
Stochastic Calculus, Courant Institute, Fall 2019

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2019/StochCalc.html

Always check the classes message board before doing any work on the assignment.

Assignment 7, due November 4

Corrections: [none yet]

1. Consider the pair of differential equations

dy

dt
= v

dv

dt
= −γv − ω2y .

The first equation says that y moves with speed v. The second equation
is related to force (the mass is left out for simplicity) The first term,
−γv.represents friction, which is a force proportional to the speed, but in
the opposite direction to slow it down. The second term, −ω2y represents
a “spring”, which is a force proportional to the displacement of y from 0.
The coefficient is written ω2 partly to emphasize that it’s positive.

(a) Define xt ∈ R2 to represent both components: xt =

(
yt
vt

)
. Write the

differential equation system in the form d
dtxt = Axt, and identify A.

(b) Find the eigenvalues and right eigenvectors of A. Show that the
eigenvalues and right are real if γ > 2|ω| and complex otherwise.
This may not work on the borderline case γ = 2|ω|.

(c) Form the right eivenvector matrix U =

 | |
u1 u2
| |

. Form V = U−1

and check that the rows of V are left eigenvectors of A with the same
eigenvalues.

2. Suppose A is a “data matrix” with m rows and n columns. For example,
you can think of the columns of A as time series, each series having m en-
tries. This exercise goes through the singular value decomposition (which
many students have seen already). By tradition, the singular values are
ordered from largest to smallest rather than from smallest to largest as
for eigenvalues of symmetric matrices. In this exercise, ‖x‖ means the 2

norm, which is (xtx)
1
2 .

(a) Consider the quotient

R(x) =
‖Ax‖2

‖x‖2
.

1

Show that the maximum of R is attained. Let v1 ∈ Rn and σ1 be
defined by

‖v1‖ = 1 , σ1 = max
x6=0

R(x) , σ1 = R(v1) .

v1 is the first right singular vector and σ1 is the first singular value.
Define u1 ∈ Rm by Av1 = σ1u1, so that ‖u1‖ = 1. u1 is the first left
singular vector.

(b) (This is the main point.) Show that if vt1x = 0, then ut1Ax = 0.
Hint: The week 6 class notes do this for symmetric matrices. The
argument is similar.

(c) Define σ2 and v2 and u2 by

σ2 = max
vt
1x=0,x 6=0

R(x) , σ2 = R(v2) , vt1v2 = 0 , ‖v1‖ = 1 , Av2 = σ2u2 .

Show that σ2 ≤ σ1 and σ2 ≥ 0.

(d) Suppose A is a “tall thin” matrix, which is a matrix with m ≥ n.
Show that there is an m × m orthogonal matrix V whose columns
are the right singular vectors vk so that AV = Ũ Σ̃. There Ũ is an
m × n matrix with ortho-normal columns and Σ̃ is diagonal m ×m
matrix with σ1 ≥ σ2 ≥ · · · ≥ σm on the diagonal. It is common
to write the matrix formula in the equivalent form A = Ũ Σ̃V t. It is
common to complete Ũ to have n columns by adding n−m additional
orthonormal columns, all of them orthogonal to the columns of Ũ .
This n × n orthogonal matrix is called U . It is common to expand
Σ̃ to have the same shape as A by adding n−m rows of zeros below
the diagonal part. This matrix is called Σ. Show that the expanded
matrices also satisfy the formula A = UΣV t. This formula, and the
matrices U , Σ, and V are the singular value decomposition of A.

(e) Show that

m∑
j=1

σ2
j =

m∑
i=1

n∑
j=1

a2ij = Tr(AtA) = Tr(AAt) .

(f) Let C = AtA. Show that the eigenvalues of C are the squares of the
singular values of A. With our orderings, that is λm−j+1 = σ2

j . Show
that vj are the corresponding eigenvectors. Hint: Relate R(x) to the
Rayleigh quotient of C.

(g) Suppose you want to predict the columns of A using k < n vectors.
Let ai be column i of A. The predictor is

âi =

k∑
j=1

mijwj .

2

The criterion is to minimize the sum of squares prediction error

S2 =

n∑
i=1

‖ai − âi‖2 .

Show that S2 is minimized using the first k left singular vectors
u1, . . . , uk. Find a formula for S2 in terms of singular values.

Computing exercise

This is an exercise in simulation and the auto-covariance function of a
stochastic process. Let Yk be a sequence of random variables. These may
be “observations” of a continuous time stochastic process at times tk = k∆t.
The lag j auto-covariance function is

Cj = covp(Yk, Yk+j) .

The subscript p means that Yk is in the steady state distribution so Cj does not
depend on k. If we have a simulated or data time series of length m, we can
estimate the auto-covariance function using

Ĉj =
1

m− b− j

m−j∑
k=b+1

(Yk − Y)(Yk+j − Y) .

Here b is the “burn-in” time, which is values of k so small that Yk is not yet
in its steady state distribution, and Y is the average of the time series. The
denominator in front is the number of terms in the sum. It is common to use
m−b− j−1, there should be enough data that subtracting 1 makes a negligible
difference.

1. Consider the Ornstein Uhlenbeck process with γ = 1 and σ = 1. This is
dXt = −Xtdt + dWt. Choose a small ∆t and simulate the process using
the Euler method as on an earlier assignment. Start with X0 = 0 and
simulate up to a large time T . Make T and ∆t parameters in the code
that you can “play with”. Make sure ∆t is printed on the plot and t
is marked on the horizontal axis. Make a plot of the observed sequence
Yk = Xtk . For small ∆t, this should look like a mess, but you will see that
it settles into a steady state mess after not too much time has passed.

2. Estimate and plot the auto-covariance function of this process as a function
of t on the horizontal axis. Calculate (analytically) and plot the exact
auto-covariance function from theory. Do several experiments that show
that estimated auto-covariance function is more accurate when T is larger.
Choose a b so that for k > b, Yk seems to be more or less in the steady
state. You can find this from the plot of part (1).

(a) Computing the sums in “scalar” Python (one number at a time as:
for in in range ... for j in range ... sum += Y[k]*Y[k+j])

3

can be slow. Try to learn vector Python, which is one instruction
telling it to do all the products and sums. It is something like:
np.sum(Y[b:m-j]*Y[b+j:m] (this is not quite right).

(b) Be careful with ranges of indices. Python uses “half open” intervals
that include the left endpoint but not the right endpoint, so Y[0:m]

is the sequence running from k = 0 to k = m−1. We want sequences
that run from k = 0 to k = m, which is Y[0:(m+1)]. The parentheses
are necessary. Leave them out (Y[0:m+1]) to see why.

(c) You may not want ∆t to be too small, but there will be noticeable
∆t errors if unless ∆t is small enough. Do not start with ∆t = .0001.
Experiment to what size you need.

(d) It can take a long time to compute the whole auto-covariance func-
tion. You will see that after a certain point the computed function is
all noise. It is probably not necessary to compute it beyond t = tf = 3
or so. You can experiment to find a good tf .

3. A reflecting Brownian motion is a process dXt = dWt + dLt − dMt. The
functions Lt and Mt are both monotone increasing, so Lt2 ≥ Lt1 if t2 >
t1, and similarly for Mt. They are boundary controls that keep Xt in
the interval [a, b] and are active only at the endpoints. The force dLt is
“active” only when Xt = a and prevents X from going below a. Lt being
monotone means that dL pushes only to the right. Similarly, Mt is active
only when Xt = b and −dMt pushes Xt to the left. We say L (or M) is
active if it is not constant. So Lt2 = Lt1 if Xt > a for all t ∈ [t1, t2]. Since
Lt is monotone, this implies that L is constant on any interval of time in
which Xt does not touch a. As long as a < Xt < b, this behaves exactly
like Brownian motion because dL = 0 and dM = 0.

Boundary control has applications in finance. For example, a country
might want to let its currency fluctuate within a certain range but not
let is go below a chosen minimum or above a chosen maximum. Such a
country would trade in its currency only to prevent it from going outside
the range. Boundary controls happen in engineering applications too.

Here is one way to simulate a reflecting Brownian motion. You have ∆t
and tk = k∆t. Suppose Xtk ≥ a, and Ltk has been computed. Define ∆Lk

to be the smallest non-negative number so that Xtk+1
= Xtk + ∆Wk +

∆Lk ≥ 0. Usually ∆Lk = 0, but sometimes it is necessary to prevent
Xtk+1

< a.

(a) Simulate and plot some reflecting Brownian motion paths up to a
time when they hit both boundaries at least a little. Simulate up to
some time T that is not too large and with a ∆t that you cannot see
easily in plots. Make plots of Lt and Mt to see that they are constant
except where Xt is at (near, in simulation) one of the boundaries.

(b) Simulate for a longer time until the process reaches steady state,
then compute the auto-covariance function. This may take quite a

4

bit of computing, so you should be willing to let the computer work
overnight.

(c) Plot the auto-covariance function (over a range where it does not
seem to be noise) in a semi-log plot (log on the vertical axis, linear
on the horizontal t axis. This will be a straight line if C(t) is a single
exponential as it is for part 2. Is that true here?

5

