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Class 1, Brownian motion

1 Introduction to the course

These are class notes for the Stochastic Calculus class of Fall, 2019. They
contain the material from the lecture, and probably a little more that I didn’t
have time to say in class. I plan to post the notes shortly after each class so
that it can represent what happened that day.

This course uses the term stochastic calculus in two senses. In one sense,
stochastic calculus refers to a set of tricks for calculating things related to ran-
dom processes. One such trick is using the recursive backward equation to
calculate expected values. Most of the information we have about stochastic
processes comes from calculations like these. A clever proof usually relies on a
clever calculation. When these calculations are done by computer, they become
algorithms for computing things about random processes.

In another sense, stochastic calculus refers to the Ito calculus and relation-
ships between certain stochastic processes and partial differential equations.
The basic operations of ordinary differential and integral calculus may not work
when applied to diffusion processes because they are not differentiable. The
chain rule for diffusion processes, which is called Ito’s lemma, requires you to
calculate to second order in Taylor series in order to get the first “Ito deriva-
tive”. The Ito calculus not only is a way to study diffusion processes. It is also
a way to create stochastic differential equation (SDE) models of physical and
economic systems.

Ordinary differential equation (ODE) models may be derived by asking:
“What happens in a small time increment dt?”. Here, and throughout the
course, we use informal physical reasoning. If the state of the system at time t
is modeled by x(t), the increment is dx = x(t+dt)−x(t). An ODE model would
be a formula for dx as a function of x. This can take the form dx(t) = f(x(t))dt.
The model is derived (the function f is determined) by asking how x changes
in a small increment of time. Models of this form apply when the relationship
between dx and x is not random.

Stochastic differential equations model dynamics under uncertainty. Ran-
dom paths are often written with capital letters with the time argument as a
subscript, such as Xt. Even if Xt is known, the increment dXt = Xt+dt −Xt is
random. The expected value is a(Xt)dt and the variance is µ(Xt)dt. Assuming
dt > 0 (so we are talking about the future), this is

E[ dXt | Xt] = a(Xt)dt , var( dXt | Xt) = µ(Xt) dt . (1)

We will call a(x) the infinitesimal mean and µ(x) the infinitesimal variance. An
SDE model of a stochastic process is specified by giving the infinitesimal mean
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and variance. It may be surprising that the (infinitesimal) mean and variance
completely describes the SDE model, since you have to give more than the
mean and variance to specify the probability distribution of a random variable.
However, a diffusion process is uniquely specified by its infinitesimal mean and
variance. Therefore a(x) and µ(x) are all that is needed to model a stochastic
process as a diffusion or to simulate the diffusion model.

A diffusion model (an SDE) may be found by asking, approximately, how
the system might change in a small amount of time. This often involves “coarse
graining” – describing a complex system by just one or a few numbers. For
example, stock trading in financial markets involves an order book where offers
to buy or sell shares of stock are recorded. The complex behavior of the order
book is replaced by a single number, St, that represents the stock price at time
t. Actual stock prices are discrete, with prices given (in the US) in dollars
and cents but not fractions of cents. Geometric Brownian motion is a simple
SDE model in which t and St are continuous variables. The assumption is that
E[ dSt | St] is proportional to St and var[ dSt | St] is proportional to S2

t .
The mathematics of diffusion processes is a branch of probability theory. In

elementary probability, the random object is a random variable X or a collection
of random variables X1, . . . , Xn. Probability densities p(x) or p(x1, . . . , xn) are
a complete description of what we know about the random variable or variables
before they are measured. A collection of n random variables may be thought
of as a single n dimensional random variable, in which case we write X =
(X1, . . . , Xn) ∈ Rn. The dimension is n. Diffusions have infinite dimension in
this sense. The random object is a whole path, which is a “random function”
of t. This might mean giving values Xt for all times t in the range 0 ≤ t ≤
T . The numbers Xt are the “values” or “positions” at specific times. The
whole path may be written X[0,T ]. The path cannot be specified completely by
giving finitely many numbers, except is some uselessly abstract sense. Therefore,
the mathematics of diffusions involves more than calculations with probability
densities. We will see, for example, that partial differential equations play a big
role.

The class was originally created for the Mathematics in Finance program, but
it was always meant to be generic and useful to others with different applications
in mind. Many of the examples are not from finance. Still, the choice of topics
was influenced by financial applications. In particular, there is less about steady
states and correlation functions than a course aimed at physics or chemistry
students would have.

The reasoning in this class isn’t rigorous in the pure math sense, but it is
serious. Someone with the right background in measure theory would be able
to make many of the arguments rigorous if she or he were interested. My wish
for the class is to add as much “value” to students as possible in 13 lectures.
That means sacrificing proofs to make time for applications.

Computing is an essential part of present and future applied mathematics.
Since this class is applied mathematics, it would be wrong to do it without
computing. In fact, the computational methods – simulation and PDE solving,
etc. – are core elements of modern stochastic calculus.
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2 Introduction to Brownian motion

Note: much of the first class was spent talking about mechanics and policies.
That’s the reason there is not so much technical material this week.

Brownian motion (for mathematicians) is the diffusion process with a(x) = 0
and µ(x) = 1. Brownian motion (for scientists) is the name of the phenomenon
that small particles in water, when you look at them with a powerful enough
microscope, seem to move in a random fashion. It is named after an English
doctor named Brown, but the Wikipedia page suggests that it was first observed
elsewhere (France?).

The importance of Brownian motion goes beyond this particular physical
model.

• Many other physical and mathematical processes are well approximated by
Brownian motion. Brownian motion is a good model for many processes
in addition to a small particle wandering in a fluid.

• The properties of Brownian motion, and the mathematical tools used to
understand it, apply to many other stochastic processes, particularly to
diffusion processes studied in Stochastic Calculus.

• Brownian motion is used as a “source of noise” to generate any other
diffusion. It is useful to express any other diffusion path (definitions to
come) as a function of a Brownian motion path. The Ito calculus allows
us to express the stochastic dynamics of a diffusion process Xt in terms
of a Brownian motion process Wt by writing the Ito differential equation,
also called stochastic differential equation or SDE, as

dXt = a(Xt)dt+ b(Xt)dWt . (2)

In this informal expression (as explained later in the course), a(x) is the
infinitesimal mean (also called drift). The infinitesimal variance is µ(x) =
b2(x).

In the last point above, Xt represents a general diffusion process and Wt is a
Brownian motion. The W is for Norbert Wiener, who, along with Kolmogorov,
created the mathematical structure we use to describe Brownian motion. It is
sometimes called a Wiener process. We write Xt for Brownian motion when
it is being studied on its own and Wt when it is being used to study another
diffusion. Therefore, this Lecture uses Xt and future Lectures will usually use
Wt.

Einstein in 1905 gave a physical explanation of the motion Brown saw in his
microscope. He suggested thinking of the “small” particle in the microscope as a
big object constantly being pushed in a random way by (small) water molecules
around it. His model is now called the Ornstein Uhlenbeck process, after physi-
cists who studied Einstein’s model more abstractly later. The mathematician’s
Brownian motion is a limit of the Ornstein Uhlenbeck process, as we will see.

3



2.1 Motivation: Brownian motion as accumulation of noise.

By “pure noise”, we often mean a sequence of “completely random” numbers of
the same type. Here, let ξ1, . . ., ξk, . . . be an i.i.d., (independent and identically
distributed) sequence of random variables with mean zero and finite variance

var(ξk) = σ2
ξ = E

[
ξ2
k

]
.

The variance is equal to the expected square because the mean is zero. The
mean being zero is part of the definition of “noise”. If the mean were not zero,
we would call the mean a “signal”. It would be the deterministic (non-random)
part of the ξk sequence.

If you add together all the noise up to time n, you get

Sn =

n∑
k=1

ξk . (3)

Brownian motion (the mathematician’s version, from now on) is a continuous
time version of this. The Sn sequence has several properties that have analogues
for continuous time Brownian motion. First, S0 = 0. We will see that “stan-
dard” Brownian motion (to be explained) has X0 = 0. At time zero, you have
added together zero noise, none. The means are zero:

E[Sn] = 0 (for n ≥ 0) , E[Xt] = 0 (for t ≥ 0) .

Neither the Sn process not the Xt process has any signal.
The variance of both process grown linearly in time. For the Sn process,

this follows from the definition and the fact that the ξk are independent:

var(Sn) = σ2
ξ n .

The variance is proportional to n (the discrete “time” variable) with σ2
ξ being

the constant of proportionality. The variance property for Brownian motion is

var(Xt) = E
[
X2
t

]
= t . (4)

The variance is the expected square because the mean is zero. The variance is
proportional to t. The constant of proportionality is equal to one, for “standard”
or “normalized” Brownian motion.

The Sn and Xt processes both have the independent increments property.
Let n1 < n2 be two positive times. The increment of Sn from time n1 to time
n2 is

Y12 = Sn2
− Sn1

.

If n3 > n2 is another time, then there is another increment Y23 = Sn3−Sn2 . The
independent increments property is that increments of Sn from non-overlapping
intervals of time are independent. In particular the increments Y12 and Y23 are
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independent. This follows from the definition (3). The increments Y12 and Y23

are the sums of the noise arriving from n1 to n2 and from n2 to n3 respectively

Y12 =

n2∑
k=n1+1

ξk , Y23 =

n3∑
k=n2+1

ξk .

None of the random variables ξk in the Y12 sum appear in the Y23 sum. Since the
ξk are independent, the “disjoint” sums are independent too. This independence
applies to any number of increments, as long as the corresponding intervals of
time have no overlap. The increments have mean zero. The variance of an
increment is proportional to the length of time in the increment

var(Y12) = σ2
ξ (n2 − n1) .

Brownian motion has a similar independent increments property. If Y12 =
Xt2 −Xt1 and Y23 = Xt3 −Xt2 , then Y12 and Y23 are independent. The inde-
pendent increments property holds for any number of increments as long as the
corresponding time intervals are disjoint. The increments have variance equal
to (proportional to with constant of proportionality equal to 1) the amount of
time:

var(Xt2 −Xt1) = t2 − t1 . (5)

Brownian motion has two properties that are different from the discrete noise
sum Sn. One is that increments of Brownian motion are Gaussian. The other is
that the path Xt is a continuous function of t. Brownian motion Xt is supposed
to represent the sum of infinitely many (the limit as ∆t→ 0 of a large number
of) infinitely small (increasingly small as ∆ → 0) pieces of noise. The sum is
Gaussian because of the central limit theorem. As ∆t → 0 (as we will see in
future classes), the distribution of the approximate Brownian motion converges
to a Gaussian, because of the central limit theorem.

Let us look at the Brownian motion path as a function of t. The path is a
continuous function of t, as we will argue in the next paragraph and demonstrate
in a later class. But the path is “rough” in the sense that it is not differentiable.
In fact, the “velocity” of Xt is (in some sense) infinite. In fact,

lim
∆t→0

∣∣∣∣Xt+∆t −Xt

∆t

∣∣∣∣ =∞ .

It is common to say “almost surely” for statements like this. This will be
explained later in the course.

You can understand these facts from the increment variance formula ().
Write the increment as

∆X = Xt+∆t −Xt .

Then E
[

∆X2
]

= ∆t (the length of the time interval). This suggests that a
typical increment has the size roughly

|∆X| ∼
√

∆t .
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The symbol ∼ here just means that the sizes on both sides are comparable. If
∆t = .01 then |∆X| might be .2 or .05, but it is unlikely to be as large as .5 or
as small as .01. Using this in a calculation suggests that

|∆X|
∆t

∼ 1√
∆t
→∞ , as ∆t→ 0 .

This is the infinite velocity thing.
Question: If Brownian motion moves infinitely fast all the time, why does

it not go infinitely far? How can Xt be finite if X0 = 0 and |dX/dt| = ∞
all the time? The answer is cancellation. Sometimes ∆X is a large positive
number and sometimes it’s a nearly as large negative number. This makes the
algebraic sum of increments (with signs included) much smaller than the sum
of the absolute values of the increments:

m∑
j=1

(
Xtj+1

−Xtj

)
�

m∑
j=1

∣∣Xtj+1
−Xtj

∣∣ .
The � is an informal symbol meaning “is much less than”. There are approx-
imately the same number of positive and negative terms on the left, so they
“cancel” (approximately) in the sum.

Now ask about large t. Since Xt is Gaussian with mean zero and variance t,
a calculation with the Gaussian PDF (probability density function) shows that

E[ |Xt|] = C
√
t .

The C involves π. The exact calculation is in assignment 1. If Brownian mo-
tion were to move at a uniform speed, then Xt would be proportional to t.
Instead, it’s proportional to something much smaller,

√
t. The reason, again, is

cancellation.

2.2 Rigor, or not

This class is mathematically careful but not rigorous. Much of stochastic calcu-
lus involves understanding limits, particularly the limit as ∆t→ 0. Derivatives
and integrals in ordinary calculus are limits like this. We will not prove facts
about limits, or even give the mathematical definition of a limit, the famous ε,
δ definition from analysis (which you don’t need to look up if you don’t know).
Suppose we have Q∆t and we want to show that Q∆t → q as ∆t→ 0. We will
do this using inequalities, such as

|Q∆t − q| ≤ C
√

∆t . (6)

Typically, a calculation will show that “there is a C so that . . .. If there is a C,
even if we don’t know what it is, this shows that Q∆t → q. For this class, the
hard part of a “proof” is the calculation that leads to an inequality like (6).

An inequality like (6) if often called an “estimate”. This use of the word
“estimate” is different from how the word is normally used in English. Normally,
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if a number is 4.72 and you estimate 4.71 or 4.73, that would be a good estimate.
Here, on the other hand, it doesn’t matter whether C

√
∆t is close to the number

|Q∆t − q|. It only matters that it is larger. In this sense, 472 is an estimate of
4.72 (because it’s larger). It would be better to call it “upper bound”, which
people used to do.

Finding a useful “estimate” (inequality) can take some cleverness. The chal-
lenge is to find a simple expression like C

√
∆t that is larger than the complicated

expression involving Q∆t. A new theorem in stochastic calculus usually relies
on a new clever inequality like this. Inequalities like these may be the hardest
part of the class.

We gave properties of Brownian motion, but we did not show that Brow-
nian motion exists. The discrete process Sn obviously exists, because we gave
a formula for it. The properties (independent increments, variance) are conse-
quences of the definition. The continuous time Xt is harder to define. In fact,
it was around 20 years from the time Einstein made Brownian motion popu-
lar to the first proofs (independent and quite different) from Kolmogorov and
Wiener that Brownian motion exists. In the approach of Wiener, you make an
approximation X∆t

t and show that the limit exists as ∆t→ 0. The Kolmogorov
approach works directly with the “measure space” for Brownian motion. You
can learn all about this in our courses Probability Limit Theorems I and II.
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