Stochastic Calculus, Courant Institute, Fall 2019
http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2019/StochCalc.html
Always check the classes message board before doing any work on the assignment.

Assignment 8, due November 11

Corrections: [none yet]

1. By definition, a (real) inner product is a function of two vectors, written $\langle u, v\rangle$, with the properties
(a) $\langle u, v\rangle=\langle v, u\rangle \quad$ (symmetry)
(b) $\quad\langle u, a v\rangle=a\langle u, v\rangle \quad$ (homogeniety)
(c) $\left\langle u, v_{1}+v_{2}\right\rangle=\left\langle u, v_{1}\right\rangle+\left\langle u, v_{2}\right\rangle \quad$ (additivity)
(d) $\langle u, u\rangle>0$ unless $u=0 \quad$ (positivity).

Let the vector space be \mathbb{R}^{d} and C is a symmetric positive definite matrix. Consider the function $\langle u, v\rangle=u^{t} C v$.
(a) Show that $\langle u, v\rangle=u^{t} C v$ is an inner product by showing that it has these four properties.
(b) Suppose $X \in \mathbb{R}^{d}$ is a d-component random variable with $\mathrm{E}[X]=0$ and $\mathrm{E}\left[X X^{t}\right]=C$. For any vector $u \in \mathbb{R}^{d}$, define the scalar random variable $Z_{u}=u^{t} X$. Show that $\mathrm{E}\left[Z_{u} Z_{v}\right]=u^{t} C v$. Hint: You can do this by calculating with indices, but it may be quicker to use matrix algebra and the trick of writing $v^{t} X=X^{t} v$.
(c) Suppose A is a $d \times d$ matrix. Find a formula in terms of A and C for a matrix A^{*} so that $\left\langle A^{*} u, v\right\rangle=\langle u, A v\rangle$ for all u and v. Hint: Show that C^{-1} is a symmetric matrix.
(d) Consider the example

$$
C=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), \quad A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad u=\binom{1}{1}, \quad v=\binom{1}{0} .
$$

Calculate A^{*} and check directly that $\left\langle A^{*} u, v\right\rangle=\langle u, A v\rangle$.
(e) Use the properties (a) - (d) (maybe not all of them) to show that for any inner product, $\left(A^{*}\right)^{*}=A$.
(f) Check that your formula from part (c) satisfies $\left(A^{*}\right)^{*}=A$. Do this by matrix algebra with your matrix formula for A^{*}.
2. Imagine a collection of identically distributed random variables, but not independent, with each distinct pair having the same correlation $\operatorname{corr}\left(X_{i}, X_{j}\right)=$ ρ for $i \neq j$.
(a) Show that this is possible with $X=\left(X_{1}, \ldots, X_{d}\right)$ being Gaussian if $0 \leq \rho<1$. Do this by showing that the correlation matrix (ones on the diagonal, ρ in every other entry) is positive definite. Explain why this is enough.

$$
C_{\rho}=\left(\begin{array}{cccc}
1 & \rho & \cdots & \rho \\
\rho & 1 & \ddots & \vdots \\
\vdots & \ddots & 1 & \rho \\
\rho & \cdots & \rho & 1
\end{array}\right)
$$

Hint: Show that a matrix of the form $C=a I+v v^{t}$ is positive definite if $a>0$. Find a v and a that gives the specific C_{ρ} here.
(b) Consider i.i.d. standard normals $Z_{0}, \ldots Z_{d}(d+1$ random variables) and define $X_{i}=a Z_{0}+b Z_{i}$. Find values of a and b that give the desired correlations. The algebra is similar to the algebra of part (a), which is not a coincidence. [Finance people may recognize this as an example of the "market factor" plus "ideosyncratic factors" used by Markowitz.]
(c) Show that C_{ρ} is not positive definite if $\rho<-\frac{1}{d}$. It is hard (or impossible) to create a bunch of strongly negatively correlated random variables.
(d) For this exercise, take the word "stock" to mean geometric Brownian motion. Let S_{1}, \ldots, S_{d} be stocks that satisfy $d S_{i}=r S_{i} d t+\sigma S_{i} d W_{i}$. Define the joint stock process $S_{t} \in \mathbb{R}^{d}$ by $S_{t}=\left(S_{1, t}, \ldots, S_{d, t}\right)$. Describe a drift vector $a(s)$ and a noise coefficient matrix $b(s)$ so that each stock separately is a geometric Brownian motion, but

$$
\operatorname{corr}\left(d S_{i}, d S_{j}\right)=\rho, \quad \text { if } i \neq j
$$

Hint: One way to do this is to imitate part (b).
(e) Consider the average price process

$$
\bar{S}_{t}=\frac{1}{d} \sum_{i=1}^{d} S_{i, t} .
$$

Show that \bar{S}_{t} is not a diffusion process.
(f) Show (informally) that \bar{S}_{t} is approximately a "stock" (geometric Brownian motion) for large d if $S_{i, 0}=1$ for all i. What is the approximate volatility of \bar{S}_{t} ?
3. Consider a single geometric Brownian motion, written as

$$
d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t}
$$

This exercise involves calculations with forward and backward equations. Do not use Ito's lemma.
(a) Let the value function be $f(s, t)$. Identify the generator L and use it to write the backward equation that f satisfies.
(b) Define a change of variables $g(x, t)=f\left(e^{x}, t\right)$, and calculate the PDE that g satisfies. This involves a change of variables in the backward equation that can be written $s=e^{x}$, or $x=\log (s)$.
(c) Show that this PDE is the backward equation for a Brownian motion with drift, identify the drift and noise coefficient.
(d) Let $p(s, t)$ be the PDF of S_{t}, write the adjoint L^{*} and use it to write the forward equation that p satisfies.
(e) Use the change of variables of part (b) to write the PDE satisfied by $q(x, t)=p\left(e^{x}, t\right)$.
(f) Show that $q(x, t)$ is not the PDF of $X_{t}=\log \left(S_{t}\right)$. Write a formula for $r(x, t)$ which is the PDF of X_{t} by including the "jacobian factor" $\frac{d s}{d x}$.
(g) Show that this r satisfies the forward equation corresponding to the backward equation that g satisfies.
4. Consider the one variable Ornstein Uhlenbeck process $d X_{t}=-X_{t} d t+d W_{t}$ with $X_{0}=0$.
(a) Write the PDF for X_{t}. Hint: It is Gaussian. You need only identify the mean and variance. The mean is easy.
(b) Turn your answer to part (a) into a formula for $p(x, t)$ in this case. Check by explicit calculation that this satisfies the forward equation.
(c) Find the value function, $f(x, t)$, for payout $V(x)=x^{4}$. Hint Look for a polynomial solution of the backward equation with the right final conditions.
(d) Combine your answers to part (a) and part (c) to explicitly evaluate $\mathrm{E}\left[f\left(X_{t}, t\right)\right]$ (Here X_{t} is a certain Gaussian and $f(x, t)$ is a certain polynomial.). The answer will be independent of t, after you get rid of all the algebra mistakes.
5. Suppose X_{t} is a one dimensional Brownian motion with drift that is confined to the interval $[0,1]$ by boundary forcing as in Assignment 7. That is: $d X_{t}=a X_{t}+d W_{t}+d L_{t}-d M_{t}$, where $d L \geq 0$ and $d L=0$ unless $X_{t}=0$, and $d M \geq 0$ and $d M_{1}=0$ unless $X_{t}=1$.
(a) Write an expression for the probability flux, $F(x, t)$.
(b) Formulate a PDE and boundary conditions and initial conditions that can be used to calculate $p(x, t)$, which is the PDF of X_{t}.
(c) Suppose $f(x, t)$ is a value function of the form $f(x, t)=\mathrm{E}_{x, t}\left[V\left(X_{T}\right)\right]$.
(d) Formulate a PDE with boundary conditions to be applied at $x=0$ and $x=1$, together with final conditions to be applied at $t=T$ that can be used to calculate $f(x, t)$ for $t \leq T$. Hint: Use the fact that

$$
\mathrm{E}\left[V\left(X_{T}\right)\right]=\frac{d}{d t} \int_{0}^{1} p(x, t) f(x, t) d x
$$

is independent of t.
(e) Suppose $p(\cdot, t) \rightarrow \pi(\cdot)$ as $t \rightarrow \infty$. Assume that the PDF $\pi(x)$ is a steady state for the process. Find a formula for $\pi(x)$.
(f) Suppose $f(x, t) \rightarrow g(x)$ as $t \rightarrow-\infty$ (or, with fixed t and $T \rightarrow \infty$). Show that $g(x)$ is independent of x and give an intuitive reason for this to be true.
(g) Show that the constant of part (f) is equal to

$$
\mathrm{E}_{\pi}[V(X)]=\int_{0}^{1} \pi(x) V(x) d x
$$

Computing exercise

1. Write a finite difference PDE solver for the forward equation for the process of Exercise 5. You can re-use much of the code and ideas from your earlier finite difference PDE solving. Define Δx and Δt and grid points $x_{j}=j \Delta x$ and solution times $t_{k}=k \Delta t$. The approximate solution is defined by variables $P_{j, k} \approx p\left(x_{j}, t_{k}\right)$. For $j=2, \ldots, n-2$, you can use a simple finite difference method that takes a time step $P_{j, k+1}=\alpha P_{j-1, k}+\beta P_{j, k}+\gamma P_{j+1, k}$. As before, take Δt proportional to Δx^{2} and use centered finite difference approximations to $\partial_{x} p$ and $\partial_{x}^{2} p$ to find α, β, and γ. The update formula for $P_{1, k+1}$ involves the unknown $P_{0, k}$. Find this value by "predicting" $P_{0, k}$ from $P_{1, k}$ using the boundary condition at $x=0$ from Exercise 5. A similar idea applies for calculating $P_{n-1, k} 1$, but now using the boundary condition that applies at $x=0$. Start with $P_{j, 0}=$ const and make plots to show that the solution converges to the steady state probability density from Exercise 5. Plot the computed P and the supposed steady state solution on the same graph to compare. Make a few plots (at least 3, but possibly more) to show how changing computational parameters improves the agreement.
2. Write a code to simulate the process of Exercise 5 and make a histogram of the computed X_{T} taking many independent sample paths. This histogram should agree with the predicted steady state if T is large enough. Plot the computed histogram and predicted steady state on the same graph, for values of T that show the convergence for large T if there are enough sample trajectories.
