Final exam practice

Information

- The final exam is Monday, December 17 in room 109 from 7:10 to 9 pm .
- The exam starts promptly at 7:10, don't be late.
- You are allowed one standard size $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ sheet of paper with any information you like. No other information or electronics are allowed.
- Write all answers in one or more blue books provided. Hand in only the blue books.
- Write your name on each blue book and number them (e.g. 1 of 1,2 of 3 etc.)
- You will receive 20% credit for question if you write nothing.
- Anything you do write may be counted against you if it is wrong.
- Cross out anything you think is wrong. If you have two answers, the wrong one will count against the right one.
- On multiple choice or true/false questions, give a few words or sentences of explanation. You may lose points even with a correct answer, if it isn't explained.
- Suppose that W_{t} is standard Brownian motion and $d X_{t}=W_{t}^{2} d t$. Evaluate the quadratic variation

Practice questions

True/False

1. If X_{t} is a stochastic process with $\mathrm{E}\left[\Delta X \mid \mathcal{F}_{t}\right]=O(\Delta t)$, then X_{t} is a diffusion process.
2. If X_{t} is a Markov process and $Y_{t}=f\left(X_{t}\right)$ for some function $y=f(x)$, then Y_{t} is a Markov process.
3. If X_{t} is stochastic process with $\mathrm{E}[\Delta X]=O(\Delta t)$ and $\mathrm{E}\left[\Delta X^{2}\right]=O(\Delta t)$, then $\operatorname{var}(\Delta X)=\mathrm{E}\left[\Delta X^{2}\right]+O\left(\Delta t^{2}\right)$.
4. If X is a random variable with $\mathrm{E}\left[X^{2}\right]<\infty$, then $\left.\mathrm{E}|X|\right]<\infty$.
5. If W_{t} is Brownian motion, then $X_{t}=\int_{0}^{t} f(s) d W_{s}$ is Gaussian. Here $f(s)$ is a fixed deterministic function.
6. If W_{t} is Brownian motion, then $X_{t}=\int_{0}^{t} a\left(W_{s}\right) d W_{s}$ is Gaussian. Here $a(w)$ is a fixed deterministic function.
7. If X_{t} is a Markov process then $Y_{t}=\int_{0}^{t} a(s) d X_{s}$ is a Markov process.
8. If X_{t} is a diffusion process and $\frac{d}{d t} E\left[X_{t}\right]=0$, then X_{t} is a martingale.
9. If $S_{1, t}$ and $S_{2, t}$ are geometric Brownian motions, then $S_{t}=S_{1, t}+S_{2, t}$ is a geometric Brownian motion. Hint: this does not depend on whether S_{1} and S_{2} are correlated, as long as the correlation coefficient has $|\rho|<1$.

Multiple choice

1. Suppose $W_{1, t}$ and $W_{2, t}$ are independent standard Brownian motions. Which of the following processes is not a Markov process
(a) $X_{t}=W_{1, t}+W_{2, t}$
(b) $X_{t}=W_{1, t}^{3}-3 t W_{1, t}$
(c) $X_{t}=W_{1, t} W_{2, t}$
(d) $X_{t}=W_{1, t}^{2}+W_{2, t}^{2}$.
2. Suppose $W_{1, t}$ and $W_{2, t}$ are independent standard Brownian motions. Which of the following processes is not a martingale
(a) $X_{t}=W_{1, t}+W_{2, t}$
(b) $X_{t}=W_{1, t}^{3}-3 t W_{1, t}$
(c) $X_{t}=W_{1, t} W_{2, t}$
(d) $X_{t}=W_{1, t}^{2}+W_{2, t}^{2}$.
3. Suppose X_{t} is a diffusion process with infinitesimal mean a_{t} and infinitesimal variance μ_{t}. Which hypotheses imply the formula

$$
\int_{0}^{t} X_{s} d X_{s}=\frac{1}{2} X_{t}^{2}-\frac{1}{2} t ?
$$

(a) $\mu_{t}=1$ and $a_{t}=0$
(b) $a_{t}=0$
(c) $\mu_{t}=1$
(d) The formula is true for any diffusion.

Full answer questions

1. If X_{t} is defined by

$$
X_{t}=\int_{0}^{t} s^{2} W_{s} d W_{s}
$$

calculate $\operatorname{var}\left(X_{t}\right)$.
2. Suppose $X_{t}=W_{t}^{3}$ and W_{t} is standard Brownian motion. Write the SDE that X_{t} satisfies.
3. Suppose that $X_{t}=W_{t^{2}}$ and W_{t} is standard Brownian motion. Show that X_{t} is a diffusion and find its infinitesimal mean and variance.
4. Suppose that

$$
\sum_{k=1}^{\infty} \sigma_{k}^{2}<\infty
$$

Suppose that X_{k} is a family of random variables, not necessarily independent, with mean zero and variance σ_{k}^{2}. Show that the following infinite sum exists and is finite almost surely.

$$
\sum_{k=1}^{\infty} X_{k}^{2}
$$

5. Suppose $S_{1, t}$ and $S_{2, t}$ are geometric Brownian motions that satisfy $d S_{1, t}=$ $\sigma_{1} S_{1, t} d W_{1, t}$ and $d S_{2, t}=\sigma_{2} S_{2, t} d W_{2, t}$. Suppose $W_{1, t}$ and $W_{2, t}$ are possibly correlated Brownian motions with correlation coefficient ρ. Show that $X_{t}=S_{1, t} S_{2, t}$ is a martingale if and only if $\rho=0$.
6. In the setting of problem $\frac{\text { basket }}{5}$, find an expression for $\mathrm{E}\left[S_{1, T} S_{2, T}\right]$. Do this by writing a formula for $S_{1, T}$ in terms of $W_{1, T}$ and $S_{2, T}$ in terms of $W_{2, T}$. Then express $W_{1, T}$ and $W_{2, T}$ as linear combinations of two independent mean zero Gaussians (there are many ways to do this). Then use the fact that $\mathrm{E}\left[e^{\mathcal{N}(a, v)}\right]=e^{a} e^{\frac{1}{2} v^{2}}$
7. Suppose that W_{t} is standard Brownian motion and $d X_{t}=W_{t}^{2} d t$. Evaluate the quadratic variation

$$
Q_{t}=\lim _{n \rightarrow \infty} \sum_{t_{k}<t}\left(X_{t_{k+1}}-X_{t_{k}}\right)^{2}
$$

Here $\Delta t=2^{-n}$ and $t_{k}=k \Delta t$.
8. Suppose $d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t}$. Evaluate $f(s, t)=\mathrm{E}\left[S_{t}^{p}\right]$. Assume $t \leq T$ and $p>0$. Write the backward equation and final condition. Assume the solution has the form $f(x, t)=A(t) s^{p}$, find the differential equation A satisfies, and then find a formula for $A(t)$ using the final condition.
9. Suppose $d X_{t}=a d t+\sigma d W_{t}$ (Brownian motion with constant drift). Let τ be the hitting time when $X_{t}=0$ or $X_{t}=1$ for the first time Find $f(x)=E_{x, 0}[\tau]$. Assume $a \neq 0$ and $0 \leq x \leq 1$. Write the differential equation f satisfies and its boundary conditions. Find the solution. (This takes some calculation, possibly more than an actual exam question.)
10. Suppose X_{t} is standard Brownian motion. Find the value function

$$
f(x, t)=\mathrm{E}_{x, t}\left[e^{\int_{t}^{T} W_{s} d s}\right]
$$

Write the backward equation that f satisfies. Show that this has a solution of the form $f(x, t)=e^{A(t) x+B(t)}$. Write the differential equations that A, and B satisfy and the values $A(T)$ and $B(T)$. Use these differential equations to find formulas for $A(t)$ and $B(t)$.
11. Consider the two equation model

$$
\begin{aligned}
d X_{t} & =M_{t} X_{t} d t+\sigma_{X} d W_{1, t} \\
d M_{t} & =-\gamma X_{t} d t+\sigma_{M} d W_{2, t}
\end{aligned}
$$

The initial conditions are $X_{0}=0$ and $M_{0}=0$. Suppose that W_{t} and W_{t} are independent Brownian motions. Explain the backward equation approach to calculating $V(T)=\mathrm{E}\left[X_{T}^{2}\right]$. Define a value function. Give the backward equation and final conditions for this value function. Explain how to use this value function to evaluate $V(t)$.
12. Suppose X_{t} is a three dimensional Brownian motion with $\left|X_{0}\right|>r$. Suppose $\tau=\min \left\{t\right.$ so that $\left.\left|X_{t}\right|=r\right\}$.
(a) Show that $\left|X_{t}\right|^{-1}$ is a martingale, if $\left|X_{t}\right|>0$.
(b) Show that

$$
\operatorname{Pr}(\tau<\infty)=\lim _{n \rightarrow \infty} \operatorname{Pr}(\tau<n)
$$

(c) Show that, for all $n, \operatorname{Pr}(\tau \leq n) \leq \frac{r}{\left|X_{0}\right|}$. State the martingale theorem involved and explain how it applies.

