Stochastic Calculus, Courant Institute, Fall 2019

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2019/StochCalc.html Always check the classes message board before doing any work on the assignment.

Assignment 10, due November 25

Corrections: [none yet]

- 1. Consider a Poisson arrival process on an interval (0, t) with intensity λ . Suppose we divide the interval into M pieces of equal length Δt , and put a "hit" in each interval with probability $\lambda \Delta t$ (at most one hit per interval, all intervals independent). Let N_t be the (random) number of hits in total.
 - (a) Write an exact formula for $P_n(t, \lambda, M) = \Pr(N_t = n)$ using the binomial formula from basic probability.
 - (b) Keep n and t fixed and evaluate

$$P(t,\lambda) = \lim_{M \to \infty} P(t,\lambda,M)$$
.

This should agree with the formula for the same quantity in the notes.

- 2. Let $T_k^{(1)}$ and $T_k^{(2)}$ be the Poisson arrival times for independent processes with rates λ_1 and λ_2 respectively. Let T_k be the union of these two processes. That is, T_k is the sequence that consists of all the arrivals $T_k^{(1)}$ and $T_k^{(2)}$. Show that T_k is a Poisson arrival process with rate $\lambda_1 + \lambda_2$.
 - (a) Do this in a simple way by considering the probability that there is a $T_k^{(1)}$ or $T_k^{(2)}$ arrival in an interval of length Δt ,.
 - (b) Do this in a complicated way by letting $S^{(1)}$ and $S^{(2)}$ be independent inter-arrival times for $T_k^{(1)}$ and $T_k^{(2)}$. Let $S = \min(S^{(1)}, S^{(2)})$ and show S has the inter-arrival distribution for rate $\lambda_1 + \lambda_2$.
- 3. Suppose there is a payout that depends on N_T , where N_t is the counting process for a Poisson process with intensity λ . Define the value function $f(n,t) = \mathbb{E}_{n,t}[V(N_T)]$. Let g be a function of a non-negative integer n. This could be written as a sequence g_0, g_1, \ldots , but it is convenient here to use function notation g(n).
 - (a) How does the generator of the Poisson process act on g? More precisely, if h = Lg, write a formula for h(n) in terms of g.
 - (b) Use this to write the backward in the form

$$\frac{df(n,t)}{dt} = \dots$$

(c) Find a formula for f(n,t) if V(n) = n. *Hint:* N_t is the number of arrivals up to time t. What is the probability of a new arrival in time dt? Show that your formula satisfies the backward equation.

- (d) Find a formula for f(n,t) if V(n) = 0 for $n \ge k$ and V(n) = 1 for n < k. This can be constructed from the known formula for $\Pr(T_j \ge s)$ and the "initial condition" that $N_t = n$. Verify that this formula satisfies the backward equation.
- (e) Suppose the inner product is

$$\langle q,g\rangle = \sum_{k=0}^{\infty} q_k g_k \; .$$

Use this to find a formula for L^*q and to find the differential equation

$$\frac{dp_n(t)}{dt} = \cdots$$

Here $p_n(t) = \Pr(N_t = n)$.

(f) Derive the differential equations for $p_n(t)$ of part (e) directly using $\Pr(n-1 \to n \text{ in time } dt)$. More formally,

$$\Pr(n-1 \to n \text{ in time } dt) = \Pr(N_{t+dt} = n \mid N_t = n-1)$$
.

- 4. Suppose \mathcal{R} be the collection of all rectangles in \mathbb{R}^2 . A rectangle is a set $B = \{(x, y) | a \leq x \leq b \text{ and } c \leq y \leq d\}$. Let \mathcal{F} be the σ -algebra generated by \mathcal{R} . Show that the following sets are in \mathcal{F} .
 - (a) $D = \{(x, y)|x^2 + y^2 < R^2\}$. This is the disk of radius R centered at the origin. *Hint:* It is possible to arrange the rational points ("rational point" = point with rational coordinates) in D in a sequence (countable list). Every point in D is in some rectangle about a rational point. Explaining all of this can take a while.
 - (b) $A = \{(x, y) | r^2 \le x^2 + y^2 < R^2\}$. This is an annulus. *Hint:* use part (a), complements, and intersections. Explaining this is easy.
 - (c) $C = \{(x, y)|x^2 + y^2 = R^2\}$. This is the unit circle. *Hint:* this is an intersection of a countable sequence of annuli (one "annulus", two "annuli").
- 5. In \mathbb{R}^2 , let \mathcal{F} be the σ -algebra generated by the function $r^2(x, y) = x^2 + y^2$. Suppose $(X, Y) \in \mathbb{R}^2$ is Gaussian with distribution $\mathcal{N}(0, I)$. Let $f(x, y) = x^2$. Find an expression for $g(X, Y) = \mathbb{E}[f(X, Y)|\mathcal{F}]$.