Assignment 11, due December 2

Corrections: [none yet]

1. Let N_{t} be the counting function for a Poisson arrival process with rate λ. Show that $X_{t}=N_{t}-\lambda t$ is a martingale.
2. Let \mathcal{F}_{t} be the filtration (family of σ-algebras) generated by $W_{[0, t]}$. Suppose $T>t$.
(a) Calculate $\mathrm{E}\left[W_{T}^{2} \mid \mathcal{F}_{t}\right]$.
(b) Let Q be the random variable

$$
Q=\int_{0}^{T} W_{s} d W_{s}
$$

Calculate $\mathrm{E}\left[Q \mid \mathcal{F}_{t}\right]$.
3. Define the random variable

$$
Q=\int_{0}^{T} W_{s} d s
$$

Let \mathcal{G}_{t} be the $\sigma-$ algebra generated by the value W_{t}. Note that \mathcal{G}_{t} does not "know" the value of W_{s} for any $s \neq t$, except that $W_{0}=0$. The family \mathcal{G}_{t} is not a filtration, because $\mathcal{G}_{t_{2}}$ does not contain $\mathcal{G}_{t_{1}}$ if $t_{2} \neq t_{1}$. Describe the random variable

$$
R_{t}=\mathrm{E}\left[Q \mid \mathcal{G}_{t}\right]
$$

Describe R_{t} in terms of W_{t} and a random variable independent of R_{t}. Hint: Q and W_{t} are jointly normal with variances and covariance that you can calculate.
4. Consider the random variable $S_{t}=s_{0} e^{\sigma W_{t}+a t}$. Find the value of a so that S_{t} satisfies the $\operatorname{SDE} d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t}$. Do this using Ito's lemma applied to some function $f\left(W_{t}, t\right)$. Write a formula for $f(w, t)$ and calculate the partial derivatives involved.
5. Suppose A_{n} is a family of random variables with

$$
\sum_{n=1}^{\infty} \mathrm{E}\left[A_{n}^{4}\right]<\infty
$$

Use the Borel Cantelli lemma from the Class 11 notes to show that

$$
A_{n}^{4} \rightarrow 0 \text { as } n \rightarrow \infty, \text { almost surely }
$$

Conclude that $A_{n} \rightarrow 0$ as $n \rightarrow \infty$ almost surely.
6. Let X_{k} be independent and identically distributed random variables with

$$
\mathrm{E}\left[X_{k}\right]=0, \mathrm{E}\left[X_{k}^{2}\right]=\sigma^{2}<\infty, \mathrm{E}\left[X_{k}^{4}\right]=\mu_{4}<\infty
$$

Let the sample mean up to n is

$$
A_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}
$$

Find a formula for $\mathrm{E}\left[A_{n}^{4}\right]$ in terms of σ_{2} and μ_{4}. Use this formula to show that $A_{n} \rightarrow 0$ as $n \rightarrow \infty$ almost surely using the method of Exercise 6. [This is a proof of the almost sure law of large numbers assuming a finite fourth moment. Kolmogorov gave a proof that allows $\mu_{4}=\infty$ but requires finite variance. That proof is harder but not very hard. Then he gave a spectacular proof assuming only that $\mathrm{E}\left[\left|X_{k}\right|\right]<\infty$. This is the Kolmogorov strong law of large numbers.]
7. Define the quadratic variation of Brownian motion as

$$
[W]_{t}=\lim _{m \rightarrow \infty} \sum_{t_{k}<t}\left(W_{t_{k+1}}-W_{t_{k}}\right)^{2} .
$$

Use the definitions from the Class 11 notes: $\Delta t=2^{-m}$ and $t_{k}=k \Delta t$. Prove that the limit exists almost surely and $[W]_{t}=t$. Hint: the mean on the right converges to t and the variance goes to zero fast enough to apply the Borel Cantelli lemma.

