definition (3) with ∆t instead of t)

Lg(x) = lim
∆t↓0

E[g(x+ ∆X)]− g(x)

∆t

= lim
∆t↓0

E
[
∂xg(x)∆X + 1

2∂
2
xg(x)(∆X)2 +O(|∆X|3)

]
∆t

= ∂xg(x) lim
∆t↓0

E[∆X]

∆t
+

1

2
∂2
xg(x) lim

∆t↓0

E
[

(∆X)2
]

∆t
+ lim

∆t↓0

O(∆t)3/2

∆t

Lg(x) = a(x)∂xg(x) +
1

2
µ(x)∂2

xg(x) . (8)

Part of this was the claim that E
[

(∆X)3
]

= O(∆t
3
2). We verified that this is

true for Brownian motion. It “should be true” here too for the same reason, if
the expected value of (∆X)2 is on the order of ∆t, then typical values of ∆X

will be of the order of ∆t
1
2 , so typical values of (∆X)3 will be of order ∆t

3
2 .

This suggests that the expected value of (∆X)3 is of the order of ∆t
3
2 . We will

see in a later class that this argument can go wrong if ∆X has fat tails. We
will also see that ∆X from a diffusion processes does not have fat tails. Look
for this when you review the class at the end.

7

4 Finite difference solution

The method of finite differences is a numerical method for solving solve partial
differential equations that has nothing to do with probability or simulation
It has the advantage over simulation that there is no statistical error. The
computing exercises in Assignment 1 and Assignment 2 both had statistical
error coming from averaging many simulations. You probably noticed how long
those calculations could take to get high accuracy. Finite differences can be
faster and more accurate.

The backward equation, which is what we want to solve, is dynamical. It
describes how the value function changes as you move further backward in time
from the final time T . The ∂tf in the backward equation indicates that it
is about dynamics. A class on ordinary differential equations offers methods
such as the Euler method (see below) for computing (or simulating) dynami-
cal systems. The partial differential equations of interest here have two related
complicating features you don’t see in a (typical) ODE class. One complicating
feature is that the “state” at time t, from the point of view of the backward
equation, is the function f(·, t). A function is described by infinitely many num-
bers (the values at infinitely many points, or fancier representations you might
have seen such as Fourier series). Therefore, we must have an approximation
to f(·, t) that involves only finitely many numbers. The other complicating
feature is the “space derivatives” such as ∂2

x. Since we don’t know f(·, t) ex-
actly (having approximated the function using finitely many numbers) we need
a way to estimate the space derivatives using these numbers. The subtle thing
is that differential operators are unbounded. The derivative of a function can
be much larger than the function itself. For example, if g(x) = sin(kx) then
∂xg(x) = k cos(kx), which is larger by a factor of k. Even worse, if g(x) is discon-
tinuous then ∂xg(x) either does not exist or is infinite, depending on your point
of view. For this reason, some finite difference approximations that seem to
make sense don’t work because they are unstable. The computing exercise (task
4) has an example of this. The issue of stability is too technical and complex
to be part of this course – take Numerical Methods II if you’re interested.

Time stepping is an approach to computing solutions that change in time.
To start, consider the ODE ∂ty(t) = F (y(t)). Choose a small time step ∆t and
define the discrete times to be tk = k∆t. Then tk+1 = tk + ∆t. The differential
equation implies that

y(t+ ∆t) ≈ y(t) + ∆t∂ty(t) = y(t) + ∆tF (y(t)) .

A finite difference strategy would be to define approximations yk ≈ y(tk) by

yk+1 = yk + ∆tF (yk) .

This is the forward Euler method for approximate simulation of dynamical sys-
tems.

For the backward equation, of course, time goes in the other direction. More
importantly, instead of a simple number or vector y(t) we have a function f(·, t).

8

The computer cannot store f(·, t), so it stores an approximation. For our finite
difference method, that approximation consists of the values of f at some grid
points called xj . Suppose the equation is solved on the interval xl ≤ x ≤ xr.
Then the function f(·, t) (as a function of x), is represented (approximately) by
its values fj(t) ≈ f(xj , t). We will use a uniform grid with grid spacing ∆x,
so xj = xl + j∆x. We choose ∆x so that there are n grid points in [xl, xr].
This implies that ∆x = (xr − xl)/(n + 1). The (n + 1) is because there are
n + 1 grid intervals of length ∆x. The first is [xl, x1], (in LaTeX, the letter l
and the number 1 look almost the same). The last, which is interval (n+1), is
[xn, xr]. The computer stores the estimates fj(t) only at discrete times tk, as
explained above for the ODE. We write fkj for the approximation of f(xj , tk).
The n component vector (fk1, . . . , fkn) will be called fk. The “forward Euler”
approximation for the backward equation will be to estimate fk+1 from fk. This
is a time step.

To do the time step, we need estimates of ∂xf and ∂2
xf . This estimate has

to use only the numbers fkj . It seems natural to try the estimates based on (see
Assignment 3 for more details)

∂xf(x, t) ≈ f(x+ ∆x, t)− f(x−∆x, t)

2∆x

∂2
xf(x, t) ≈ f(x+ ∆x, t)− 2f(x, t) + f(x−∆x, t)

∆x2
.

If we take x to be grid point xj , then x−∆x is the grid point xj−1 and x+ ∆x
is xj+1. Therefore, it seems reasonable to try

∂xf(xj , tk) ≈ fk,j+1 − fk,j−1

2∆x

∂2
xf(x, t) ≈ fk,j+1 − 2fkj + fk,j−1

∆x2
.

Using these approximations, we can estimate ∂tf(xj , tk) and use this to estimate
f(·, tk+1).

9

