
Stochastic Calculus, Courant Institute, Fall 2019

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2019/StochCalc.html

Always check the classes message board before doing any work on the assignment.

Assignment 3, due September 30

Corrections: September 27:
The first formula in Exercise (1c) should end with O(∆t2), not O(∆t4).
Exercise (2a) should not have 1

2 on the right. It should say E[(∆Y)2] = ∆t+· · · .

1. (Finite differences) This exercise explains the finite difference formulas
used in the computational exercise. The description of the computational
exercise has some background you will need here.

(a) Suppose f(x, t) is a sufficiently smooth function and ∆x and ∆t are
small. Show that

∂xf(x, t) =
f(x+ ∆x, t)− f(x−∆x, t)

2∆x
+O(∆x2)

∂2
xf(x, t) =

f(x+ ∆x, t)− 2f(x, t) + f(x−∆x, t)

∆x2
+O(∆x2)

∂tf(x, t) =
f(x, t)− f(x, t−∆t)

∆t
+O(∆t) .

These are finite difference formulas. There are other finite difference
formulas to approximate the same derivatives, but these lead to the
overall finite difference method used in the Computing Exercise.

(b) Suppose xl and T are fixed. Define xj = xl+ j∆x and tk = T −k∆t.
Suppose that f satisfies the backward equation ∂tf+a∂xf+ 1

2∂
2
xf = 0.

Suppose that λ = ∆t
2∆x2 is fixed as ∆x→ 0. Show that

f(xj , tk+1) = f(xj , tk)

+
a∆t

2∆x
[f(xj+1, tk)− f(xj−1, tk)]

+
∆t

2∆x2
[f(xj+1, tk)− 2f(xj , tk) + f(xj−1, tk)]

+O(∆x4) .

(c) In the code, this is written in the form

f(xj , tk+1) = p−f(xj−1, tk) + p0f(xj , tk) + p+f(xj+1, tk) +O(∆t2) .

Show that p− + p0 + p+ = 1. Show that if λ < 1
2 and ∆x is small

enough, then p− > 0, p0 > 0 and p+ > 0. The condition λ < 1
2 is

called the CFL condition, after the people who discovered it. Those
are Courant (the founder of the Courant Institute), Friedrichs (one of
the founding professors), and Lewy (a colleague of theirs who became
a professor at Berkeley).

1

(d) We will use the approximate formula from part (c) that applies to the
exact solution as motivation to declare an exact formula for an ap-
proximation solution. The numbers fkj are supposed to approximate
f(xj , tk) and the formula is

fk+1,j = p−fk,j−1 + p0fkj + p+fk,j+1 .

This will be defined for k > 0, starting with f0,j = v(xj), which is
an exact formula for f(xj , T). The boundary conditions are fk,0 = 0
and fk,n+1 = 0, corresponding to f(xl, t) = 0 and f(xr, t) = 0. Show
that the operator fk fk+1 is stable in the sense that, if p1, p0 and
p+ are positive and sum to 1, then

n∑
j=1

|fk+1,j | ≤
n∑
j=1

|fk,j | .

This implies that the numbers fkj do not “blow up” for large k.

2. Consider the discrete random walk Yk that has the stochastic evolution

Yi+1 =

 Yi −∆x with probability p−
Yi with probability p0

Yi + ∆x with probability p+

Define ti = i∆t [warning, not as in Exercise 1]. Suppose p−, p0, and p+

are defined as in exercise 1.

(a) Show that Y has “infinitesimal” mean a and “infinitesimal variance”
1
2 in the sense that E[∆Y] = a∆t and E[(∆Y)2] = ∆t+O(∆t2). Here
∆Y = Yi+1 − Yi. (not really infinitesimal because ∆t doesn’t go to
zero for a given process.)

(b) Define a discrete value function

fij = E[v(Ynt) | Yi = j∆x] .

Assume that Y0 = j∆x for some j. Show that the numbers fij
satisfy a discrete backward equation that is identical (up to changes
in notation) to the finite difference update formula from Exercise
(1d). The convergence of random walk to Brownian motion implies
a relation between the discrete process and the partial differential
equation that is the backward equation for the diffusion process.

3. Suppose Z ∼ N (µ, σ2). Calculate A = E
[
eαZ

]
. Hint, write A as in

terms of an integral like
∫
e−bx−cx

2

dx and complete the square to make
bx + cx2 = d + c(x − x0)2, then use a change of variables y = x − x0 to
calculate the integral.

2

4. Consider Brownian motion with drift Xt = Wt + at as in Assignment 2.
Assume that Xt = x and show that XT = x+ Z where Z is normal with
a certain mean and variance. Calculate the value function with payout
v(x) = eax. Use the formula from Exercise (3). Then check that your
answer satisfies the backward equation.

Computing exercise

This exercise involves the backward equation for standard Brownian motion
or Brownian motion with constant drift with absorbing boundaries at x = xl
and x = xr. The code computes numbers fkj ≈ f(xj , tk). The x points are
xj = xj + j∆x, for j = 1, . . . , n. [Be careful, in the code j runs from 0 to
n− 1 because it’s Python.] The distance between points is always the same, so
xr − xl = (n + 1)∆x. In the code, you give n and it computes ∆x. The times
in the code are tk = T − k∆t, so t0 = T , t1 = T −∆t, etc. These go backwards
because that’s the right way to go with the backward equation. The CFL ratio
is λ = ∆t

2∆x . In the code, you specify λ and it computes ∆t. The number of
time steps is nt = T/∆t. The problem with this is that nt is likely not to be an
integer. Therefore the code makes ∆t a little smaller in order to round nt up
to the nearest integer.

The finite difference calculation uses the transition probabilities p+, p0, and
p− described in Exercise 1. Suppose fk is the n component vector with compo-
nents fkj . The “inner loop” of the code computes fk+1 from fk. The endpoint
calculations, which are j = 1 next to xl and j = n next to x = xr are special.
The formula for them assume the absorbing boundary conditions f(xl, t) = 0
and f(xr, t) = 0. The “interior” points (j = 2, . . . , n−1) use the full three point
update formula.

Most finite difference calculations like this one save storage by saving only
two vectors rather than the whole solution. You need two vectors fk and fk+1

to take a time step. The code computes fk+1 from fk,. These vectors are called
fk and fkp1 in the code. Then it copies the newly computed values fkp1 into
the array fk to get ready for the next time step. Real codes that solve real
PDEs in three or more dimensions would not have enough storage for all the
fk.

To keep the code simple, the code makes a movie frame every time step. A
real code probably would make a new frame every so many time steps, to make
a smaller movie file.

Task 1. Download the code BackwardEquationDemo.py, run it. It should cre-
ate a movie called BackwardEquationMovie.mp4. Check that this is the same
as as BackwardEquationMovieDownload.mp4 that is posted on the web site.
Check that the movie looks about the same if you change the resolution of the
computation, which is ∆x = (xr −xl)/(n+ 1). The resolution is determined by
the number of x points, which is n. This will not work if n is too small. It will
take a long time to run if n is too large. Try it.

3

Task 2. The code “out of the box” has a payout function equal to v(x) = x2.
Try other payout functions. Examples you might try are v(x) = 1 (you get 1 if
you survive to time T) or v(x) = 1 only for |x| < r and v(x) = 0 otherwise. No-
tice properties these all have in common – how they behave near the endpoints
when t is close to T , and how they behave when t is closer to 0.

Task 3. Modify the code so that it solves the backward equation for Brownian
motion with constant drift velocity a. Note whether the solution in the movie
moves with velocity a or −a and explain the direction. Note whether the solu-
tions decay (become small) faster when a is large or small and explain this in
terms of hitting time to the boundary when there is drift.

Task 4. The finite difference method is unstable if λ > 1
2 . Modify λ in the code

(maybe λ = .6 instead of .4) and describe what happens when you “violate the
CFL condition”.

4

