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Class 11, Ito

1 Introduction

This class discusses the theory behind much of the stochastic calculus we have
done so far. First is a formal definition of the Ito integral and a explanation that
the ∆t → 0 limit that defines the integral exists. Ito’s lemma plays the role of
the fundamental theorem of calculus, when you take the derivative in time of a
function of Brownian motion Wt. Suppose f(Wt, t) is such a function. What is
the differential df corresponding to an increment of time dt? If you integrate the
changes of f between t1 and t2, you get the total change f(Wt1 , t2)− f(Wt1 , t1).
That is

f(Wt1 , t2) = f(Wt1 , t1) +

∫ t2

t1

df(Ws, s) . (1) Ili

Ito’s lemma is a formula for df that works here.
In the ordinary chain rule, df would involve (∂tf)dt and (∂wf)dW . But if

you just use these two terms, then (
Ili
1) is not satisfied. We will see that (

Ili
1) works

out only if you include the “Ito term” 1
2 (∂2

wf)dt. The Ito term is needed because

dW is too big. More specifically, dW is on the order of
√
dt. The differential

df has to be accurate to order dt, not just
√
dt. Therefore, we need the second

derivative term 1
2 (∂2

wf)(dW )2. The term (dW )2 has the order of dt but is not
equal to dt. We will explain why you can substitute dt for (dW )2 and have (

Ili
1)

still work.
There is a more basic problem. Even without the Ito term, it seems that you

have to integrate a function dWs instead of ds. This is the Ito integral. Two
big goals today are to define the Ito integral and to use it to prove Ito’s lemma.

The indefinite Ito integral is

Xt =

∫ t

0

gsdWs . (2) iIi

The integrand is a stochastic process gt that is non-anticipating. This means
that gt may depend on the Brownian motion path W[0,t], but it may not depend
on Ws for s > t. In fancier language, let Ft be the filtration of σ−algebras
generated by W[0,t]. To be allowed, the integrand must satisfy the equivalent
conditions

gt measurable with respect to Ft , gt = E[ gt | Ft] .
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These integrands are allowed, except the last one

gt = 1 + t2 a deterministic function does not depend on Wt at all.
gt = Wt it is non-anticipating to depend on the present.

gt =

{
1 if τ > t
0 if τ < t

integrate up to a hitting time τ .

gt = max {Ws | 0 ≤ s ≤ t} may depend on the whole path W[0,t].
gt = τ − t if τ > t then τ is not known at time t.

Doob’s theorem (there are many theorems with this name) states that the process
defined by (

iIi
2) is a martingale. This means that if s > t, then

E[Xs | Ft] = Xt .

This is because the integral expression (
iIi
2) has dWs in the future of Fs. There-

fore, at time s, the fs is known and the value of dWs is unknown.
The Ito integral allows us to say what it means to be the solution of the

stochastic differential equation,

dXt = a(Xt)dt+ b(Xt)dWt , (3) sde

First, Xt must be non-anticipating. This is natural in applications, since values
of dW in the future of t should not influence Xt. Since Xt is non-anticipating,
we can ask it to satisfy the SDE in integral form

Xt = X0 +

∫ t

0

a(Xs)ds+

∫ t

0

b(Xs)dWs . (4) sdes

The second integral on the right is an Ito integral with integrand gt = b(Xt).
Although E[Xt] = 0, there are quadratic functions of Xt whose expectations

are non-zero and interesting. The first is the Ito isometry formula

E
[
X2

t

]
=

∫ t

0

E
[
g2
s

]
ds . (5) Iif

On the left is the Ito integral (
iIi
2). On the right is an ordinary (Riemann) integral

involving the mean square of the integrand. This formula expresses the fact that
dWs and dWs′ (two separate increments of Brownian motion) are independent
if their time intervals don’t overlap. The left side is the expected square of the
sum (the integral) and the right side is the sum of the individual expected values

E
[

(gsdWs)
2 | Fs

]
= g2

sds .

You get the isometry formula (
Iif
5) by taking the overall expectation of both sides

and integrating.
Quadratic variation is the other interesting quadratic quantity related to Xt.

The quadratic variation of Xt up to time t is written [X]t and may be defined
informally as

[X]t =

∫ t

0

(dXs)
2
.
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There is a more careful definition of the right side later in this class. Informally,
the Ito calculus uses the formula

(dXs)
2

= g2
sdt . (6) iIl

If you insert this into the informal definition of quadratic variation, you find

[X]t =

∫ t

0

g2
sds . (7) qvf

This formula is true, which we will see when we have the ∆t → 0 definition of
quadratic variation on the left side.

For practical calculations with stochastic calculus, the Ito isometry formula
(
Iif
5) allows you to do an ordinary integral to calculate the variance of an Ito

process Xt. Suppose you are evaluating the variance by simulation. You might
think that the right side estimates the variance more accurately (with less vari-
ance), but we will see that the improvement goes to zero as ∆t → 0. The
quadratic variation formula (

qvf
7) is useful in evaluating financial strategies in-

volving dynamic hedging. There may be a cost proportional to (∆X)2. In
ordinary calculus, this disappears (go to zero) as ∆t → 0. But in stochastic
calculus, it depends on the quadratic variation.

The isometry formula (
Iif
5) has important uses in theory. For one thing, it is a

way of demonstrating that Xt is a continuous function of t with |∆X| is on the

order of (∆t)
1
2 . For another thing, it provides a way to define the Ito integral

when the integrand gt is not a continuous function of t. In the list of integrands
above, the third one is discontinuous at the hitting time t = τ . Integrands like
this are used in practice. You will find this approach in most explanations of
the Ito integral, but doing it correctly is too technical for this class. [It’s not
too hard, it’s just too long.] Finally, the Ito isometry formula may be used to
prove that the SDE (

sde
3) has a solution. The existence proof in your ODE class

(which you may not have taken or may not remember) probably used Picard
iteration. A similar proof applies for the SDE, with the Ito isometry formula
being used to control the Ito integral term on the right side of (

sdes
4).

The quadratic variation formula (
qvf
7) is used to prove half of Girsanov’s the-

orem (discussed in a later class). The quadratic variation on the left side is a
function of the path X[0,t]. If Xt satisfies the SDE

2 The Borel Cantelli lemma

This section has the formal outline but not the “main point” in our definition
of the Ito integral. The main point is a definition and a calculation in the next
section.

The Riemann integral is defined as a limit as ∆t→ 0. The Ito integral has

a similar definition. We will define approximations X
(∆t)
t and show that there

is a limit as ∆t → 0. Actually, we will take a sequence ∆tm = 2−m and take
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the limit m → ∞. We will write X
(m)
t instead of the more correct expression

X
(∆tm)
t .

There are various forms of convergence for random variables. In the central
limit theorem, we ask that the probability distribution converges to a Gaussian
distribution. This is convergence in distribution. Here, we aim for almost sure

pointwise convergence. Pointwise means that the numbers X
(m)
t have a limit

in the usual sense (given below). The “point” in “pointwise” is the random

Brownian motion path W[0,t]. All the approximations X
(m)
t are defined using

the same path. Pointwise convergence means that for that path

lim
m→∞

X
(m)
t (W[0,t]) = Xt(W[0,t]) exists. (8) pc

And it exists for the “point” W[0,t].
We will see that the limit (

pc
8) probably does not exist for every continuous

path W[0,t]. But if the path is a standard Brownian motion then the probability
that the limit exists is 1. That is, the limit exists almost surely.

The Borel Cantelli lemma is a way to prove almost sure convergence by
calculating expected values. We use a version of this idea that is a little dif-
ferent (though the same in spirit) from the version in Wikipedia. Let X(m)

be a family of random variables. If they converge as m → ∞, then Dm =∣∣X(m+1) −X(m)
∣∣→ 0. We show Dm → 0 (almost surely) by showing that

S =

∞∑
m=1

Dm <∞ , (almost surely).

The sum S is non-negative because the numbers Dm are non-negative. We show
that S <∞ by showing

E[S] <∞ .

If the expectation is finite, then S is finite almost surely.
For example, suppose U ∈ [0, 1] is uniformly distributed and V = U−

1
2 .

Then

E[V ] =

∫ 1

0

u−
1
2 du = 2u

1
2

∣∣∣1
0

= 2 <∞ .

This shows that V <∞ almost surely. But V is not always finite. If U = 0 then
V = ∞. This V is finite almost surely without always being finite. Moreover,
you prove that V < ∞ almost surely not by finding an upper bound V < a
almost surely. There is no such upper bound. If 1 < a <∞ is a fixed number,
then (doing a calculation) Pr(V > a) = a−2 > 0. This shows that V can be as
large as you want, but the probability of being large is small.

We will define random variables

Dm = |X(m+1)
t −X(m)

t | . (9) Dm

The hard part of the convergence proof is an inequality for the expectations in
terms of a geometric series

E[Dm] ≤ dm = Azm . (10) Dmb
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Of course A > 0 and z > 0. The crucial part will be z < 1. This implies that

E

[ ∞∑
m=1

Dm

]
<∞ . (11) Dsb

Therefore
∞∑

m=1

Dm <∞ almost surely. (12) Dsf

This argument, calculating an expected value to show that a sum is finite almost
surely, is what we (but not Wikipedia) call the Borel Cantelli lemma.

Finally, consider the sum

∞∑
m=1

(
X

(m+1)
t −X(m)

t

)
.

If this infinite sum converges, then it defines the limit (
pc
8). If (

Dsf
12) is true,

then the infinite sum converges absolutely. Therefore, when we prove the basic
comparison inequality (

Dmb
10), we will show that the sum converges absolutely,

almost surely. This shows that the limit (
pc
8) exists almost surely.

It is fitting to end this technical section with a final technical point that we
will use later We estimate E[Dm] indirectly by showing

E
[
D2

m

]
≤ B 2−m . (13) Dmsq

This is possible (see later) because D2
m =

(
X

(m+1)
t −X(m)

t

)2

is an algebraic

expression that can be expanded in a way that Dm itself cannot be. A bound for
the square implies a bound for the quantity itself. If Y ≥ 0 is any non-negative
random variable (such as Dm), the Cauchy Schwarz inequality implies that

E[Y ] ≤
√

E[Y 2] . (14) sql

If you accept these two inequalities, then

E[Dm] ≤
√
B
(

2−
1
2

)m
.

This is the desired (
Dmb
10), with A =

√
B and z = 1/

√
2.

The Cauchy Schwarz inequality is

E[Y Z] ≤
(
E
[
Y 2
]

E
[
Z2
])− 1

2 . (15) CSi

You can find the proof in Wikipedia. One interpretation applies with E[Y ] = 0
and E[Z] = 0. Then the left side of (refCSi) is the covariance and the right side
involves variances. The inequality says that the correlation coefficient satisfies

ρY Z =
cov(Y,Z)√

var(Y )var(Z)
≤ 1 .
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You can replace Y by −Y and see that ρY Z ≥ −1. Altogether,

|ρY Z | ≤ 1 .

A “well known trick” is to apply the Cauchy Schwarz inequality with |Y |
and Z = 1 to get an inequality about |Y |. The inequality is

E[ |Y |] ≤
√

E[Y 2]
√

E[ 12] .

This is the desired inequality (
sql
14). To summarize: we will prove convergence

of the Ito integral approximations (given soon) converge almost surely using a
calculation that verifies the square inequality (

Dmsq
13). This is almost sure pathwise

convergence, which means that for if W[0,t] is a Brownian motion path, then the
approximations converge for this path almost surely.

3 The Ito integral definition, an example

Suppose we have a ∆t. The discrete times are tk = k∆t. The approximation to
the Ito integral is

X
(∆t)
t =

∑
tk<t

gtk
(
Wtk+1

−Wtk

)
. (16) Iia

We want this to converge to the limit (
iIi
2) as ∆t→ 0.

The approximation (
Iia
16) respects “causality” in putting ∆Wk = Wtk+1

−Wtk

in the future of tk where gtk is defined. This causality is the basic fact about
the Ito integral. Informally, it is that dWs is in the future of gs, so that at time
s, we know gs but not dWs. More formally, we have gtk

(
Wtk+1

−Wtk

)
. We

condition on Ftk . Since gtk is know, this number comes out of the expectation.
Therefore

E
[
gtk
(
Wtk+1

−Wtk

)
| Ftk

]
= gtkE

[ (
Wtk+1

−Wtk

)
| Ftk

]
But the increment Wtk+1

−Wtk is in the future of Ftk . The independent incre-
ments property of Brownian motion implies that the distribution of Wtk+1

−Wtk

is independent of anything in Ftk . In particular

E
[ (
Wtk+1

−Wtk

)
| Ftk

]
= 0 .

This implies that

E
[
X

(∆t)
t

]
= 0 .

This is how causality makes the Ito process Xt into a martingale.
An example is

Xt =

∫ t

0

WsdWs .

The approximations are

X
(∆t)
t =

∑
tk<t

Wtk

(
Wtk+1

−Wtk

)
. (17) Ies
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This is evaluated by a clever trick, which is the formula

Wtk =
1

2

(
Wtk+1

+Wtk

)
− 1

2

(
Wtk+1

−Wtk

)
.

This allows the sum (
Ies
17) to be written in terms the two sums

S1 =
1

2

∑
tk<t

(
Wtk+1

+Wtk

) (
Wtk+1

−Wtk

)
S2 =

1

2

∑
tk<t

(
Wtk+1

−Wtk

) (
Wtk+1

−Wtk

)
For S1, we use the trick(

Wtk+1
+Wtk

) (
Wtk+1

−Wtk

)
= W 2

tk+1
−W 2

tk
.

Suppose the largest time in the sum (
Ies
17) is tn = max {tk|tk < t}. Then

S1 =
1

2

[(
W 2

tn+1
−W 2

tn

)
+
(
W 2

tn −W
2
tn−1

)
+ · · ·+

(
W 2

t1 −W
2
0

)]
.

A sum like this is called “telescoping”, to remind us of old hand held telescopes
that open and close. All the intermediate values W 2

tk
cancel, so that answer

involves only the first and last terms. But the last term is W 2
0 = 0, so

S1 =
1

2
W 2

tn+1
.

It is clear that S1 → 1
2W

2
t as ∆t→ 0, because tn+1 → t and Wt is continuous.

We understand the S2 sum using the law of large numbers. The terms in the
sum are independent (the independent increments property) and the expected
value is

E
[ (
Wtk+1

−Wtk

)2]
= ∆t .

This implies that

E[S2] =
1

2

∑
tk<t

∆t =
1

2
tn .

Another calculation (see below) shows that var(S2) = O(∆t). Therefore (you
will be able to say this with mathematical confidence after reading the next
section) S2 → 1

2 t as ∆t→ 0.
The final formula is ∫ t

0

WsdWs =
1

2
W 2

t −
1

2
t . (18) Ief

The “causal ordering” puts dWt in the future of t. That way the expected
value of gtdWt is zero. For this reason, the Ito integral is used to model stochas-
tic control and dynamic trading strategies. “Stochastic control” is an engineer-
ing term that refers to controlling a stochastic process. At time t you know Ft

7



but not dWt. A dynamic trading strategy is similar. You do a trade or “take a
position” at time t without knowing what the market will do next.

We argue that the Ito integral captures this idea. We do this by showing
that the answer can change if you do not use a causal ordering. We calculate
what happens if you replace the causally ordered approximation (

Ies
17) by a non-

causally ordered approximation

B
(∆t)
t =

∑
tk<t

Wtk+1

(
Wtk+1

−Wtk

)
. (19) bad

We evaluate the limit of B
(∆t)
t with a variant of the trick we just used.

Wtk+1

(
Wtk+1

−Wtk

)
= 1

2

(
W 2

tk+1
−W 2

tk

)
+ 1

2

(
Wtk+1

−Wtk

)2
.

We used Wtk+1
instead of Wtk , and got both terms with + rather than one with

−. With the telescoping sum, we get

B
(∆t)
t = 1

2W
2
tn + 1

2

∑
tk<t

(
Wtk+1

−Wtk

)2
.

When ∆t→ 0, this becomes

Bt = lim
∆t→0

B
(∆t)
t = 1

2W
2
t + 1

2 t .

This is not the answer (
Ief
18). For the Riemann integral, both approximations

(
Ies
17) and (

bad
19) would converge to the same answer. For Ito, they do not.

We get yet a third answer, and a second wrong answer, if we calculate as
if Wt is a differentiable function of t. This (wrong) calculation would use the
derivative and chain rule relations

dWs =
dWs

ds
ds , Ws

dWs

ds
=

1

2

dW 2
s

ds
.

With these, you could calculate∫ t

0

WsdWs =

∫ t

0

Ws
dWs

ds
ds =

1

2

∫ t

0

dW 2
s

dw
ds =

1

2
W 2

t . (20) worse

This is another wrong answer.
We will see that the indefinite Ito integral with respect to Brownian motion

(
iIi
2) is a martingale. This means that if t2 > t1, then

E[Xt2 | Ft1 ] = Xt1 . (21) m

To understand this, first note that

Xt2 =

∫ t2

0

gsdWs =

∫ t1

0

gsdWs +

∫ t2

t1

gsdWs = Xt1 +

∫ t2

t1

gsdWs .
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Everything defining Xt1 is known at time t1, meaning that Xt1 is known at time
t1. Therefore, conditioning on Ft1 does not change Xt1

E[Xt1 | Ft1 ] = Xt1 .

The martingale property (
m
21) of the indefinite integral is a consequence of the

conditional mean value zero property of an Ito integral in the future:

E

[ ∫ t2

t1

gsdWs | Ft1

]
= 0 .

This will be clear from the definition we are about to get to.
The martingale property helps us tell the right answer (

Ief
18) from the two

wrong answers (
bad
19) and (

worse
20). Neither of the wrong answers is a martingale. In

fact, it is easy to see that

E
[
W 2

t2 | Ft1

]
= W 2

t1 + (t2 − t1) .

You find this by squaring the relation Wt2 = Wt1 + (Wt2 −Wt1) and using the
independent increments property. We see that the right answer is a martingale
and neither of the wrong answers is a martingale. If you violate causality, even
by the amount dt, you can change the answer from right to wrong.

4 The Ito integral definition

We want the approximations (
Iia
16) to converge to the limit (

iIi
2) as ∆t→ 0. Instead

of this, we will take ∆t(m) = 2−m and take the limit m→∞. You will see just
below the advantage of shrinking ∆t by factors of 2. But there is a bigger reason
for taking a sequence ∆t(m) → 0 rapidly. We will get a bound for E[ |Dm|] that
depends on ∆t(m). If ∆t(m) → 0 rapidly, then E[ |Dm|]→ 0 rapidly. This makes
it easy to show that

∑
m E[ |Dm|] < ∞. The summation trick is irrelevant for

the ordinary Riemann integral from calculus, because it is not random. But
even there it might be convenient to compare the ∆t approximation to the 1

2∆t
approximation.

We need a hypothesis on the integrand gs in our way of proving convergence
of the approximations. We will use the hypothesis

E
[

(gt − gs)2
]
≤ C |t− s| . (22) gc

This is consistent with |gt − gs| normally being on the order of
√
t− s, which

is the continuity of Brownian motion, on average. The integrands we have in
mind that come from stochastic differential equations (

sdes
4) have this degree of

continuity. The convergence proof below uses “hard analysis” (specific inequali-
ties) rather than “soft analysis” (arguments using qualitative properties such as
continuity). A proof using hard analysis needs a “hard” hypothesis, such as the
specific inequality (

gc
22). A soft analysis proof might just ask gt to be continuous,
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as for the Riemann integral. A soft analysis proof might be possible for the Ito
integral, but it would take longer and be more abstract.

The continuity hypothesis (
gc
22) is simpler than it might be. It does not imply

that gt is a continuous function of t. For example, the Poisson arrival process
counting function Nt satisfies (

gc
22).

If ∆t(m) = 2−m, then ∆t(m+1) = 1
2∆t(m). We will write the ∆t(m) discrete

times as
t
(m)
k = k∆t(m) .

The relation ∆t(m+1) = 1
2∆t(m) implies that the ∆t(m+1) even numbered dis-

crete times are

t
(m+1)
2k = (2k)

1

2
∆t(m) = t

(m)
k .

The odd numbered ones are

t
(m+1)
2k+1 = (2k + 1)

1

2
∆t(m) = t

(m)
k +

1

2
∆t(m) .

The last expression is what you would get if you put k+ 1
2 in the tk formula, so

we use the notation
t
(m+1)
2k+1 = t

(m)

k+ 1
2

.

For every ∆t(m) interval [t
(m)
k , t

(m)
k+1], there are two intervals at the m+ 1 level.

These are

[t
(m+1)
2k , t

(m+1)
2k+1 ] = [t

(m)
k , t

(m)

2k+ 1
2

] , and [t
(m+1)
2k+1 , t

(m+1)
2k+2 ] = [t

(m)

k+ 1
2

, t
(m)
2k+1] .

This simple relationship is possible because ∆t(m+1) = 1
2∆t(m).

This relationship between the intervals allows us to compare the approxi-

mation (
Iia
16) X

(m)
t to X

(m+1)
t one term by term. Corresponding to the interval

[t
(m)
k , t

(m)
k+1] there is the term

g
t
(m)
k

(
W

t
(m)
k+1

−W
t
(m)
k

)
.

On the m+ 1 level, this same interval has two terms, which are

g
t
(m+1)
2k

(
W

t
(m+1)
2k+1

−W
t
(m+1)
2k

)
, and g

t
(m+1)
2k+1

(
W

t
(m+1)
2k+2

−W
t
(m+1)
2k+1

)
.

I now simplify the notation to make the expressions less complicated. I write gk
for g

t
(m)
k

, gk+ 1
2

for g
t
(m+1)
2k+1

, and so on. In this simpler notation we can subtract

the level m term from the two corresponding level m+ 1 terms, which gives

Rk = gk

(
Wk+ 1

2
−Wk

)
+ gk

(
Wk+1 −Wk+ 1

2

)
− gk (Wk+1 −Wk) .

Some algebra shows that

Rk =
(
gk+ 1

2
− gk

)(
Wk+1 −Wk+ 1

2

)
. (23) Rk
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Therefore
X

(m+1)
t −X(m)

t =
∑

t
(m)
k <t

Rk .

We prove the almost sure convergence that defines the Ito integral when we
verify the inequality (

Dmsq
13). More specifically, we have to show that

E

(∑
tk<t

Rk

)2
 ≤ B∆t . (24) ssq

This inequality involves cancellation. The terms Rk are not individually
small enough. Write (

Rk
23) informally as ∆g∆W . We argued, and will say more

completely soon, that ∆g should be roughly the size of ∆W , which would make
it on the order of

√
∆t. This would make Rk roughly on the order of ∆t, as both

∆g and ∆W are on the order of
√

∆t. If you add up n numbers on the order
of ∆t, you might think you get something on the order of n∆t = tn. This does
not go to zero as ∆t→ 0. Cancellation happens in a sum when the positive and
negative terms roughly cancel, so the sum of the terms, with signs, is smaller
than the sum of the absolute values. You might try to get a bound on Dm

directly as

Dm =

∣∣∣∣∣∑
tk<t

Rk

∣∣∣∣∣ ≤∑
tk<t

|Rk| .

This is correct (the inequality is true), but it is not useful because it is too much
of an overestimate. The actual Dm is much smaller than the right side suggests
it might be.

Instead, we compute the expected square of the sum. As we have seen before,
the square of a sum may be written as a double sum.

E

(∑
tk<t

Rk

)2
 =

∑
tj<t

∑
tk<t

E[RkRj ]

This sum has off-diagonal terms, the ones with j 6= k, and diagonal terms that
involve R2

k. The off-diagonal terms have zero expected value. The diagonal
terms have order ∆t2, so they add up to something of order n∆t2, which is of
order ∆t.

The cancellation comes from two things. One is that E[Rk] = 0. The other
is that Rj is uncorrelated to Rk if j 6= k. The cancellation requires some level of
decorrelation. It doesn’t have to be perfect as it is here (nobody correlated with
anyone else), but if all the Rk were equal (perfect correlation), there would be
no cancellation and the right side of (

ssq
24) would be just B, not B∆t. With mean

zero and a large number of uncorrelated terms, any given sample (the question
for pathwise almost sure convergence) is likely to have cancellation.

We evaluate the terms using the tower property. If Fs corresponds to the
information in W[0,s], and Q is any random variable, then

E[ E[Q | Fs] ] = E[Q] .

11



We start with the off-diagonal terms. Without loss of generality we may assume
k > j. We condition on knowing everything up to time tk+ 1

2
. If you know

all that, then you know gk+ 1
2
, and gk, and the four quantities that go into

Rj . However, the independent increments property implies that even knowing
W[0,t

k+1
2

], the increment Wk+1−Wk+ 1
2

is still in the future and has conditional

expected value zero. Here is the calculation:

E[RkRj ] = E
[

E
[
RkRj | Fk+ 1

2

]]
= E

[
E
[ (
Wk+1 −Wk+ 1

2

)(
gk+ 1

2
− gk

)(
Wj+1 −Wj+ 1

2

)(
gj+ 1

2
− gj

)
| Fk+ 1

2

]]
= E

[ (
gk+ 1

2
− gk

)(
Wj+1 −Wj+ 1

2

)(
gj+ 1

2
− gj

)
E
[ (
Wk+1 −Wk+ 1

2

)
| Fk+ 1

2

]]
= E

[ (
gk+ 1

2
− gk

)(
Wj+1 −Wj+ 1

2

)(
gj+ 1

2
− gj

)
· 0
]

= 0 .

The main point is E
[ (
Wk+1 −Wk+ 1

2

)
| Fk+ 1

2

]
= 0, and this follows from the

independent increments property, because Wk+1−Wk+ 1
2

is in the future of tk+ 1
2
.

If we use a non-causal approximation to the Ito integral, this is not true.
The diagonal terms also can be estimated by conditioning. The independent

increments property implies that

E

[(
Wk+1 −Wk+ 1

2

)2

| Fk+ 1
2

]
=

1

2
∆t .

This is because it is the variance of the increment over a time interval of length
1
2∆t. The calculation for a diagonal term is

E
[
R2

k

]
= E

[
E
[
R2

k | Fk+ 1
2

]]
= E

[
E

[(
Wk+1 −Wk+ 1

2

)2 (
gk+ 1

2
− gk

)2

| Fk+ 1
2

]]
= E

[(
gk+ 1

2
− gk

)2

E

[(
Wk+1 −Wk+ 1

2

)2

| Fk+ 1
2

]]
= E

[(
gk+ 1

2
− gk

)2 1

2
∆t

]
=

1

2
∆tE

[(
gk+ 1

2
− gk

)2
]
.

This is where we use the continuity hypothesis (
gc
22) on gs. The expectation on

the last line is of ∆g over an interval of length 1
2∆t, so the expected square is

bounded by C∆t
2 . The final result is

E
[
R2

k

]
≤ 1

4
C∆t2 .
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The 1
4 is not important since the point of this calculation is to show that every-

thing goes to zero as ∆t→ 0.
This is the hard part. Now we verify (

ssq
24) by combing the calculations we

have done. In the end I throw in a little trick.

E

(∑
tk<t

Rk

)2
 =

∑
tk<t

E
[
R2

k

]
≤
∑
tk<t

1

4
C∆t2

≤ 1

4
C∆t

∑
tk<t

∆t

=
1

4
Ct∆t .

This verifies (
ssq
24) with the constant B = 1

4Ct. With this we have proven the
convergence, almost surely, of the approximations. The limit is the Ito integral.
This is the definition of the Ito integral.
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