Stochastic Calculus, Courant Institute, Fall 2019 http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2019/index.html Jonathan Goodman, October, 2019

Final exam practice

Information

- The final exam is Monday, December 16 in room 109 from 7:10 to 9pm.
- The exam starts promptly at 7:10, don't be late.
- You are allowed one standard size $(8\frac{1}{2}'' \times 11'')$ sheet of paper with any information you like. No other information or electronics are allowed.
- Write all answers in one or more blue books provided. Hand in only the blue books.
- Write your name on each blue book and number them (e.g. 1 of 1, 2 of 3 etc.)
- You will receive 20% credit for question if you write nothing.
- Anything you do write may be counted against you if it is wrong.
- Cross out anything you think is wrong. If you have two answers, the wrong one will count against the right one.
- On multiple choice or true/false questions, give a few words or sentences of explanation. You may lose points even with a correct answer, if it isn't explained.

Practice questions

True/False

- 1. Let X and Y be random variables with some joint distribution, if X and Y are both random variables, then (X, Y) is a two dimensional Gaussian.
- 2. If X is a random variable with $\mathbb{E}[X^2] < \infty$, then $\mathbb{E}[X^4] < \infty$.
- 3. If X_t is a diffusion process and $\frac{d}{dt}E[X_t] = 0$, then X_t is a martingale.
- 4. If $S_{1,t}$ and $S_{2,t}$ are geometric Brownian motions, then $S_t = S_{1,t} + S_{2,t}$ is a geometric Brownian motion.
- 5. If $W_{1,t}$ and $W_{2,t}$ are independent Brownian motions, then the product rule (Leibniz rule)

$$d[f(W_{1,t}) g(W_{2,t})] = [df(W_{1,t})] g(W_{2,t})$$

Multiple choice

- 1. Suppose L is the generator of a diffusion process and p(x) is a PDF Which of the following is true"
 - (a) If g = Lp, then $g(x) \ge 0$ for all x
 - (b) If g = Lp, then $\int_{\mathbb{R}^d} g(x) dx = 0$.
 - (c) If $g = L^*p$, then $g(x) \ge 0$ for all x.
 - (d) If $g = L^* p$, then $\int_{\mathbb{R}^d} g(x) dx = 0$.
- 2. Suppose $W_{1,t}$ and $W_{2,t}$ are independent standard Brownian motions. Which of the following processes is not a martingale
 - (a) $X_t = W_{1,t} + W_{2,t}$
 - (b) $X_t = W_{1,t}^3 3tW_{1,t}$
 - (c) $X_t = W_{1,t}W_{2,t}$
 - (d) $X_t = W_{1,t}^2 + W_{2,t}^2$.

Full answer questions

1. Suppose diffusion without drift: $dX_t = b(X_t)dW_t$. Use this formula to show that

$$Y_t = \int_0^t X_s dX_s$$

is a martingale. Use this to evaluate $Y_t = \frac{1}{2}X_t^2 + Q_t$, where Q_t is an integral involving b.

2. If X_t is defined by

$$X_t = \int_0^t s^2 W_s dW_s$$

calculate $\operatorname{var}(X_t)$.

- 3. Suppose $X_t = W_t^3$ and W_t is standard Brownian motion. Write the SDE that X_t satisfies.
- 4. Suppose that $X_t = W_{t^2}$ and W_t is standard Brownian motion. Show that X_t is a diffusion and find its infinitesimal mean and variance.
- 5. Suppose that an A-particle does Brownian motion starting from $X_0 = x > 0$, until the first time $X_t = 0$. At that time it is converted into a B-particle. Define the probability densities p(x,t) and q(x,t) of for the A-particle and the B-particle. For example,

$$\Pr(A - \text{particle } X_t \in [x, x + dx]) = p(x, t)dx.$$

- (a) Write the PDE and the flux boundary condition satisfied by p(x, t).
- (b) Write a formula for q(x, t).

6. Let X_t satisfy the SDE $dX_t = -\gamma X_t dt + dW_t$. Define

$$f(x,t) = \mathcal{E}_{x,t} \left[e^{X_T} \right] \; .$$

- (a) Write the PDE that f satisfies.
- (b) Write the final condition.
- (c) Find a solution of the form $f(x,t) = e^{a(t)x+b(t)}$. Find formulas for a(t) and b(t).
- 7. Suppose $dX_t = adt + \sigma dW_t$. Let H(x) = 1 if x > 0 and H(x) = 0 if x < 0. Find a formula for

$$f(x) = \mathbf{E}\left[\int_0^\infty e^{-rt} H(X_t) dt \mid X_0 = x\right] \;.$$

- 8. Let X_t be a diffusion process with PDF p(x,t) that satisfies the SDE $dX_t = (1 X_t)dt + \sigma X_t^2 dW_t$.
 - (a) Let p(x,t) be the PDF of X_t . Write the partial differential equation that p satisfies.
 - (b) Let G(y, x, s) be the transition density, which means

$$\Pr(a \le X_{t+s} \le b \mid X_t = y) = \int_a^b G(y, x, s) dx \; .$$

Write an integral formula for p(x, t + s) in terms of $p(\cdot, t)$ and G.

9. Let W_t be a standard Brownian motion. As in class, define $\Delta t_m = 2^{-m}$ and $t_k = k\Delta t$ for a positive integer m. Define

$$V_t^{(m)} = \sum_{t_k < t} |W_{t_{k+1}} - W_{t_k}|$$
.

- (a) Calculate the mean and variance of $V_t^{(m)}$.
- (b) Show that, almost surely,

r

$$\lim_{n \to \infty} \sqrt{\Delta t_m} V_t^{(m)} = A(t) , \text{ as } m \to \infty .$$

This includes showing that the limit exists. Find a formula for A(t).

10. Suppose W_t is a standard one dimensional Brownian motion. Define

$$X_t = \int_0^t W_s ds \; .$$

Calculate the mean and variance of X_t^2 .

11. Suppose (X_t, Y_t) is a two component diffusion process with infinitesimal mean

$$E[X_{t+\Delta t} \mid \mathcal{F}_t] = X_t + Y_t \Delta t + o(\Delta t)$$
$$E[Y_{t+\Delta t} \mid \mathcal{F}_t] = Y_t - X_t \Delta t + o(\Delta t)$$

and infinitesimal variance/covariance

$$\operatorname{var}(X_{t+\Delta t} \mid \mathcal{F}_t) = (1 + X_t^2) \Delta t + o(\Delta t)$$
$$\operatorname{cov}(X_{t+\Delta t}, Y_{t+\Delta t} \mid \mathcal{F}_t) = X_t Y_t \Delta t + o(\Delta t)$$
$$\operatorname{var}(Y_{t+\Delta t} \mid \mathcal{F}_t) = Y_t^2 \Delta t + o(\Delta t)$$

- (a) Write an SDE whose solutions have these infinitesimal means and covariances.
- (b) Describe an algorithm for making approximate sample paths for this process.
- (c) Suppose we know $X_0 = 0$ and $Y_0 = 1$. Describe an algorithm for estimating $E[X_T^2]$.
- 12. Let N_t be the counting function for the Poisson arrival process with intensity λ . That is, $N_t = \# \{T_k < t\}$. Let $g = (g_0, g_1, \ldots)$ be a sequence.
 - (a) Calculate

$$\lim_{t\downarrow 0}\frac{g_{N_t+k}-g_k}{t} \ .$$

- (b) Write an expression for Lg, where L is the generator of the Poisson arrival process.
- (c) Suppose

$$f(k,t) = \mathbf{E}\left[\frac{1}{N_T + 1} \mid N_t = k\right]$$

Write a family of differential equations that these numbers satisfy.

- (d) What extra information besides the differential equations do you need to determine the numbers f(t, k) completely?
- 13. Suppose $W_t = (W_{1,t}, \ldots, W_{n,t})$ is a standard Brownian motion in n dimensions. Define the *radial process* to be

$$R_t = \left(W_{1,t}^2 + \dots + W_{n,t}^2\right)^2$$
.

Show that R_t is a Markov process, calculate its infinitesimal mean and variance using Ito's lemma, find the SDE that R satisfies.