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Class 13, change of measure

1 Introduction

Change of measure is a deep subject with many practical applications. Two
probability distributions P and Q may be related by a likelihood ratio L. A
random variable X can have either the P or the Q distributions. We write
expectations as

EP [V (X)] , EQ[V (X)] .

For example, P could represent ordinary Brownian motion and Q could repre-
sent Brownian motion with drift. Then EP [·] would mean expectation, assuming
X is a standard Brownian motion path. The P and Q expectations generally
are different, but they are related by the likelihood ratio L if, for “any” function
V ,

EP [V (X)] = EQ[V (X)L(X)] . (1)

The likelihood ratio compensates for the difference between the P and Q distri-
butions.

Importance sampling is one practical application of change of measure. It is
common that “most” of the samples with large V in the P distribution are rare
in the P distribution. Suppose you estimate A = EP [V (X)] by simulation. This
would mean generating many samples (sample paths if it’s Brownian motion)
and averaging the results

ÂN =
1

N

N∑
k=1

V (X(k)) , X(k) ∼ P i.i.d. (2)

If “important” paths (paths with large V ) are rare, then the samples you get

might have few of none of them, ÂN not close to A. Importance sampling means
designing a different probability distribution Q that makes “important” samples
more likely. The more complicated, but hopefully more accurate importance
sampling estimator is

ÂN =
1

N

N∑
k=1

V (X(k))L(X(k)) , X(k) ∼ Q i.i.d. (3)

The fake distribution creates more “hits” (samples X(k) with large V (X(k)).
You compensate for this by giving the hits less weight – L(X) will be small.
This situation is surprisingly common and importance sampling is used a lot.
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Sensitivity analysis is a related practical application. You may have similar
probability distributions P and Q. A finance example might be P and Q geo-
metric Brownian motions with the same volatility and slightly different growth
rates. You may be interested in the difference

DPQ = AP −AQ = EP [V (X)]− EQ[V (X)] .

One approach to this would be to estimate AP with N samples X(k) ∼ P and N
different samples X̃(k) ∼ Q. This approach may fail if the statistical estimation
error is larger than DPQ. A different approach is to use one set of samples
X(k) ∼ P and re-weight them to estimate AQ.

D̂PQ =
1

N

N∑
k=1

[
V (X(k))− V (X(k))L(X(k))

]
. (4)

If P is close to Q, then L will be close to 1 and the terms on the right of
(4) will be smaller than the terms on the right of (2) or (3). In this context,
the likelihood ratio function L(x) may be called the score function. Sensitivity
analysis in finance is often done this way, or should be.

A more theoretical use is understanding when things happen almost surely.
The change of measure formula (1) implies (we will see) that something happens
almost surely in the P distribution if and only if it happens almost surely in the
Q distribution. For example, we showed that the ∆t → 0 (actually m → ∞)
limit that defines the Ito integral converges almost surely for Brownian motion.
Now we learn that it converges almost surely for any process related to Brownian
motion by a change of measure. This may seem surprising in view of the proof
from Class 12. There, it was important that E[∆W ] = 0. But Brownian motion
with drift has E[∆W ] 6= 0. The change of measure theorem implies that the Ito
integral is defined for Brownian motion with drift.

We say that P and Q are equivalent probability distributions if they are
related by a likelihood ratio as in (1). Be careful here, as “equivalent” distribu-
tions are not identical. If P and Q have a different idea of what happens almost
surely, then P and Q are not equivalent. For example, the quadratic variation
of Brownian motion is

[W ]t = t .

Another process with a different quadratic variation is not equivalent to Brow-
nian motion.

2 Importance sampling in finite dimensions

Before we turn to probability distributions on paths (diffusions), explain how
re-weighting works with probability densities in finite dimensional problems.
Take X ∈ Rn to be a random variable with n components. Suppose there are
two probability densities p(x) and q(x). Let p(x) represent the P distribution
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and q(x) the Q distribution. Then

EP [V (X)] =

∫
Rn

V (x)p(x) dx .

The likelihood ratio representation (1) asks to express the simple P represen-
tation as a Q representation with the L factor. We do this by dividing then
multiplying by q(x). The likelihood ratio turns out to be the ratio of probability
densities:

L(x) =
p(x)

q(x)
. (5)

The calculation is

EP [V (X)] =

∫
Rn

V (x)p(x) dx

=

∫
Rn

V (x)
p(x)

q(x)
q(x) dx

=

∫
Rn

V (x)L(x)q(x) dx

= EQ[V (X)L(X)] .

This shows that you can “change measure” from P to Q if q(x) 6= 0 for any
x with p(x) 6= 0. For example, you can change P = N (0, 1) to Q = N (µ, σ)
for any desired µ and σ. You cannot change from P = N (0, 1) to Q being an
exponential random variable because the exponential density is different from
zero only for x > 0.

As a toy example, consider the probability that a Gaussian

3 Probability measure and expectation

The probability distributions of diffusion processes are not given by probability
densities. Instead they are defined by approximations somewhat like the ap-
proximations used to define the Ito integral in Class 12. The random outcome
(the random object?) for a diffusion process is a path X[0,T ]. An event is a set
of paths. If F is a σ−algebra and A ∈ F is an event measurable with respect
to F , then we write P (A) for the probability that X[0,T ] is in A.

A probability measure is a function P (A). For each A ∈ F , there is a number
P (A). This represents the probability of the event A. It is a probability measure
if it satisfies four basic axioms. First, P (Ω) = 1. Second, P (A) ≥ 0 for any event
A (probabilities cannot be negative). The probability space Ω must include
every (or “almost every”) possible outcome. Third, if A∩B = ∅ [The empty set
is ∅, which is the set with no elements. This is a way to say that A and B are
disjoint, that there are no elements in both A and B.] then P (A∪B) = P (A)+
P (B). For example, A and the complement Ac are disjoint, and A ∪ Ac = Ω.
Therefore P (A) + P (Ac) = 1, which may use in the form P (A) = 1 − P (Ac).
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Fourth, a measure must be countably additive. This means that if Ak is a family
of events that is “pairwise disjoint” (Aj ∩Ak = ∅ for j 6= k), then

∞∑
k=1

P (Ak) = P (∪∞k=1Ak) . (6)

Here is another form of countable additivity you may see. A family of events
Bk is “increasing” if Bk ⊆ Bk+1 for all k. You can think of the “limit” of the
Bk is the union. Countable additivity for an increasing family is

lim
k→∞

P (Bk) = P (∪∞k=1Bk) . (7)

The two forms of countable additivity are equivalent to each other – each
implies the other. Suppose P is finitely additive (the third axiom) and

Bk = A1 ∪ · · · ∪Ak .

Finite additivity implies that

P (Bk) = P (A1 ∪ · · · ∪Ak)

= P ([A1 ∪ · · · ∪Ak−1] ∪Ak)

= P (Bk−1) + P (Ak)

= [(Bk−2) + P (Ak−1)] + P (Ak)

...

P (Bk) = P (A1) + · · ·+ P (Ak) .

Since all of these numbers are non-negative,

lim
k→∞

P (Bk) =

∞∑
k=1

P (Ak) .

Also (you might have to think about this for a minute)

B = ∪∞k=1Bk = ∪∞k=1Ak .

Therefore, each of the formulas (6) and (7) implies the other.
The word “measure” comes from “measure theory”, which began as a study

of which sets A ∈ R or A ∈ Rd could be assigned a length or area or volume (a
measure). The point there (as it turned out) was to find a family of measurable
sets that formed a σ−algebra and included basic sets like intervals or balls.
The measure of an interval or ball is the length or volume. The measures
of the rest of the measurable sets (it turned out) is determined by countable
additivity. A class on “real variables” usually starts with a proof of these facts –
countable additive measure on Rd with a σ−algebra of measurable sets, so that
the measure of a “simple” set is what it’s supposed to be. Kolmogorov realized
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that abstract countably additive probability measures allow for a useful abstract
theory of probability without probability density functions.

Measure theory allows for a simple definition of the integral. In the Riemann
integral, you define ∆x and xk = k∆x and then∫ b

a

f(x)dx ≈
∑

a<xk<b

f(xk)∆x .

The left side has a limit as ∆t → 0, which is the definition of the right side.
This can be done “sideways” by defining a ∆y > 0. Then divide the y−axis
into intervals of length ∆y with endpoints yk = k∆y. The sets Ak are the sets
on the x−axis that go to these intervals on the y−axis:

Ak = {x | yk ≤ f(x) < yk+1} .

If f(x) ≥ 0 for all x, you can approximate the integral as∫
f(x)dx ≈

∞∑
k=0

yk ( measure of Ak) .

The right side has a limit as ∆y → 0, which is the definition of the left side.
In abstract probability, we use ω ∈ Ω to represent the basic outcome. If

Ω = Rd (probability densities), then ω is a point in Rd. We usually denote this
by x. If we’re talking about Brownian motions or diffusions, then Ω is the set of
paths (functions of t), and ω represents a path. In this setting, expected values
are defined as abstract integrals. If V (ω) is a function of the random outcome
ω ∈ Ω (often called a “random variable”), then the expected value is written
using one of two equivalent notations,

EP [V (ω)] =

∫
Ω

V (ω)dP (ω) .

This is defined if V is non-negative and measurable.
The definition is as before. Define events

Ak = {ω | yk ≤ V (ω) < yk+1} .

Every ω ∈ Ω is in one of the Ak and the Ak are pairwise disjoint (because of
≤ on one side and < on the other). Choose a positive integer m and define
∆ym = 2−m. The approximate expectation is

E
(m)
P [V (ω)] =

∞∑
k=0

ykP (Ak) . (8)

From the definition it is “clear” (think about it for a few minutes, draw a picture)
that

E
(m)
P [V (ω)] ≤ E

(m+1)
P [V (ω)] ≤ E

(m)
P [V (ω)] + 1

22−m .
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Therefore the limit in this definition exists:

EP [V (ω)] = lim
m→∞

E
(m)
P [V (ω)] . (9)

It is possible (it happens a lot in probability) that EP [V (ω)] =∞. If V is not
positive, we can define

V (ω) = V+(ω)− V−(ω) , V±(ω) ≥ 0 for all ω ∈ Ω .

These are the “positive” (non-negative) and “negative” parts of V . If

EP [V−(ω)] <∞ ,

we can define
EP [V (ω)] = EP [V+(ω)]− EP [V−(ω)] .

If EP [V+(ω)] = ∞ then EP [V (ω)] = ∞. It doesn’t seem possible to define
the overall expectation if both the positive and negative parts have infinite
expectation. We can define ∞− (finite) =∞, but ∞−∞ = ?.

This definition of integral implies the “obvious” formula, for a measurable
event A,

EP [1A(ω)] = P (A) .

Here 1A(ω) is the indicator function which is 1 if ω ∈ A and 0 if ω /∈ A. In the
definition (9), the sets Ak will be empty except for the k with yk = 1. That
one will have yk = 1 (DUH) and Ak = A. The definition (8) and (9) makes
expectation linear, in that

EP [V1(ω)] + cEP [V2(ω)] = EP [V1(ω) + cV2(ω)] .

Any “countably additive” version of this for infinite sums has an extra hy-
pothesis. Examples are the monotone convergence theorem (all Vk ≥ 0) and
the dominated convergence theorem, which has the hypothesis that involves the
maximal function M(ω) defined by

M(ω) = max
n

∣∣∣∣∣
n∑

k=1

Vk(ω)

∣∣∣∣∣ .
The hypothesis is

EP [M(ω)] <∞ .

A function is a simple function if it may be represented as a finite linear
combination of indicator functions

V (ω) =

n∑
k=1

uk1Ak
(ω) .

The expectation (using the one indicator function property and finite linearity)
is

EP [V (ω)] =

n∑
k=1

ukP (Ak) . (10)
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Many modern textbooks base the definition of abstract integration/expectation
on this. You approximate your function by a simple function, define the integral
for simple functions, and take a limit. Our definition (8) and (9) is like this (you
can check), where the approximating functions are

V (ω) ≈ V (m)(ω) =

m∑
k=0

yk1Ak
(ω) .

These definitions have the following “obvious” property. [Here “obvious”
often means a property the definition should have. If the definition does not
have the property, then the definition is wrong, or our preconception was wrong.]
As before, V = 0 almost surely if P (V 6= 0) = 0, or if A = {ω | V (ω) 6= 0}
implies P (A) = 0. If V = 0 almost surely, then EP [V (ω)] = 0. This is a feature
of our definition, because (8) has P (Ak) = 0 except A0.

4 Likelihood ratio change of measure

We say that measures P and Q are equivalent if there is a likelihood function
L(ω) so that for “any” function V ,

EP [V (X)] = EQ[V (X)L(X)] , EQ[V (X)] = EP

[
V (X)

1

L(X)

]
. (11)

The Radon Nykodim theorem says that two probability measures are equivalent
in this sense if they agree on what “almost surely” means. That is,

P (A) ⇐⇒ Q(A) = 0 for any measurable event A . (12)

This theorem is easy to prove in the “easy direction” (which is the definition
of “easy direction”). If P and Q are equivalent by the L definition (11), and if
Q(A) = 0, then

P (A) = EP [1A(ω)] = EQ[1A(ω)L(ω)] = 0 .

We know the last expectation is zero because V (ω) = 1A(ω)L(ω) = 0 almost
surely with respect to Q (V (ω) 6= 0 only if ω ∈ A, which it almost surely is
not in Q). The hard direction is the theorem that the of P and Q agree on
“almost surely”, then there is a likelihood ratio L with the property (11). That
argument takes too long to include here.

In finite dimensions with probability densities p(x) and q(x), the probabil-
ity distributions are equivalent if the places p ≤ 0 and q 6= 0 allow it. For
example, any two Gaussians are equivalent but a Gaussian is not equivalent to
an exponential. If q(x) is the PDF of an exponential random variable, then
Q(X < 0) = 0. If P is Gaussian, then P (X < 0) ≤ 0.

For measures in path space, equivalence is more subtle. The theorem for
diffusions, Girsanov’s theorem, is that they are equivalent if the have the same
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infinitesimal variance. For example there is a probability distribution for ordi-
nary Brownian motion

dX = dW ,

and a distribution for Brownian motion with a different infinitesimal drift and
variance

dX = adt+ b dW .

These two processes are equivalent if and only if b2 = 1 (the same infinitesimal
variance).

An easy part of Girsanov’s theorem concerns a measure P on path space
determined by the diffusion

dX = a(X)dt+ b(X)dW , X0 = 0 .

This is not equivalent to Brownian motion measure dX = dW , X0 = 0, unelss
b2 = 1. The proof involves quadratic variation. In the P measure, almost surely,

[X]t = lim
∆t→0

∑
tk<t

(
Xtk+1

−Xtk

)2
=

∫ t

0

b2(Xs)ds .

In the Q (Brownian motion) measure, it is

[X]t = lim
∆t→0

∑
tk<t

(
Xtk+1

−Xtk

)2
= t .

Therefore, unless b2(Xt) = 1 almost surely, we can tell the paths apart (see next
paragraph).

You can understand equivalence of measures from the point of view of hy-
pothesis testing in statistics. In hypothesis testing, you are given a random
sample and asked to judge whether the null hypothesis or the alternative hy-
pothesis is true. Usually you don’t know with certainty, but you can say what
is likely to be true. The null hypothesis (usually called H0) is that data came
from probability measure Q. The alternative hypothesis (called H1) is that the
data came from measure P . A hypothesis test procedure is equivalent to an
event A, which is the set of outcomes that are classified as H0. The event A
may be defined implicitly by the hypothesis testing procedure you use to decide
H0 or H1. The test is perfect if Q(A) = 1 and P (A) = 0. That means that the
hypothesis test is correct (almost surely). In finite dimensions, two probability
measures are likely to be equivalent so there can be no perfect test.

With paths, you have one path X[0,t] and you are asked whether is it Brow-
nian motion or some other diffusion process. To decide, you compute the
quadratic variation for your path and find b. If b2 6= 1 you know it is not
Brownian motion. If H0 is Brownian motion and H1 is another diffusion with
b2 6= 1, there is a perfect test.
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5 Girsanov – change of measure from Brownian
motion

The hard part of Girsanov’s theorem is that Brownian motion is equivalent
to “any other” diffusion with b = 1. That is, you can change the drift with
a likelihood ratio, but not the infinitesimal variance. This part of Girsanov’s
theorem comes with Girsanov’s formula for the likelihood ration function L.

If were were a PDF for P and Q, then we could divide to get L. Without a
PDF we choose a ∆t and look at the “observations”

X
(∆t)
k = Xtk , 1 ≤ tk ≤ t .

These observations form a random variable with finitely many components

X(∆t) = (X
(∆t)
1 , X

(∆t)
2 , . . . , ) .

Let p(∆t) and q(∆t) be the corresponding probability densities. (Actually, we
will cheat with p and write an approximation to it.) The approximate likelihood
ratio is

L(∆t)(x) =
p(∆t)(x(∆t))

q(∆t)(x(∆t))
.

We will see that L(∆t) has a limit (almost surely) as ∆t→ 0.
The PDF of the observations of Brownian motion is given by the independent

increments property of Brownian motion

q(x1, x2, . . .) = q(x1) · q(x2|x1) · q(x3|x2, x1) · · · · .

Each of the conditional expectations is that Xk+1 is normal with mean Xk and
variance ∆t. Therefore

q(x1) =
1

2π∆t
e−

x2
1

2∆t

q(x2|x1) =
1

2π∆t
e−

(x2−x1)2

2∆t

q(x3|x2, x1) = q(x3|x2) =
1

2π∆t
e−

(x3−x2)2

2∆t .

As a result (n is the largest k with tk < t),

q(x1, x2, . . .) =

(
1

2π∆t

)n

e
− 1

2∆t

[∑
tk<t(xk−xk−1)2

]
. (13)

This formula includes x0, which is equal to 0.
With drift, Xk+1 ≈ Xk + a(Xk)∆t + ∆Wk. We write the PDF for Xk+1

assuming this is exact. This means that Xk+1 is normal with mean Xk +
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∆ta(Xk) and variance ∆t. The conditional probabilities are

p(x1) =
1

2π∆t
e−

(x1−a(0)∆t)2

2∆t

p(x2|x1) =
1

2π∆t
e−

(x2−x1−a(x1)∆t)2

2∆t

p(x3|x2, x1) = q(x3|x2) =
1

2π∆t
e−

(x3−x2−a(x2)∆t)2

2∆t .

This leads to

p(x1, x2, . . .) =

(
1

2π∆t

)n

e
− 1

2∆t

[∑
tk<t(xk−xk−1−a(xk−1)∆t)2

]
. (14)

We calculate the ratio.
First, note that the 2π factors are the same in p and q, so they cancel in the

quotient. Then calculate a term in the exponent:

− 1

2∆t
(xk−xk−1−a(xk−1)∆t)2 = − 1

2∆t

[
(xk − xk−1)2 − 2(xk − xk−1)a(xk−1)∆t+ a(xk−1)2∆t2

]
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