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Always check the classes message board before doing any work on the assignment.

Assignment 1, due September 16

Corrections: 9/11: standard deviation formula from question 2 corrected to
1√

m∆x

√
p̂k

1. (About histograms) Suppose p(x) is the PDF for a one-component random
variable X. Assume that Xj ∼ p is a collection of i.i.d. samples of p.
Suppose there is a bin size, ∆x, and bin k is Bk = (a+k∆x, a+(k+1)∆x).
The bin centers are xk = a+ (k + 1

2 )∆x. The bin counts with m samples
are the random numbers Nk = # {Xj ∈ Bk | j = 1, . . . ,m}. Define the
scaled bin counts by

p̂k =
1

∆xm
Nk .

A histogram is a plot of Nk or p̂k as a function of k or xk. Show that (if
p′(x) and p′′(x) are continuous functions of x)

E[ p̂k] = p(xk) +O(∆x2) .

[This exercise is partly for the result: the scaled expected bin count esti-
mates the probability density. It’s also for the “analytical technique”, the
“big Oh” notation and how it’s justified. If Q(s) is defined for s > 0 and
there is a fixed C so that |Q| < Cs, then we say Q is “of the order of s”,
and we write Q = O(s). Here, Q is E[·] = p(xk) and s is ∆x2. A “Taylor
approximation with remainder” theorem from Calculus I (if they taught
it like this) is f(y) = f(x)+(y−x)f ′(x)+ 1

2 (y−x)2f ′′(ξ), where ξ is some
number between y and x. If g is continuous, then (another theorem) there
is a D with |g(ξ)| ≤ D for all ξ in any interval. Apply this with g = f ′′.
The C is related to D and is found by integrating the Taylor inequality
over Bk with respect to y.]

2. (histogram error bar). Suppose you estimate Q as the average of m i.i.d.
samples:

Q ≈ Q̂ =
1

m

m∑
j=1

Uj .

Assuming Q = E[Uj ], the statistical error is roughly the size of the stan-
dard devation

std. dev.(Q̂) =
√

var(Q) =
1√
m

√
σ2
U .
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For the histogram, let Uj = 1 if Xj ∈ Bk and Uj = 0 otherwise. This is
a Bernoulli random variable. Explain why σ2

U ≈ p(xk)∆x is an accurate
approximation for small ∆x. Use this to explain why

std. dev.(p̂k) ≈ 1√
m∆x

√
p̂k

is an accurate approximation if ∆x is small and m is large enough. If you
estimate p(xk) using p̂k (this is the histogram estimate of the probability
density), the same data gives an error bar, which is an estimate of the size
of the error in the statistical estimate.

3. Concentration theorems say that some random variable that depends on
n is concentrated when n is large. A random variable S is concentrated
if it is unlikely to be far from its mean. The random variables Sn are
concentrated if the variation of Sn goes to zero as n goes to infinity in
some sense. This is not a precise definition because there are different
concentration theorems.

Let Xk be a family of independent Gaussian random variables with mean
zero and variance 1. This exercise is about the magnitude of the vector
X = (X1, . . . , Xn), which is the random variable

R = |X| =

(
n∑

k=1

X2
k

) 1
2

.

Since R2 is the sum of independent random variables with mean E
[
X2

k

]
=

1, we have E
[
R2
]

= n. Therefore, if R =
√
R2 is concentrated, it should

be concentrated near
√
n.

Let pn(r) be the probability density of R. Show that

pn(r) =
1

Z
rn−1e−

r2

2 ,

where

Z =

∫ ∞
0

rn−1e−
r2

2 dr .

It is common in applied probability that you know the functional form of

a probability density (e.g., rn−1e−
r2

2 ) but not the normalization constant,
Z. Hint, pn(r)dr is the probability that r ≤ |X| ≤ r + dr. This is equal

to e−
r2

2 An(r)dr, where An(r) is the “area” of the sphere in n dimensions
given by |x| = r. Since An(r) represents an n − 1 dimensional “area”,
it “scales like” rn−1, which a way of saying that An(r) = Cnr

n−1. You
can find a formula for Cn in books (where it’s probably called ωn−1),
but that formula may not be so useful. If you’re not convinced by the
area argument, let Vn(r) be the n dimensional volume of the ball |x| ≤ r.
“Clearly” Vn(r + dr) − Vn(r) = An(r)dr, which is the same as saying
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An(r) = V ′n(r). The volume scales as rn, i.e., Vn(r) = Dnr
n (Dn being

the volume Vn(1), for example). The point of this task is that the power
rn−1 can be found by “easy” scaling arguments while the constant Z is
harder. If you can’t evaluate Z explicitly, it’s easy to compute numerically.

4. If f(t) is a differentiable function of t, then the total variation between 0
and T is

TV(f) =

∫ T

0

|f ′(t)| dt .

This measures how much f “moves”. Let ∆t > 0 be a small “time step”
parameter and define discrete times tk = k∆t. An approximate total
variation is

TV(f,∆t) =
∑
tk<T

|f(tk+1)− f(tk)| .

(a) Show that if f “nice” (has continuous first and second derivatives,
say), then TV(f,∆t)→ TV(f) as ∆t→ 0.

(b) Let Xt be a standard Brownian motion. Show that

E[TV (X,∆t)] ≈ CT√
∆t
→∞ ,

as ∆t → 0. Evaluate CT . Hint, use the independent increments
property and the fact that Xtk+1

−Xtk is Gaussian with mean zero
and known variance.

Part b suggests that the total variation of Brownian motion is infinite.
We will see that this is true.

Computing assignment

Task 1. Download the Python code IntegrationDemo.py and run it. You
should get Z ≈ 2. Check that this is the right answer. Check that the code also
gives the right answer for n = 4.

Task 2. Download the Python code HistogramDemo.py and the picture
HistogramDemoCheck.pdf. Run the code and see that the picture it makes is
the same as the picture you downloaded. Note that the error bar is estimated as
in exercise 2 above. Show that if ∆x is too small for a given m then the density
estimate is poor. Choose ∆x and m so that the error is not visible in the plot.
First you need to take ∆x so small that the integration error from exercise 1 is
not visible. Then you need to take m so large that the error bar cannot be seen
either. Note that the code uses n for the variable we call m.

Task 3. Modify HistogramDemo.py so that the random variable is called R
(instead of X) and the number of samples is called m. Add a parameter n to
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the code and write some code that generates a sample R by generating n inde-
pendent standard normals and computes R as above. Plot a histogram and the
density calculated from exercise 3 with Z calculated from IntegrationDemo.py.
If you do everything right, the histogram will fit the theoretical density. Modify
the plot so that n appears in the plot title.
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