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Class 12, Ito, theory

1 Introduction

Last week was the setup for Ito theory. This week is the theory. See the Class
11 notes for notation and motivation.

The argument here is different from the arguments in other places. If you
look in Wikipedia or other standard sources, you will find a slick looking proof
based on “simple functions” and the Ito isometry formula. The details of this
approach are not as simple.

2 The Ito integral

The time step is ∆tm = 2−m. This has two features that make our proof work.
One is that ∆tm → 0 exponentially fast, which makes the sums in Borel Cantelli
converge. The other is that ∆tm+1 = 1

2∆tm. This makes it easy to compare
the ∆tm approximation to the ∆tm+1 = 1

2∆tm approximation.
The discrete times are tj = j∆t. The approximation to

Xt =

∫ t

0

fsdWs .

is
X

(m)
t =

∑
tj<t

ftj
(
Wtj+1

−Wtj

)
. (1)

We will show that for almost every Brownian motion path W[0,t], the limit
limm→∞ exists. This will be our definition of the Ito integral with respect to
Brownian motion.

Our proof requires quantitative assumptions on the continuity of the inte-
grand fs. We are giving a “quantitative” proof based on specific inequalities
being used to show a Borel Cantelli sum is finite. We will assume that fs
is “about as continuous” as Brownian motion. Last week we had the specific
formula involving the Ito integral

Xt =

∫ t

0

a(Xs)ds+

∫ t

0

b(Xs)dWs .

Here, Xs is a diffusion that is “about as continuous” as Brownian motion. Brow-
nian motion, informally, has ∆W ∼ ∆t

1
2 , or (∆W )2 ∼ ∆t. We assume that

there is a constant C (for “continuity”) so that

E
[

(fs+∆t − fs)2
]
≤ C∆t . (2)
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This should be true about b(Xs) because in a time increment ∆t, we should
have ∆b ∼ b′(Xs)∆X.

The calculation compares X
(m+1)
t to X

(m)
t . More specifically, we find an

inequality (an “upper bound”) of the form

E

[(
X

(m+1)
t −X(m)

t

)2
]
≤ AC∆tm . (3)

Here, C is the continuity constant from (2) and A is another constant. For the
Borel Cantelli lemma, we need the expected value of

∣∣X(m+1) −X(m)
∣∣, not the

square of this that appears in (3). This may be done using the Cauchy Schwarz
inequality (which we described in an earlier class?) If U and V are any two
random variables with any joint distribution, then

E[UV ] ≤
(

E
[
U2
]

E
[
V 2
] ) 1

2 . (4)

We apply this with U =
∣∣X(m+1) −X(m)

∣∣ and V = 1, so U2 =
(
X(m+1) −X(m)

)2
and E

[
V 2
]

= 1. The result is the bound of the expected value in terms of the
expected square

E[U ] ≤
(

E
[
U2
]) 1

2 . (5)

[There is more about this inequality in a later section of this class.] We use this
and the bound (3). In the end we use the geometric series definition ∆tm = 2−m.
This implies that even

√
∆tm is a geometric series. Specifically,

√
∆tm = zm

with z = 2−
1
2 < 1. The calculation is

E
[∣∣∣X(m+1)

t −X(m)
t

∣∣∣] ≤ (E

[(
X

(m+1)
t −X(m)

t

)2
]) 1

2

≤ (AC∆tm)
1
2

E
[∣∣∣X(m+1)

t −X(m)
t

∣∣∣] ≤ Bzm , z = 2−
1
2 , B =

√
AC . (6)

Thus, the expected square inequality (3) is enough for the Borel Cantelli lemma
of last week to show that the limit m → ∞ of the approximate Ito integrals
(1) exists. This means that we prove the Ito integral exists by verifying the
inequality (3).

You might wish for a more direct approach to our target quantity
∣∣∣X(m+1)

t −X(m)
t

∣∣∣.
Is the square

(
X

(m+1)
t −X(m)

t

)2

plus Cauchy Schwarz a roundabout way to do

a simple thing? For one thing, the relation between the quantities (5) is (see
later today) central to much theory of probability, so we don’t think of it as
complicated. Also, as we are about to see, computing the square is a way to
capture cancellations that arise from the fact that (we will soon see) we are sum-
ming a collection of uncorrelated random variables with expected value equal
to zero.
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To illustrate this point, suppose Uj is a sequence of uncorrelated random
variables with mean zero and variance σ2. These do not need to be independent.
The sum is Sn =

∑n
j=1 Uj . Each term in the sum is on the order of 1, so you

might expect the sum to of order n. The triangle inequality gives a bound like
this:

E[|S|] = E[ |U1 + · · ·+ Un|] ≤ E[ |U1|] + · · ·+ E[ |U1|] = nE[ |U1|] = O(n) .

This is true even if E[U1] 6= 0. But, if E[U1] = 0, then the positive and negative
terms in the sum roughly cancel. The result is that the sum is likely to be
much smaller than O(n). This cancellation doesn’t require the terms to be
independent, but if they are equal then there is no cancellation. We suppose
they are uncorrelated, which is E[UjUk] = 0 if j 6= k. We will calculate that

E
[
S2
]

= O(n). The bound (5) then gives E[|S|] = O(n
1
2 ). This is smaller than

O(n). The absolute value |S| is not algebraic, but the square S2 is algebraic. It
can be expanded as a sum to find cancellation.

The actual calculation uses the familiar trick that the square of a sum is a
double sum.

S2 =

n∑
j=1

n∑
k=1

UjUk .

Therefore

E
[
S2
]

=

n∑
j=1

n∑
k=1

E[UjUk] .

By assumption, the off diagonal (j 6= k) terms are zero. The j = k terms that
remain give

E
[
S2
]

=

n∑
j=1

E
[
U2
j

]
= nσ2 .

This shows that E[|S|] ≤ σ
√
n, as claimed. The calculation may be familiar

from the central limit theorem. But here we have not assumed that the Uj are
independent, only uncorrelated.

Finally, we compare X(m) to X(2m). The discrete times for the two approx-
imations are

t
(m)
j = j∆tm , t

(m+1)
j = j

(
1
2∆tm

)
.

We simplify the notation and calculations by dropping the m and t. We write

tj instead of t
(m)
j = j∆t = j2−m , ∆t instead of ∆tm = 2−m .

The m+ 1 discrete times are related to the m times by

t
(m+1)
2j = t

(m)
j = j∆t

t
(m+1)
2j+1 = t

(m)
j + 1

2∆t

=
(
j + 1

2

)
∆t .
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The last line suggests the notation tj+ 1
2

for t
(m+1)
2j+1 . Finally, we write fj for ftj

and fj+ 1
2

for ft
j+1

2

. We do this for W also.

One term in the sum (1) defining X(m) is

fj (Wj+1 −Wj) .

In the X(m+1) approximation, this is replaced by two terms

fj

(
Wj+ 1

2
−Wj

)
+ fj+ 1

2

(
Wj+1 −Wj+ 1

2

)
.

The difference is

Uj = fj

(
Wj+ 1

2
−Wj

)
+ fj+ 1

2

(
Wj+1 −Wj+ 1

2

)
− fj (Wj+1 −Wj) .

This calculation is the basis of everything:

Uj = fjWj+ 1
2
− fjWj + fj+ 1

2
Wj+1 − fj+ 1

2
Wj+ 1

2
− fjWj+1 + fjWj

= fj+ 1
2

(
Wj+1 −Wj+ 1

2

)
fj

(
Wj+1 −Wj+ 1

2

)
Uj =

(
fj+ 1

2
− fj

)(
Wj+1 −Wj+ 1

2

)
. (7)

The difference we are trying to estimate has the form

X
(m+1)
t −X(m)

t = S =
∑
tj<t

Uj .

The bound (3) is a bound on E[S2], with its diagonal and off diagonal terms.
We use the tower property, conditioning on information available up to the

time of the start of the last increment of Brownian motion, which is tj+ 1
2
. Let

Q be anything random, and R something known at time tj+ 1
2
, which means

R = R(W[0,t
j+1

2
]), then

E[QR] = E
[

E
[
QR(W[0,t

j+1
2

]) | Fj+ 1
2

]]
= E

[
E
[
Q | Fj+ 1

2

]
R(W[0,t

j+1
2

])
]

For the off diagonal terms UjUk with j 6= k, we assume that j > k and take
Q = Wj+1 −Wj+ 1

2
. The rest of UjUk is

R =
(
fj+ 1

2
− fj

)(
fk+ 1

2
− fk

)(
Wk+1 −Wk+ 1

2

)
.

All of this is known at time tj+ 1
2
. Therefore,

E[UjUk] = E
[

E
[
Wj+1 −Wj+ 1

2
| Fj+ 1

2

] (
fk+ 1

2
− fk

)(
Wk+1 −Wk+ 1

2

)]
.
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This is equal to zero because the inner expectation has an increment of Brownian
motion in the future of Fj+ 1

2
. The independent increments property makes

Wj+1 −Wj+ 1
2

independent of anything known at time tj+ 1
2
.

The diagonal terms may be calculated using similar reasoning:

E
[
U2
j

]
= E

[
E

[(
Wj+1 −Wj+ 1

2

)2

| Fj+ 1
2

](
fj+ 1

2
− fj

)2
]
.

The independent increments property allows us to calculate

E

[(
Wj+1 −Wj+ 1

2

)2

| Fj+ 1
2

]
= 1

2∆t .

This is because
(
Wj+1 −Wj+ 1

2

)2

is an increment of Brownian motion over a

time interval of length 1
2∆t, which is independent of Fj+ 1

2
. The result is

E
[
U2
j

]
= ∆tE

[(
fj+ 1

2
− fj

)2
]
.

We apply the continuity assumption (2), taking the ∆t there to be 1
22−m here.

This leads to the bound (C is from (2), ∆t = 2−m is the one here):

E
[
U2
j

]
≤ 1

2C∆t2 .

This leads to the bound

E
[
S2
]
≤≤ 1

2C∆t
∑
tj<t

∆t ≤ 1
2C∆tt .

This proves the inequality (3).
The Ito isometry formula may be derived using similar reasoning. The ex-

pected value of the square is a double sum with off diagonals having expected
value zero. We compute the expected square of the approximations and see that
the Ito isometry formula comes out in the limit. We evaluate the diagonal terms
using conditional expectation, this time with respect to Fj .

E

[(
X

(m)
t

)2
]

= E


∑
tj<t

fj (Wj+1 −Wj)

2
 .

The off diagonal terms have the form

E[fj (Wj+1 −Wj) fk (Wk+1 −Wk)] .

If tj > tk, we condition on Fj and everything is known except Wj+1−Wj , which
has conditional expectation equal to zero in Fj by the independent increments
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property. For the diagonal terms, we calculate

E
[
f2
j (Wj+1 −Wj)

2
]

= E
[
E
[
f2
j (Wj+1 −Wj)

2 | Fj
]]

= E
[
E
[
(Wj+1 −Wj)

2 | Fj
]
f2
j

]
= ∆tE

[
f2
j

]
Therefore,

E

[(
X

(m)
t

)2
]

=
∑
tj<t

E
[
f2
j

]
∆t .

When you take the limit ∆t→ 0, this becomes

E
[
(Xt)

2
]

=

∫ t

0

E[fs] ds . (8)

This is the Ito isometry formula.
It may be stated informally as E[ dWsdWs′ ] = 0 if s 6= s′ and E

[
dW 2

s | Fs
]

=
ds. This expresses the idea that dWs is in the future of s. Then you could reason
as follows, using the trick that the square of a sum (an integral) is the double
sum (integral) of the expected values:

E

[(∫ t

0

fsdWs

)2
]

=

∫ t

0

∫ t

0

E[fsfs′dWsdWs′ ]

=

∫ t

0

E
[
f2
sE
[
(dWs)

2 | Fs
]]

=

∫ t

0

E
[
f2
s

]
ds .

If you look in Wikipedia, you may find a similar informal calculation using a
delta function.

3 Ito’s lemma

The informal Ito’s lemma for Brownian motion is

df(Wt, t) = ∂wf(Wt, t)dWt + 1
2∂

2
wf(Wt, t)dt+ ∂tf(Wt, t)dt . (9)

The solid mathematical fact that this expression expresses is

f(Wt, t)− f(0, 0) =

∫ t

0

∂sf(Ws, s)dWs +

∫ t

0

(
1
2∂

2
wf(Ws, s) + ∂tf(Ws, s)

)
ds

(10)
The first integral on the right is an Ito integral and the second is an ordinary
(Riemann) integral.
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Two mathematical ideas enter into Ito’s lemma. One is the Taylor series to
second order in dW and first order in dt. This is because (dW )2 is on the order
of dt, so it is a “small” term but not a “tiny” one. The other idea is replacing
(dW )2 with its expected value E

[
(dW )2

]
= dt.

We now verify Ito’s lemma in the integral form first approximating it using
∆t > 0 and then taking the limit ∆t→ 0. The calculations have several parts,
but the parts all use ideas we have seen already. There is an upcoming conflict
of notation. The f used in Ito’s lemma is not the f used as the integrand in the
Ito integral.

We start with

f(Wt, t)− f(0, 0) =
∑
tj<t

[f(Wj+1, tj+1)− f(Wj , tj)] . (11)

Then we use the Taylor approximation

f(Wj+1, tj+1)− f(Wj , tj) ≈
∂wf(Wj , tj) (Wj+1 −Wj)

+ 1
2∂

2
wf(Wj , tj) (Wj+1 −Wj)

2

+ ∂tf(Wj , tj)∆t
. (12)

The error in a multi-variate Taylor approximation like this may be bounded
using the “first neglected terms”. These are the lowest order Taylor “pieces”
not used. Here, those involve ∂3

wf(Wj , tj), and ∂w∂tf(Wj , tj), and ∂2
t f(Wj , tj).

We will assume that each of these is bounded. [Every theorem needs hypotheses,
and applied mathematicians often “neglect” to say them.] Then there is a Taylor
remainder theorem for multi-dimensional Taylor series which implies that the
error is bounded in terms of the corresponding powers of ∆W and ∆t:

C
[
|Wj+1 −Wj |3 + |Wj+1 −Wj |∆t+ ∆t2

]
. (13)

We now have two tasks. We must show that these error terms make “tiny”
contributions, in the sense that the sum of them goes to zero as ∆t → 0. This
is easy but involves one calculation we have not done yet. We also must show
that the three terms we kept in the Taylor approximation of ∆f , when added
up, converge to the three integrals on the right of (10). This is where we justify
replacing ∆W 2 with ∆t.

We first show that the supposedly tiny terms (13) are actually tiny in the
technical sense. For example∑

tj<t

|Wj+1 −Wj |3 → 0 almost surely, as ∆t→ 0 .

The Borel Cantelli reasoning applies here. If Q(m) ≥ 0 is a sequence of of
numbers, and

∞∑
m=1

Q(m) <∞
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then Q(m) → 0 as m→∞. If Q(m) is a sequence of random variables and

∞∑
m=1

E
[
Q(m)

]
<∞

then
∞∑
m=1

Q(m) <∞ , almost surely,

so
Q(m) → 0 , as m→∞ , almost surely.

Now, take

Q(m) =
∑
tj<t

|Wj+1 −Wj |3 .

To calculate the expectation, note that Wj+1−Wj is a Gaussian random variable
with mean zero and variance ∆t. If Z is a standard normal (having Z ∼
N (0, 1)), these random variables have the same distribution

Wj+1 −Wj ∼
√

∆tZ .

Therefore the following expected values also are equal, and we calculate

E
[
|Wj+1 −Wj |3

]
= E

[ ∣∣∣√∆tZ
∣∣∣3]

= ∆t
3
2 E
[
|Z|3

]
= ∆t

3
2

1√
2π

∫ ∞
−∞
|z|3 e− z2

2 dz

= ∆t
3
2

2√
2π

∫ ∞
0

z3e−
z2

2 dz

= ∆t
3
2

2√
2π

∫ ∞
0

z2
(
ze−

z2

2

)
dz

= ∆t
3
2

4√
2π

∫ ∞
0

ze−
z2

2 dz

= ∆t
3
2

4√
2π

.

The value of the constant 4√
2π

does not matter, only that it is a constant. The

∆t
3
3 scaling is important. This scaling is “obvious” (we are pretty sure it’s true)

just from the scaling ∆W ∼ ∆t
1
2 . The calculations are here because |∆W |3 is a

higher power than ∆t. For fat tailed distributions, the scaling of a higher power
may be different than the scaling of a lower power. The calculation shows that
a Gaussian is not fat tailed in this sense (or in any other sense).
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Going back, we have (the fact that C = 4√
2π

is irrelevant)

E
[
Q(m)

]
=
∑
tj<t

E
[
|Wj+1 −Wj |3

]
= C

∑
tj<t

∆t
3
2

= C∆t
1
2

∑
tj<t

∆t

= C
(√

2
)−m

t

This gives a geometric series with a finite sum. The same reasoning applies to
the other tiny terms in (13), except that you don’t need Borel Cantelli for ∆t2.

Back to the Taylor terms on the right of (12). The sum involving the first
term is ∑

tj<t

∂wf(Wj , tj) (Wj+1 −Wj) .

We just showed that in the limit m→∞, this converges to the Ito integral∫ t

0

∂wf(Ws, s) dWs .

The sum involving the last term is∑
tj<t

∂tf(Wj , tj)∆t .

Ordinary calculus shows that the limit as m→∞ is∫ t

0

∂tf(Ws, s) ds .

Here is the sum of the middle terms, adding and subtracting the expected values:∑
tj<t

1
2∂

2
wf(Wj , tj) (Wj+1 −Wj)

2
=
∑
tj<t

1
2∂

2
wf(Wj , tj)∆t+

∑
tj<t

1
2∂

2
wf(Wj , tj)

[
(Wj+1 −Wj)

2 −∆t
]
.

The first sum on the right converges to the Riemann integral∫ t

0

1
2∂

2
wf(Ws, s) ds .

The second sum on the right converges to zero almost surely as m → ∞ by a
Borel Cantelli argument.
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