Assignment 10, due November 25

Corrections: [none yet]

1. Consider a Poisson arrival process on an interval $(0, t)$ with intensity λ. Suppose we divide the interval into M pieces of equal length Δt, and put a "hit" in each interval with probability $\lambda \Delta t$ (at most one hit per interval, all intervals independent). Let N_{t} be the (random) number of hits in total.
(a) Write an exact formula for $P_{n}(t, \lambda, M)=\operatorname{Pr}\left(N_{t}=n\right)$ using the binomial formula from basic probability.
(b) Keep n and t fixed and evaluate

$$
P(t, \lambda)=\lim _{M \rightarrow \infty} P(t, \lambda, M) .
$$

This should agree with the formula for the same quantity in the notes.
2. Let $T_{k}^{(1)}$ and $T_{k}^{(2)}$ be the Poisson arrival times for independent processes with rates λ_{1} and λ_{2} respectively. Let T_{k} be the union of these two processes. That is, T_{k} is the sequence that consists of all the arrivals $T_{k}^{(1)}$ and $T_{k}^{(2)}$. Show that T_{k} is a Poisson arrival process with rate $\lambda_{1}+\lambda_{2}$.
(a) Do this in a simple way by considering the probability that there is a $T_{k}^{(1)}$ or $T_{k}^{(2)}$ arrival in an interval of length Δt,
(b) Do this in a complicated way by letting $S^{(1)}$ and $S^{(2)}$ be independent inter-arrival times for $T_{k}^{(1)}$ and $T_{k}^{(2)}$. Let $S=\min \left(S^{(1)}, S^{(2)}\right)$ and show S has the inter-arrival distribution for rate $\lambda_{1}+\lambda_{2}$.
3. Suppose there is a payout that depends on N_{T}, where N_{t} is the counting process for a Poisson process with intensity λ. Define the value function $f(n, t)=\mathrm{E}_{n, t}\left[V\left(N_{T}\right)\right]$. Let g be a function of a non-negative integer n. This could be written as a sequence g_{0}, g_{1}, \ldots, but it is convenient here to use function notation $g(n)$.
(a) How does the generator of the Poisson process act on g ? More precisely, if $h=L g$, write a formula for $h(n)$ in terms of g.
(b) Use this to write the backward in the form

$$
\frac{d f(n, t)}{d t}=\ldots
$$

(c) Find a formula for $f(n, t)$ if $V(n)=n$. Hint: N_{t} is the number of arrivals up to time t. What is the probability of a new arrival in time $d t$? Show that your formula satisfies the backward equation.
(d) Find a formula for $f(n, t)$ if $V(n)=0$ for $n \geq k$ and $V(n)=1$ for $n<k$. This can be constructed from the known formula for $\operatorname{Pr}\left(T_{j} \geq s\right)$ and the "initial condition" that $N_{t}=n$. Verify that this formula satisfies the backward equation.
(e) Suppose the inner product is

$$
\langle q, g\rangle=\sum_{k=0}^{\infty} q_{k} g_{k}
$$

Use this to find a formula for $L^{*} q$ and to find the differential equation

$$
\frac{d p_{n}(t)}{d t}=\cdots
$$

Here $p_{n}(t)=\operatorname{Pr}\left(N_{t}=n\right)$.
(f) Derive the differential equations for $p_{n}(t)$ of part (e) directly using $\operatorname{Pr}(n-1 \rightarrow n$ in time $d t)$. More formally,

$$
\operatorname{Pr}(n-1 \rightarrow n \text { in time } d t)=\operatorname{Pr}\left(N_{t+d t}=n \mid N_{t}=n-1\right)
$$

4. Suppose \mathcal{R} be the collection of all rectangles in \mathbb{R}^{2}. A rectangle is a set $B=\{(x, y) \mid a \leq x \leq b$ and $c \leq y \leq d\}$. Let \mathcal{F} be the σ-algebra generated by \mathcal{R}. Show that the following sets are in \mathcal{F}.
(a) $D=\left\{(x, y) \mid x^{2}+y^{2}<R^{2}\right\}$. This is the disk of radius R centered at the origin. Hint: It is possible to arrange the rational points ("rational point" $=$ point with rational coordinates) in D in a sequence (countable list). Every point in D is in some rectangle about a rational point. Explaining all of this can take a while.
(b) $A=\left\{(x, y) \mid r^{2} \leq x^{2}+y^{2}<R^{2}\right\}$. This is an annulus. Hint: use part (a), complements, and intersections. Explaining this is easy.
(c) $C=\left\{(x, y) \mid x^{2}+y^{2}=R^{2}\right\}$. This is the unit circle. Hint: this is an intersection of a countable sequence of annuli (one "annulus", two "annuli").
5. In \mathbb{R}^{2}, let \mathcal{F} be the σ-algebra generated by the function $r^{2}(x, y)=x^{2}+y^{2}$. Suppose $(X, Y) \in \mathbb{R}^{2}$ is Gaussian with distribution $\mathcal{N}(0, I)$. Let $f(x, y)=$ x^{2}. Find an expression for $g(X, Y)=\mathrm{E}[f(X, Y) \mid \mathcal{F}]$.
