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September 23: some typos fixed.

Class 2, Brownian motion and diffusion equations

1 Introduction

A differential equation is an equation satisfied by a function and some of its
derivatives. A partial differential equation is a differential equation involving a
function of more than one variable and partial derivatives of that function with
respect to more than one variable. Partial differential equations, PDEs, are one
of the main tools in stochastic calculus. Many quantities of interest in stochastic
calculus satisfy PDEs. There are powerful techniques for solving PDEs and, if
not solving them, at least learning about the solutions. Some of the PDEs have
explicit solution formulas. We will see some examples today. Sometimes it is
practical to compute the solution numerically. We will give an example of a
numerical solution method, but there are more sophisticated methods that we
cannot discuss in this course. Take the course Numerical Methods II for more
on this.

There are analytical approximation methods for PDEs, particularly if a pa-
rameter in the stochastic process is small or large. For example, there are
approximate methods to estimate what happens for small amounts of time.

2 Diffusion of probability density

Let X; be a Brownian motion whose increments are Gaussian as explained last
week

th - th ~ N(Oﬂfz - tl) . (1)
Here and throughout the course, the notation A (u,o?) refers to the Gaussian
distribution with mean p and variance ¢2. If Y is a random variable, then
Y ~ p means that Y has the probability distribution given by p. This p could
be a PDF, as it is here, or it could be a different way to specify probability
distribution, such as a probability measure (described in later classes). Recall
that increments from disjoint time intervals are independent.

The probability density of X; satisfies a PDE called “the” heat equation or
“the” diffusion equation. I put “the” in quotes because there are more compli-
cated heat equations and diffusion equations. Often “the” heat equation refers
to the simplest heat equation, which happens to be the one for the PDF of
X;. Let p(z,t) represent the PDF of X;. That means that time ¢ the random
variable X; has PDF p(z,t), as a function of x. This (as we will see) satisfies
the PDE

Ol 1) = 52p(a 1) @)



I will use is notation for partial derivatives, so
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We use the term operator (linear operator) for an operation that takes a func-
tion and creates another function from it. Partial derivatives are operators in
this sense. For example, the operator d; takes a function p(z,t) and produces
the function d;p(x,t). An operator is like a linear transformation that might be
represented by a square matrix, A. If you apply A twice, the resulting transfor-
mation is written A% and is given by the square of the matrix A. Similarly, if
you apply the operator 9, twice, you get the operator 92.

One way to see that p satisfies the heat equation (2) is by using a formula
involving p that comes from the Gaussian increment formula (1) and the in-
dependent increments property. The independent increments property implies
the Markov property for Brownian motion. An informal statement (which will
make more sense soon) is: conditional on the present, the future is independent
of the past. Suppose “the present” is a specific time t;. Then “the past” refers
to times t < t; and the future is times ¢ > ¢;. Suppose the Brownian motion
is at y in “the present”, which means X;, = y. This value is determined by all
the increments between time 0 and time ¢;. All the increments in the future are
independent of these past increments, so if t > ¢, then X; —y = Xy — X3, is
independent of all these past increments. We denote the future increment by Z,
so Z = Xy — Xy,. Of course X; = Z + y, so X; is not independent of y = Xy, .

For this paragraph, let Y represent the Brownian motion location at ¢; and
X thelocation at ¢t > t;. Thatis Y = X, and X = X;. The previous paragraph
explains that the random variables Y and X — Y are independent. Therefore,
the joint density of ¥ and X — Y is the product, which we write (specifics
explained below)

(Y, X =Y) ~p(z,y,t1,t) = ply,t1)G(z —y, t —t1) . (3)

It is common to use p(---) for more or less any probability density. The differ-
ence between different densities can be the number of arguments. In that spirit,
p(y,t1) is the PDF of X;, and p(z,y,t1,t) is the joint density of (X;, X, ). The
“G” in (3) is for “Gaussian”. The PDF of X — Y is Gaussian with mean zero
and variance t — t1, which is the content of (1). The density is a product be-
cause of independence. The G density is given by the usual Gaussian formula.
If Z ~ N(u,0?), its PDF is

1 _=w?

e 202
V2mo?

Here, Z is X — Y, u =0 and 0% = t — t;. Therefore, (written this way to make
some future manipulations more clear)
1

_@=w)?
G(l‘—y,t—tl) = (t_tl)_%e 2(t—ytl) . (4)
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This is the background.

Now the desired p formula. Since p(z,t) is the density of Xy, and since we
have a formula for the joint density of X;, and X, we can view p(x,t) as the
marginal of the joint density. You find the marginal density by integrating out
the variables you’re not interested in, X, in this case. In the abstract, this is

o0
pla,t) = / Py, 11, t) dy
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We make this concrete by substituting in the specific relations (3) and (4). The
result is either of these equivalent forms
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Representation formulas like this are used a lot in stochastic calculus.

We use the representation formula (5) or (6) to verify that p satisfies the heat
equation (2). We calculate d;p and %aip, and they turn out to be the same.
Futures class will contain derivations of (2) that come from “first principles”,
and are not just calculations that verify a formula that obviously was discovered
another way. But here, we just see that the variables « and t appear only in G,
so the t and x derivatives in (2) only “hit” G. Also, x and t are just parameters
in the integrals (5) (6), so they pass into the integral. For example,

o) = [ T i) [yt — 1)) dy -
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We will see that p satisfies the heat equation because G does.
It may be helpful (it definitely is helpful to me) to start with the simpler
case with t; = 0 and y = 0. Then (and only then)

22
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We know that C' = \/%, but that is irrelevant for this calculation. The time
derivative calculation may be explained as



We do the two = derivatives one at a time:
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Look at these results and you see that 9,G is the same as 292G. You can do

the calculations with ¢; # 0 and y # 0. You can put them in the integral (5)
and see that p satisfies (2).

2.1 Evolution of the PDF

[We often use a - to represent a variable that does not get a name. This em-
phasizes that the important thing is the function, not its values at particular
places. For example, if f is a function, then f(z) is the value of f at the point .
Writing f(-) emphasizes that f is a function. This is important when a function
has more than one argument and we want to describe the function of one of
these arguments with the other held fixed. For example, if f is a function of
two arguments, then f(x,y) is the value when the arguments are = and y. For
any particular value of y, there is a function of = that you get by fixing y. Some
ways to denote this function are g,(x) = f(x,y) or g4(-) = f(-,y).]

Evolution (in this context) means changing over time. The formulas (5) or
(6) are formulas for p(-,t) in terms of p(-,¢1), if ¢ > ¢;. This implies a for-
ward evolution. As time moves forward, it is possible to determine the forward
(future) probability density p(-,¢) from the present density p(-, t1).

This forward evolution may be written as

p(,t) = Gt —t)p(, 1) - (7)

The G is this formula is a linear operator that is represented by the integral
formula (6). The operator G(t) may be applied to functions that are not prob-
ability densities. The definition is

9 =GOS means g() = [ G-y ()dy. ®)

You can think of a linear operator as being like a linear transformation in n
dimensional vector space, where G would be represented by an n X n matrix.
But here there is no matrix. Instead the action of the operator G(t) is given by
the integral (8). Remember that ¢ in this formula is just a parameter. We do
not integrate over ¢, at least not in the definition (8).

Is it possible to go backwards in time? Can you determine p(-,¢1) from p(-, t)
fort > t1? If G(t) were a linear transformation on an n dimensional vector space,
then the operation of G(t) could be reversed by the inverse matrix G(¢)~!. The



problem of reversing the direction of time is the same as the problem of inverting
the linear operator (8).

Linear operators are in some ways analogous to linear transformation of finite
dimensional vector spaces. So, suppose A is an n X n matrix and ask whether
that “action” of A can be reversed. For € R™, the action of A is x ~ y = Ax.
Undoing that would mean recovering x from y. The linear algebra formula is
y = A=z, In linear algebra, there is a simple criterion for A~! to exist. Suppose
there is a vector v # 0 with Av = 0. Then if you know y = 0, you do not know
whether £ = 0 or x = v, because A0 = 0 and Av = 0. You can say that the
memory of v is erased by A. We know (these are facts of linear algebra) that
there is such a v # 0 if and only if det(A) = 0. If det(A) # 0, then A~ exists.
This kind of A™! is a left inverse, because it satisfies A~!Ax = z for all . The
inverse is on the left in the matrix product.

A right inverse is an A~! with AA='y = y for all y. If + = A~y, then
x = Ay. This is the problem of solving, which means starting with an arbitrary
y € R™ and finding an = with Ax = y. A matrix that has an inverse in this
sense is onto (also called surjective, from the French word “sur”, which means
“on”). A matrix with a left inverse is into (also called injective). That means
that if 1 # o then y; = Az # yo = Axs, which is the same as A(zq —x2) # 0
if 1 — x9 # 0, which is how we expressed this in the previous paragraph. It is a
fact of linear algebra that an n X n matrix has a right inverse if and only if it has
a left inverse (if and only if A # 0). But “into” (left inverse) and “onto” (right
inverse) seem to be different things.

Right and left inverse for the evolution operator G(t) also seem different.
For a right inverse, we would be given a p(-) and then we would look for ¢ with
Gq = p. We will soon see that G has a smoothing property which makes this
impossible. Even if ¢ is discontinuous, p = Gq is differentiable. Therefore (we
will see) there is no ¢ if p is discontinuous — no right inverse.

The left inverse is more subtle. There is no g with G¢ = 0. No ¢ gets
erased completely. But it is possible to show (this may be too long a detour
for an applied math class) that there are functions ¢ that are “reduced” by
an arbitrarily large factor. For any € > 0 there is a ¢ so that if p = G,
then ||p|| < €llg]]. If p is not known exactly, but has an error e, then it is
impossible to know whether it had this ¢ in it or not. The technical term
for this phenomenon is ill-posededness. A coming computing assignment will
demonstrate that running the heat equation “backwards” (which is the same as
finding the inverse of G' (running the heat equation “forwards”)) is ill posed. If
you do it on the computer, the computation “blows up”. The computer isn’t
damaged but the results are garbage.

2.2 Short time evolution

It is interesting and important to understand what happens in short amounts
of evolution. The Brownian motion path is a continuous function of ¢, so it is
natural to think that G(¢)p is not much different from p for small ¢t. If X; is
close to Xj, then the PDF of X; should be close to the PDF of X;. First we



will see that this true, then we will see that it is not true. Pay attention to the
difference.

Look at the integral kernel (“kernel” probably comes from the German word
“Kern”, which means core) in (4), with ¢; = 0 for simplicity. We simplify the
operation (5) to

p(z) = /jo Gz —y,t)q(y)dy . (9)

The kernel is positive and integrates to 1:
o0
/ Gz —y,t)dy=0.
—0o0

Therefore the value p(x) is a weighted average of the values of ¢(y). When ¢ is
small, the kernel (4) is “exponentially small” when y is far from x. Therefore,
p(xz) is an average of ¢(y) for y values close to z. If ¢ is continuous, then

q(y) ~ q(x) for y =~ x, so

o)~ [ " Gla -y, t)qly) dy ~ / " Gla -y t)q(a)dy = qla) -
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If you have taken mathematical analysis, you can make a proof of this theorem:
if ¢ is bounded and continuous, then p(z,t) — q(z) as t | 0.

The English physicist Dirac (Sir Paul Adrian Maurice Dirac, F.R.S., to be
precise) described this using what we call the Dirac delta function, which is writ-
ten §(x). This is not an actual function, but an abstract “generalized function”
that has a unit “mass” at zero and is equal to zero elsewhere. That is

e §(z) >0 for all z,
e §(x)=0if = #0.
o [7 d(x)dw=1.
These properties imply that
f@ = [ sty

In the integral, é(x —y) = 0 if © # y, so only z = y matters, and there f is
1(@).

Although the delta function is not a real function (with real function values
for each x), it is possible for a family of real functions to converge to the delta
function. Our G does that:

G(z,t) = 6(x) as t10.

You can see what this means by drawing a sequence of graphs of G as ¢ | 0.
The mathematical theorem is what we said just before, that p(z,t) — g(z) as
tl0.



Now consider the solution of the heat equation, the PDF of Xy, if p(-,0) is
not continuous. Specifically, suppose X is random and uniformly distributed
in [0, 1]. This is the same as saying that p(z,0) = 1if 0 <z <1, and p(z,0) =0
otherwise. If z is not near 0 or 1, then p(z,0) is continuous and p(x,t) — 0 or
1 as t | 0. However, the jump discontinuities at * = 0 and = = 1 are replaced
by rapid transitions. p(z,t) goes from almost 0 for < 0 to almost 1 for > 0,
making the transition rapidly. The width of the transition (for example, the
distance between p(z,t) = .2 and p(z,t) = .8) is on the order of t2. For ¢ > 0,
p(+,t) may be expressed in terms of the cumulative normal function

1 v 22
N(z):PrN(071)(Z<:E):E/ e 2 dz.

The Z random variable Gaussian with mean zero and variance 1 (a standard
normal). This goes to 0 as x — —oo and 1 as  — co. Near = 0 and for small
t > 0, we have the approximation

plz,t) ~ N(t"2z) .

For small ¢, t2 is large. Therefore t~2x is either far to the left of 0 (negative)
or far to the right of 0 if x # 0. The corresponding values of N (t‘éx) are close
to 0 or close to 1. These formulas are verified in Exercise 1 of Assignment 2.

2.3 Probability flux

You can think of probabilitconditionaly density of Brownian motion as “flow-
ing” along the x axis as p(-,t) evolves. If a is some point on the z axis, then
probability cannot go from = < a to x > a without crossing a. There is a
probability fluz (also called probability current and written as F(a,t)) that says
how fast probability is flowing at location a at time ¢. If F > 0, then probability
is flowing to the right. If F < 0, then probability is flowing to the left. The
amount of probability between a and b at time ¢ is

b
Prla< X; <b) = / p(z,t) dz .

The rate of change described by the flux at the endpoints a and b. If F(a,t) >
0, then probability is flowing into the interval [a,b]] at the left endpoint. If
F(b,t) > 0, then probability is flowing out of the interval [a,b]] at the right
endpoint. The mathematical statement is

b
iPr(a <X;<b) = i/ p(z,t)de =TF(a,t) — F(b,t) . (10)
dt dt J,

This formula is related to the fact that Brownian motion paths X; are continuous
functions of . The Brownian motion cannot go from inside [a,b] to outside
without crossing one of the boundary points. The probability inside cannot
leave or enter except by being flux at one of the endpoints.



We find a formula for F and verify the “local conservation” formula (10)
using the heat equation and the fundamental theorem of calculus (the integral
of 92p is O,p evaluated at the endpoints)

d (b b
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This verifies the local conservation formula (10), with probability flux formula

1
Fa,t) = —50up(a,1) (1)
The heat equation itself may be written using the flux as
Op(x,t) + 0,F(z,t) = 0. (12)

To understand this, imagine that F is constant (independent of z). Then J,F =
0, so Oyp = 0. If the flux is constant at some point then the probability density is
not changing there. The probability density isn’t changing because probability
flows in at the same rate it flows out. If F is increasing (as a function of z),
then probability flows out of the right endpoint a little faster than it flows in
at the left. Therefore the probability inside is decreasing (as a function of ¢. In
(12), if 0,F > 0, then Op < 0.

The specific flux formula (11) is called Fick’s law or the Fourier law. It says
that probability flows from regions of high probability density to regions of low
probability density. If d,p > 0 at some point, then F < 0 at that point. The
density is larger on the right so it is more likely that the particle goes from
right to left than that it goes from left to right. The term Fourier law is often
used when the heat equation is used to model the flow of heat (as opposed to
probability). Fourier himself “wrote the book on” the flow of heat (the first
book). Fick’s law is often used when the heat equation models the diffusion of a
chemical through a gas or liquid. The heat equation is often called the diffusion
equation for that reason.

3 Hitting probability

Let X; be Brownian motion starting from Xy = xg which is not random. Sup-
pose xg > 0. The hitting probability for z = 0 up to time ¢ is

Pr(X; =0 for some 0 < s <t).



The hitting time (also called first hitting time or first passage time) is
T=min{t| X; =0} .

If X; > 0 for all £ > 0, we say T = oo. This is a random variable that depends
on the random path X;. We call the point x = 0 the absorbing boundary. The
point = 0 is the boundary (the end) of the region x > 0 that we are interested
in. The goal of this section is the PDF: T' ~ u(t).

This calculation does not consist of integrating a probability density for X;
(at least, not in a simple way). Indeed, in some sense there is no probability
density for the path. There is a probability density for the values X; for fixed
t, but not for the whole path (we will return to this statement, which physicists
may disagree with). Instead, the calculation uses the heat equation, the proba-
bility flux, and a trick for solving the relevant heat equation called the method
of images.

To calculate hitting probabilities and the hitting time PDF, let p(z,t) be
the probability density for a path that has not hit yet. That is, if x > 0, then

ple,t)de =Pr(z < Xy <z+dr and T > 1t) . (13)

This is only defined for z > 0. The survival probability is the complement to
the hitting probability. It is given in terms of this density function by

S(t) =Pr(T > t) :/Oop(x,t)dx< 1.
0

The density p of a surviving Brownian motion (13) satisfies the heat equation
if x > 0. I do not give the proof here, but it depends on the fact that Brownian
motion paths are continuous. If X;, > 0, and if the time increment ¢t —¢; is small,
then X} is so unlikely to reach the boundary that it does not effect (for very short
time) the evolution of the PDF. The density (13) satisfies an absorbing boundary
condition at the absorbing boundary, which is p(0,¢) = 0. The intuition for
this is that it is unlikely to find a surviving Brownian motion close to the
boundary because it probably hit the boundary before time ¢;. We will see this
in simulations but I think a real proof is too long and technical to be of interest to
a majority of students here. If the path starts at Xo = x¢ which is some distance
from the boundary, then X; is unlikely to hit the boundary for small enough

z—z0)2
t. Therefore, for small ¢, the density (13) satisfies p(z,t) =~ \/21?6_%. To
summarize, we find p by finding the function that satisfies
xTr—x 2
o (initial condition) p(z,0) = d(z), which is the same as p(z, ) ~ ;ﬂe*%

for small ¢, if x > 0.
e (boundary condition) p(0,t) = 0.

e (PDE) p satisfies the heat equation if z > 0.



The trick for finding p is to look for a function (also called p) that satisfies
these three conditions but is defined for all z, not just for > 0. This function
will be anti-symmetric with respect to the absorbing boundary, which means
p(—z,t) = —p(x,t). Since p(x,t) > 0 for x > 0 (being a probability density),
this implies that p(z,t) < 0 if z < 0. Therefore the extended p cannot be
interpreted as a probability density for x < 0. The skew-symmetric extension
automatically satisfies the absorbing boundary condition (check by algebra or
draw a picture), which is the principle behind the trick.

The initial condition for the skew symmetric extension has a delta function
at * = zo and (by skew-symmetry) a negative delta function at —zy. The
solution is the sum of these two solutions

1 _ (z—=q)? 1 _ (z+z0)?
2t

plet) = ——e T - o

14
27t 2t (14)

The first term comes from the delta function at zg. The second term comes from
the delta function at —zy. Note that @ — (—xg) = x + zo, which explains the
exponent in the second term. We call the delta function at xy the point charge
at xg. It is a unit “charge” (probability mass) at zo. The delta function at —xg
is the image charge. The point —x( is the image of zy if you reflect through
the reflecting boundary. You can check that this function satisfies the three
conditions above. The initial condition there is only for > 0. The extended
p also has a charge at —x(, which is consistent with that. You can check that
p given by (14) satisfies p(x,t) > 0 for x > 0 (the negative part is smaller than
the positive part because x is closer to xg than it is to —xg).
The hitting time density satisfies

u(t)dt =Pr(t <T <t+dt)
= S(t) — S(t +dt)

d
=~ S(t)t
u(t) = —%S(t) .

We argued above that

ds 1
= =F(0,t) , F(0,t)=—=08,p(0,t).
D _50.0) . F(O,0) =~ 300(0.1)
Therefore,
1
u(t) = 3 .p(0,t) .

The calculation from the explicit formula (14) finally gives
(15)
This is the hitting time probability density — a famous formula we will use a lot.
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What does u(t) look like for small ¢ and for large t? For small ¢, the prefactor

2
ct=3 goes to infinity, but the exponential —g—g goes to minus infinity. Since
exponentials beat powers, this shows that u(t) — 0 as t — 0 “exponentially”. It
is very unlikely to hit the boundary very quickly. When ¢t — oo, the exponent
2

goes to zero. Therefore e~ 2 — 1 as t — oo and u(t) ~ Ct=3. As t — oo,
this probability density goes to zero, but slowly. It can’t be too slow because
the integral has to converge. But it is so slow that the expected hitting time is
infinite (the integrand is “like” t=2 for large ¢, so the integral diverges):

E[T] = /Oootu(t)dt =00.

3.1 Reflection principle

The method of images formula (14) has a consequence that is (in this context
in probability) called the reflection principle. That is,

Pr(X, <0 for some s <t) =2Pr(X; <0). (16)

If Xy <0, then X, = 0 for some s < t. Therefor the probability of being “out”
(outside the domain x > 0 at time ¢ is less than the probability of ever having
been out. But (16) says that the two probabilities differ exactly by a factor of
2.

To prove this formula, use the fact that

o0 1 z—zg)2
/ ef( 7 dr=1.

oo V2Tt

Also, the probability of being out at time ¢ is

0
1 )2
Pr(Xt<0):/ ~ S

—oo V21t

The hitting probability is

[e%e} 0 [e%}
1 (w—2q)? 1 (w+zg)?
/ p(z,t)de =1— / e 2 dr— / e~ dr
0 —oo V2Tt o V2t

The two integrals on the right are equal (check this), and either of them is
Pr(X; <0). This proves the reflection principle (16).

The Russian mathematician Kolmogorov must have seen (16) in this way
and wondered whether there is a proof that doesn’t rely on the solution for-
mula for Brownian motion. He found such a simple argument, so the reflection
principle formula (16) is true whenever X; is a “symmetric martingale”. This
is common in math. You do some calculations and come to an unexpected for-
mula. Then you wonder why this unexpected formula might be true, and you
find a derivation that is simpler and more natural than the computation that
led you there in the beginning.

11



