Stochastic Calculus, Courant Institute, Fall 2019

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2019/StochCalc.html Always check the classes message board before doing any work on the assignment.

Assignment 11, due December 2

Corrections: [none yet]

- 1. Let N_t be the counting function for a Poisson arrival process with rate λ . Show that $X_t = N_t - \lambda t$ is a martingale.
- 2. Let \mathcal{F}_t be the filtration (family of σ -algebras) generated by $W_{[0,t]}$. Suppose T > t.
 - (a) Calculate $E[W_T^2 | \mathcal{F}_t]$.
 - (b) Let Q be the random variable

$$Q = \int_0^T W_s dW_s \; .$$

Calculate $E[Q \mid \mathcal{F}_t]$.

3. Define the random variable

$$Q = \int_0^T W_s ds$$

Let \mathcal{G}_t be the σ - algebra generated by the value W_t . Note that \mathcal{G}_t does not "know" the value of W_s for any $s \neq t$, except that $W_0 = 0$. The family \mathcal{G}_t is not a filtration, because \mathcal{G}_{t_2} does not contain \mathcal{G}_{t_1} if $t_2 \neq t_1$. Describe the random variable

$$R_t = \mathbf{E}[Q \mid \mathcal{G}_t]$$

Describe R_t in terms of W_t and a random variable independent of R_t . Hint: Q and W_t are jointly normal with variances and covariance that you can calculate.

- 4. Consider the random variable $S_t = s_0 e^{\sigma W_t + at}$. Find the value of a so that S_t satisfies the SDE $dS_t = \mu S_t dt + \sigma S_t dW_t$. Do this using Ito's lemma applied to some function $f(W_t, t)$. Write a formula for f(w, t) and calculate the partial derivatives involved.
- 5. Suppose A_n is a family of random variables with

$$\sum_{n=1}^{\infty} \mathbf{E} \left[A_n^4 \right] < \infty \,.$$

Use the Borel Cantelli lemma from the Class 11 notes to show that

$$A_n^4 \to 0$$
 as $n \to \infty$, almost surely .

Conclude that $A_n \to 0$ as $n \to \infty$ almost surely.

6. Let X_k be independent and identically distributed random variables with

$$E[X_k] = 0$$
, $E[X_k^2] = \sigma^2 < \infty$, $E[X_k^4] = \mu_4 < \infty$.

Let the sample mean up to n is

$$A_n = \frac{1}{n} \sum_{k=1}^n X_k \; .$$

Find a formula for $E[A_n^4]$ in terms of σ_2 and μ_4 . Use this formula to show that $A_n \to 0$ as $n \to \infty$ almost surely using the method of Exercise 6. [This is a proof of the almost sure law of large numbers assuming a finite fourth moment. Kolmogorov gave a proof that allows $\mu_4 = \infty$ but requires finite variance. That proof is harder but not very hard. Then he gave a spectacular proof assuming only that $E[|X_k|] < \infty$. This is the Kolmogorov strong law of large numbers.]

7. Define the quadratic variation of Brownian motion as

$$[W]_t = \lim_{m \to \infty} \sum_{t_k < t} \left(W_{t_{k+1}} - W_{t_k} \right)^2 .$$

Use the definitions from the Class 11 notes: $\Delta t = 2^{-m}$ and $t_k = k\Delta t$. Prove that the limit exists almost surely and $[W]_t = t$. *Hint:* the mean on the right converges to t and the variance goes to zero fast enough to apply the Borel Cantelli lemma.