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Always check the classes message board before doing any work on the assignment.

Assignment 8, due November 11

Corrections: [none yet]

1. By definition, a (real) inner product is a function of two vectors, written
〈u, v〉, with the properties

(a) 〈u, v〉 = 〈v, u〉 (symmetry)
(b) 〈u, av〉 = a〈u, v〉 (homogeniety)
(c) 〈u, v1 + v2〉 = 〈u, v1〉+ 〈u, v2〉 (additivity)
(d) 〈u, u〉 > 0 unless u = 0 (positivity) .

Let the vector space be Rd and C is a symmetric positive definite matrix.
Consider the function 〈u, v〉 = utCv.

(a) Show that 〈u, v〉 = utCv is an inner product by showing that it has
these four properties.

(b) Suppose X ∈ Rd is a d−component random variable with E[X] = 0
and E[XXt] = C. For any vector u ∈ Rd, define the scalar random
variable Zu = utX. Show that E[ZuZv] = utCv. Hint: You can do
this by calculating with indices, but it may be quicker to use matrix
algebra and the trick of writing vtX = Xtv.

(c) Suppose A is a d× d matrix. Find a formula in terms of A and C for
a matrix A∗ so that 〈A∗u, v〉 = 〈u,Av〉 for all u and v. Hint: Show
that C−1 is a symmetric matrix.

(d) Consider the example

C =

(
1 1
1 2

)
, A =

(
1 1
0 1

)
, u =

(
1
1

)
, v =

(
1
0

)
.

Calculate A∗ and check directly that 〈A∗u, v〉 = 〈u,Av〉.
(e) Use the properties (a) - (d) (maybe not all of them) to show that for

any inner product, (A∗)
∗

= A.

(f) Check that your formula from part (c) satisfies (A∗)
∗

= A. Do this
by matrix algebra with your matrix formula for A∗.

2. Imagine a collection of identically distributed random variables, but not in-
dependent, with each distinct pair having the same correlation corr(Xi, Xj) =
ρ for i 6= j.
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(a) Show that this is possible with X = (X1, . . . , Xd) being Gaussian if
0 ≤ ρ < 1. Do this by showing that the correlation matrix (ones on
the diagonal, ρ in every other entry) is positive definite. Explain why
this is enough.

Cρ =


1 ρ · · · ρ

ρ 1
. . .

...
...

. . . 1 ρ
ρ · · · ρ 1


Hint: Show that a matrix of the form C = aI+vvt is positive definite
if a > 0. Find a v and a that gives the specific Cρ here.

(b) Consider i.i.d. standard normals Z0, . . . Zd (d + 1 random variables)
and define Xi = aZ0 + bZi. Find values of a and b that give the
desired correlations. The algebra is similar to the algebra of part (a),
which is not a coincidence. [Finance people may recognize this as an
example of the “market factor” plus “ideosyncratic factors” used by
Markowitz.]

(c) Show that Cρ is not positive definite if ρ < − 1
d . It is hard (or im-

possible) to create a bunch of strongly negatively correlated random
variables.

(d) For this exercise, take the word “stock” to mean geometric Brownian
motion. Let S1, . . . , Sd be stocks that satisfy dSi = rSidt+ σSidWi.
Define the joint stock process St ∈ Rd by St = (S1,t, . . . , Sd,t). De-
scribe a drift vector a(s) and a noise coefficient matrix b(s) so that
each stock separately is a geometric Brownian motion, but

corr(dSi, dSj) = ρ , if i 6= j.

Hint: One way to do this is to imitate part (b).

(e) Consider the average price process

St =
1

d

d∑
i=1

Si,t .

Show that St is not a diffusion process.

(f) Show (informally) that St is approximately a “stock” (geometric
Brownian motion) for large d if Si,0 = 1 for all i. What is the
approximate volatility of St?

3. Consider a single geometric Brownian motion, written as

dSt = µStdt+ σStdWt .

This exercise involves calculations with forward and backward equations.
Do not use Ito’s lemma.
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(a) Let the value function be f(s, t). Identify the generator L and use it
to write the backward equation that f satisfies.

(b) Define a change of variables g(x, t) = f(ex, t), and calculate the PDE
that g satisfies. This involves a change of variables in the backward
equation that can be written s = ex, or x = log(s).

(c) Show that this PDE is the backward equation for a Brownian motion
with drift, identify the drift and noise coefficient.

(d) Let p(s, t) be the PDF of St, write the adjoint L∗ and use it to write
the forward equation that p satisfies.

(e) Use the change of variables of part (b) to write the PDE satisfied by
q(x, t) = p(ex, t).

(f) Show that q(x, t) is not the PDF of Xt = log(St). Write a formula
for r(x, t) which is the PDF of Xt by including the “jacobian factor”
ds
dx .

(g) Show that this r satisfies the forward equation corresponding to the
backward equation that g satisfies.

4. Consider the one variable Ornstein Uhlenbeck process dXt = −Xtdt+dWt

with X0 = 0.

(a) Write the PDF for Xt. Hint: It is Gaussian. You need only identify
the mean and variance. The mean is easy.

(b) Turn your answer to part (a) into a formula for p(x, t) in this case.
Check by explicit calculation that this satisfies the forward equation.

(c) Find the value function, f(x, t), for payout V (x) = x4. Hint Look for
a polynomial solution of the backward equation with the right final
conditions.

(d) Combine your answers to part (a) and part (c) to explicitly evaluate
E[f(Xt, t)] (Here Xt is a certain Gaussian and f(x, t) is a certain
polynomial.). The answer will be independent of t, after you get rid
of all the algebra mistakes.

5. Suppose Xt is a one dimensional Brownian motion with drift that is con-
fined to the interval [0, 1] by boundary forcing as in Assignment 7. That
is: dXt = aXt + dWt + dLt − dMt, where dL ≥ 0 and dL = 0 unless
Xt = 0, and dM ≥ 0 and dM1 = 0 unless Xt = 1.

(a) Write an expression for the probability flux, F (x, t).

(b) Formulate a PDE and boundary conditions and initial conditions
that can be used to calculate p(x, t), which is the PDF of Xt.

(c) Suppose f(x, t) is a value function of the form f(x, t) = Ex,t[V (XT )].
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(d) Formulate a PDE with boundary conditions to be applied at x = 0
and x = 1, together with final conditions to be applied at t = T that
can be used to calculate f(x, t) for t ≤ T . Hint: Use the fact that

E[V (XT )] =
d

dt

∫ 1

0

p(x, t)f(x, t) dx

is independent of t.

(e) Suppose p(·, t) → π(·) as t → ∞. Assume that the PDF π(x) is a
steady state for the process. Find a formula for π(x).

(f) Suppose f(x, t) → g(x) as t → −∞ (or, with fixed t and T → ∞).
Show that g(x) is independent of x and give an intuitive reason for
this to be true.

(g) Show that the constant of part (f) is equal to

Eπ[V (X)] =

∫ 1

0

π(x)V (x) dx .

Computing exercise

1. Write a finite difference PDE solver for the forward equation for the pro-
cess of Exercise 5. You can re-use much of the code and ideas from
your earlier finite difference PDE solving. Define ∆x and ∆t and grid
points xj = j∆x and solution times tk = k∆t. The approximate so-
lution is defined by variables Pj,k ≈ p(xj , tk). For j = 2, . . . , n − 2,
you can use a simple finite difference method that takes a time step
Pj,k+1 = αPj−1,k + βPj,k + γPj+1,k. As before, take ∆t proportional
to ∆x2 and use centered finite difference approximations to ∂xp and ∂2xp
to find α, β, and γ. The update formula for P1,k+1 involves the unknown
P0,k. Find this value by “predicting” P0,k from P1,k using the boundary
condition at x = 0 from Exercise 5. A similar idea applies for calculating
Pn−1,k1, but now using the boundary condition that applies at x = 0.
Start with Pj,0 = const and make plots to show that the solution con-
verges to the steady state probability density from Exercise 5. Plot the
computed P and the supposed steady state solution on the same graph to
compare. Make a few plots (at least 3, but possibly more) to show how
changing computational parameters improves the agreement.

2. Write a code to simulate the process of Exercise 5 and make a histogram of
the computed XT taking many independent sample paths. This histogram
should agree with the predicted steady state if T is large enough. Plot
the computed histogram and predicted steady state on the same graph,
for values of T that show the convergence for large T if there are enough
sample trajectories.
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