http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2019/StochCalc.html
Always check the classes message board before doing any work on the assignment.

## Assignment 5, due October 15

Corrections: [none yet]

1. (Small vs. tiny, from class 4) Ito's lemma depends on replacing $(\Delta W)^{2}$ with $\Delta t$. The difference is $R=(\Delta W)^{2}-\Delta t$. This may not seem "tiny" because $R$ is on the order of $\Delta t$, but it is tiny in that a sum of terms like $R$, if the terms are independent and have mean zero, goes to zero as $\Delta t \rightarrow 0$. This is cancellation. The sum of the positive terms approximately cancels the sum of the negative terms. Define $R_{k}=\left(\Delta W_{k}\right)^{2}-\Delta t$, with $\Delta W_{k}=W_{t_{k+1}}-W_{t_{k}}$. The sum is

$$
S=\sum_{t_{k}<t} R_{k}
$$

(a) Show that $R_{k}$ is on the order of $\Delta t$ in the sense that $\mathrm{E}[|R|]=C \Delta t$. If you have extra time and like doing integrals, show that $C=\sqrt{\frac{2}{\pi e}} \approx$ .484.
(b) Show that $E\left[R_{k}^{2}\right]=2 \Delta t^{2}$. Part of this calculation is that $\mathrm{E}_{\mathcal{N}(0,1)}\left[Z^{4}\right]=$ 3.
(c) Show that

$$
\mathrm{E}\left[S^{2}\right]=\sum_{t_{k}<t} \mathrm{E}\left[R_{k}^{2}\right]
$$

The terms on the right are the diagonal terms in the double sum

$$
\sum_{t_{k}<t} \sum_{t_{j}<t} \mathrm{E}\left[R_{k} R_{j}\right]
$$

Why do the off diagonal terms (the terms with $j \neq k$ ) vanish?
(d) Show that $\mathrm{E}\left[S^{2}\right] \approx 2 t \Delta t$, so $|S|$ is of order $\sqrt{\Delta t}$ as $\Delta t \rightarrow 0$.
2. Suppose $X_{t}$ is a one dimensional Ornstein Uhlenbeck process that satisfies the $\operatorname{SDE} d X_{t}=-\gamma X_{t} d t+\sigma d W_{t}$. This exercise leads to understanding the transition probability densities $G(y, x, t)$ for the Ornstein Uhlenbeck process. This is the PDF for transitions from $X_{s}=x$ to $X_{t+s}=y$. We start with the guess that $G$ is Gaussian, calculate the Gaussian, and verify that this Gaussian works.
(a) Write the backward equation and use it to calculate the conditional mean of $X_{s+t}$, which is determined by $\mathrm{E}\left[X_{t+s} \mid X_{s}=y\right]$. For this, you need to identify $T$ and $t$ (translate the notation we used for backward equations to this context) and the payout function $v(x)$.
(b) Use a similar approach to compute the conditional variance of $X_{t+s}$. Use the backward equation to calculate $\mathrm{E}\left[X_{t+s}^{2} \mid X_{s}=x\right]$.
(c) Combine this with part (a) to find the PDF of $X_{t+s}$ conditional on $X_{s}=x$ and assuming that the density is Gaussian. Call this density $G(y, x, t)$, which is a PDF in $x$ in the sense that $X_{t+s} \sim G(y, \cdot, t)$.
(d) Suppose $v(x)$ is a payout function, and define

$$
f(y, t)=\mathrm{E}\left[v\left(X_{T}\right) \mid X_{t}=y\right]=\int_{-\infty}^{\infty} G(y, x, T-t) v(x) d x
$$

Show that $f$ satisfies the backward equation in the variables $y$ and $t$. Do this by putting the derivatives inside the integral and showing that $G$ satisfies this equation for every value of $x$.
(e) Is $G$ a PDF in the $y$ variable? is $G(\cdot, x, t)$ a PDF for each fixed $x$ (same question)? Hint: Look at $G$ for large $t$ and ask whether that is compatible with $\int G(y, x, t) d y=1$.
3. Suppose $X_{j}$, for $j=1 \ldots, n$ are $n$ correlated Gaussian prices. Here is a model of correlated prices related what is called CAPM (capital asset pricing model). [Although this model of correlation makes sense, the CAPM overall is the most debunked theory in all of finance.] In this model there is a market factor called $Z_{0} \sim \mathcal{N}(0,1)$. Asset $X_{j}$ has coefficient $\beta_{j}$, which is its "beta to the market". This means that $X_{j}=$ $\beta_{j} Z_{0}+$ idiosyncratic factor. [The English word idiosyncratic means weird in some individual way. The in finance, idiosyncratic just means individual.] The idiosyncratic factor for $X_{j}$ is $Z_{j} \sim \mathcal{N}(0,1)$. All the $Z$ variables are independent. The model is

$$
X_{j}=\beta_{j} Z_{0}+\sigma_{j} Z_{j}, \quad \text { for } j=1, \ldots, n
$$

This represents the $n$ prices using $n+1$ "sources of noise". The class notes say you should never do that, but maybe, ... .
(a) Calculate the covariance matrix $C=\operatorname{cov}(X)$ in terms $\beta_{j}$ and $\sigma_{j}$.
(b) For $n=2$ only (unless you really like algebra), find an $n \times n$ matrix $B$ so that $Y=B W$ has the same distribution as $X$. Here $W \in \mathbb{R}^{n}$ with $W \sim \mathcal{N}(0, I)$. Hint: you can take $B$ to be upper or lower triangular, as in

$$
B=\left(\begin{array}{cc}
b_{11} & 0 \\
b_{21} & b_{22}
\end{array}\right)
$$

(c) Is the representation from part (b) unique? Is there any other way to represent $X$ using $n$ sources of noise?
(d) Is it possible to find a $Y=B W$ with $W \sim \mathcal{N}\left(0, I_{m \times m}\right)$ with $m<n$ and $B$ being an $n \times m$ matrix? Is it possible to represent $X$ with fewer than $n$ sources of noise?
4. Suppose $A$ and $B$ have $A A^{t}=B B^{t}=C$ where $C$ is non-singular. Show that there is an orthogonal matrix $Q$ (orthogonal means $Q Q^{t}=I$, which is a rotation or reflection in 3d and preserves angles in any dimension) so that $A=B Q$. Show that if the components of a vector $Z$ are independent standard normals, and if $W=Q Z$ for an orthogonal matrix $Q$, then the components of $W$ are independent standard normals.
5. Suppose $S_{1}$ and $S_{2}$ are two "correlated prices" given by

$$
\begin{gathered}
S_{1, t}=e^{\alpha W_{1, t}+\beta W_{2, t}} \\
S_{2, t}=e^{\gamma W_{1, t}+\delta W_{2, t}} .
\end{gathered}
$$

(a) Calculate the infinitesimal mean and covariance

$$
\begin{aligned}
a\left(s_{1}, s_{2}\right) d t & =\mathrm{E}\left[\left(d S_{1}, d S_{2}\right) \mid S_{1, t}=s_{1}, S_{2, t}=s_{2}\right] \\
\mu\left(x_{1}, s_{2}\right) d t & =\operatorname{cov}\left[\left(d S_{1}, d S_{2}\right) \mid S_{1, t}=s_{1}, S_{2, t}=s_{2}\right]
\end{aligned}
$$

(b) Is $S_{1, t}$ a one dimensional Markov process (a diffusion)? Is ( $S_{1, t}, S_{2, t}$ ) a two dimensional diffusion?

## Computing exercise

None this week.

