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1 Introduction

Suppose you have a stochastic model of something and you want numbers –
specific facts about what your stochastic process does. You can get numbers by
solving a backward or forward equation (depending on what you want to know),
or by simulation. This lesson describes the basic tools for direct simulation of
stochastic models.

For example, suppose Xt is a diffusion process that satisfies the SDE

dXt = a(Xt)dt+ b(Xt)dWt . (1) eq:sde

The goal is to evaluate the expectation

f = Ex,0
[
V (X[0,T ])

]
. (2) eq:f

The “observable” V could be a final time function like V (X[0,T ]) = X2
T , or it

could be path dependent as in V (X[0,T ]) =
∫
r(Xt)dt.

Monte Carlo1 analysis means finding numbers that themselves are not ran-
dom but are related to a random process. and Xt is a diffusion process with a
given SDE. We use f̂ for a Monte Carlo simulation. We have the computer cre-

ate create a large number of sample paths for the SDE, called X
(n)
t for t running

from 0 to T and n running from 1 to N . The direct Monte Carlo estimate is

f̂ =
1

N

N∑
n=1

V (X
(n)
[0,T ]) . (3) eq:de

This is like random sampling in statists. As in statistics, it is important to have
error bars, which give an idea how accurate f̂ is likely to be.

Most diffusion processes cannot be simulated exactly. Instead, they are sim-
ulated approximately using a time step ∆t. The Euler Maruyama formula (often
just called the Euler formula) is a time stepping method to create approximate

sample paths. Define tk = k∆t and X
(n,∆t)
k to be an approximation to X

(n)
tk

.
We want the approximate process to have increments with approximately the
right mean and variance over a time step of size ∆t. This can be done using

X
(n,∆t)
k+1 = X

(n,∆t)
k + a(X

(n,∆t)
k )∆t+ b(X

(n,∆t)
k )

√
∆tZ

(n)
k . (4) eq:EM

1Monte Carlo is the capital city of the country Monaco. The country is so small and the city
so big that most of Monaco is inside Monte Carlo. Monte Carlo is famous for gambling and
car racing. Using random numbers in computation is like using random numbers in gabmling,
which is how computing with random numbers came to named after a center of gambling.
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The numbers Z
(n)
k are independent standard normals

Z
(n)
k ∼ N (0, 1) , i.i.d. . (5) eq:Zk

This equation has the property that

E
[
X

(n,∆t)
k+1 −X(n,∆t)

k | Fk
]

= a(X
(n,∆t)
k )∆t (6) eq:tsm

An exact path satisfies this only approximately

E
[
X

(n)
tk+1
−X(n)

tk
| Ftk

]
= a(X

(n)
tk

)∆t+O(∆t2) . (7) eq:tsma

Direct simulation often is inaccurate because most paths make a small con-
tribution to the sum (

eq:de
3). For example, suppose dSt = σStdWt, S0 = 1, and we

want 1 = E1,0[ST ]. We saw in an earlier lesson that St → 0 almost surely as
t→∞, so most paths have ST � 1, There are rare outliers with large ST � 1
that make 1 = E1,0[ST ] possible.

You can get more accurate Monte Carlo estimates by cheating. The technical

term is importance sampling. Instead of generating X
(n)
t from your diffusion

process and finding the sample mean, you simulate a different process Y
(n)
t .

You find a quantity called the likelihood ratio, L(Y[0,T ]]. This has the property
that

EX [V (XT )] = EY
[
V (YT )L(Y[0,T ])

]
. (8) eq:is

The importance sampling procedure is to generate many Y sample paths and
use the importance sampling estimate

f̂is =
1

N

N∑
n=1

V (Y
(n)
T )L(Y

(n)
[0,T ]) . (9) eq:isMC

The trick is to find a process Y so that makes the important events more likely.
The method is more complicated, but the answer can be much more accurate.

The formula (
eq:is
8) is a relationship between two random processes called a

change of measure. For diffusions, the change of measure formula is described
by Girsanov’s theorem. The theorem tells us that one diffusion can be related
to another in the sense of (

eq:is
8) if and only if they have the same noise term. For

diffusions it is possible to change the infinitesimal mean but not the infinitesimal
variance. When two processes have the same infinitesimal variance, the formula
for L is Girsanov’s formula.

The quantity L in the change of measure formula (
eq:is
8) is the called the Radon

Nikodym derivative. The L is for likelihood ratio. If the processes Xt and Yt
had probability densities, L would be the ratio. But probabilities in path space
do not have probability densities, though many quantities related to paths do
have densities (such as the density of Xt at a specific time t and the hitting time
density). Instead, probabilities for diffusion processes are given by probability
measures.
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A probability measure assigns probabilities directly to events, rather than
using a probability density. Suppose X ∈ R is a random variable with u(x) for
its probability density. Suppose A ⊆ R is some event. In probability, an event
is just a set of outcomes. For example, the event that 0 ≤ X ≤ 1 is represented
by the set A = [0, 1]. If there is a probability density, then integration gives the
probability of an event:

Pr(A) =

∫
x∈A

u(x) dx .

In abstract probability, the probabilities of events are given without using a
probability density. A system of probabilities P (A) for all “reasonable” events
A is called a probability measure if it has some natural properties of probabili-
ties and is continuous (technically, countably additive) in a certain sense. It is
possible that two probability measures are related by a likelihood ratio even if
they are not given by probability densities. The Girsanov theorem for diffusions
is one of those cases.

2 Direct simulation and Monte Carlo

Suppose X is some kind of random object, like a random path for instance, and
V (X) is a function of the path, and that we want to know

f = E[V (X) ] .

Suppose that we are able to create samples. For now, this means independent
copies X(n) with the same distribution as X. In more sophisticated Monte
Carlo, it may be impossible to make independent samples – take the Courant
Institute class on Monte Carlo Methods and pay attention to Markov chain
Monte Carlo (MCMC) if you’re interested. For diffusion processes it is usually
impossible to create paths with the X distribution exactly. Instead we make
approximate paths using Euler’s method (

eq:EM
4). But, for now, forget these pieces

of reality and suppose the X(n) have exactly the desired distribution and that
they are exactly independent.

The direct estimator (
eq:de
3) is a Monte Carlo method for estimating f = E[V ].

The next step is the direct Monte Carlo error bar, which estimates the accuracy.
For now, we use the simplified notation

Vn = V (X(n)) .

The direct error bar comes from the central limit theorem applied to the direct
estimate (

eq:de
3). If N is large, then the sample mean f̂ is approximately normal

with mean f and variance

var
(
f̂
)

= σ2
f̂

=
1

N
var(V ) =

1

N
σ2
V . (10) eq:mv
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Let ξ ∼ N (0, 1) be a standard normal random variable. Then f̂ approximately
(for large N) has a representation

f̂
≈∼ f +

√
σ2
V√
N

ξ .

We turn this around for the error bar as

f
≈∼ f̂ +

√
σ2
V√
N

ξ .

Don’t worry that ξ seems to have the wrong sign. If ξ is standard normal, then
−ξ also is standard normal. This doesn’t say what the error is, but it does say

that the error size is on the order of

√
σ2
V√
N

. This is the one standard deviation

error bar. A Monte Carlo result would be expressed as

f = f̂ ±
√
σ2
V√
N

. (11) eq:eb

For example, an estimate might be f = 2.48± .08. This indicates that your best
guess is 2.48 and that it’s probably off by something like .8.

Usually, you have to estimate the standard deviation σV from the data. The
number you need to estimate is

σ2
V = E

[
(V − f)

2
]
.

A natural Monte Carlo estimate is

σ̂2
V =

1

N

N∑
n=1

(
Vn − f̂

)2

. (12) eq:se

Some people suggest 1
N−1 instead of 1

N , because it gives an unbiased estimate,
which means the expected value of the estimate is the actual value:

σ2
V = E

[
1

N − 1

N∑
n=1

(
Vn − f̂

)2
]
.

This is true, but the standard deviation is what goes in the error bar, not
the variance. The square root is a nonlinear function and our estimate of the
standard deviation is

σ̂V =

√
σ̂2
V .

If U is a positive random variable that is truly random, then

E
[√

U
]
6=
√

E[U ] .

Therefore, if E
[
σ̂2
V

]
= σ2

V , then E[σ̂V ] 6= σV .
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Moreover, the difference between 1
N and 1

N−1 is unimportant unless N is
smaller than it should be for Monte Carlo. The bias of an estimator of a quantity

A is E
[
Â−A

]
. The bias of σ̂2

V or σ̂V is order 1
N , while the difference |σ̂V − σV | is

on the order of 1√
N

. Correcting for the bias won’t make the estimate significantly
more accurate.

The big picture is the philosophy against spending lots of time making error
bars precise. It is unprofessional to give Monte Carlo results without error bars.
And it is a waste of time to make error bars very precise. They are a rough
estimate of the error. “Don’t put error bars on error bars.”2

Summary of direct simulation Monte Carlo The problem is to estimate
E
[
V (X[0,T ])

]
. Here, X is the solution to an SDE (

eq:sde
1). You choose computational

parameters ∆t, the time step for Euler’s method (
eq:EM
4), and N , the number of

paths. You generate N paths. The total work is the number of paths times
the number of time steps per path, which is W = NT/∆t. You compute
Vn = V (X(n) and average (

eq:de
3). You compute the sample variance (

eq:se
12) and take

the square root for the sample standard deviation. You report the estimate f̂
and the error bar σ̂V /

√
N .

2.1 Histograms

A histogram is a graph of bin counts. Let X(n) be samples of a random variable.
This could be from computer simulation or actual samples of something. A bin
is an interval on the x axis whose bin size is the length ∆x. We write Bk for
bin k. It is convenient to take xk as the center of Bk, so

Bk =
[
xk − 1

2∆x, xk + 1
2∆x

]
.

It is convenient in the mathematical discussion (but not in the code) not to
specify the range of k or the location of x0. In the code, there must be a largest
and smallest k. The bin count Nk is the number of sample points in Bk:

Nk = #
{
n | X(n) ∈ Bk

}
.

A histogram is a plot of the bin counts.
Sometimes you plot the raw bin counts, but often you don’t. You may be

making the histogram to estimate the probability density X(n) ∼ u(x). In this
case the probability of a sample landing in bin k is (exactly or approximately)

Pr
(
X(n) ∈ Bk

)
=

∫
Bk

u(x) dx ≈ ∆xu(xk) .

If you have N samples altogether, the expected count for bin k is N times the
probability for one sample:

E[Nk] = NPr
(
X(n) ∈ Bk

)
≈ N∆xu(xk) .

2A piece of advice from Malvin Kalos, one of the masters of Monte Carlo from his genera-
tion.
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Some algebra turns this into an estimator of the probability:

û(xk) =
Nk

∆xN
. (13) eq:ue

It may be more informative to plot û(xk) instead of the raw counts Nk. The
difference is only a scaling of the y axis.

3 Importance sampling

Direct simulation simulation Monte Carlo is an impractical way to estimate
E[V (X)] in many real applications. This is because values of X that contribute
most to the expectation are very unlikely. Typical X values have much smaller
V (X) than the mean.

Geometric Brownian motion illustrates this. Consider the simple case of
µ = 0, σ = 1:

dSt = StdWt , S0 = 1 .

This is a martingale so for all t > 0,

E[St] = 1 .

But the solution formula is St = eWt− 1
2 t. For simulation, we can take Z ∼

N (0, 1) and take Wt =
√
tZ (this has the same distribution as Wt, which is

normal mean zero, variance t). This puts the formula is a more explicit form

St ∼ e
√
t Z− 1

2 t .

In order to have St ≥ 1 (the mean value), we have to have

√
t Z − 1

2
t ≥ 0 .

This is

Z ≥ 1

2

√
t .

For example, with t = 36 it’s Pr(Z > 3) ≈ .0013. If you simulated 1000
independent samples Zk, the expected number of hits (samples with Zk > 3,
Sk,36 > 1), is 1.3. The other 996.7 samples would be “wasted”, contributing
little to the expected value.

Importance sampling means changing the probability rules to make the im-
portant X values more likely – putting more X values in the region that is
important for the expectation. This has to be done in a way that doesn’t
change the expectation value. If X has probability density u(x), the trick is to
find a different density v that puts samples where you want them, and then to
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take into account the fact that you used the wrong density. Here is the algebra:

Eu[V (X)] =

∫ ∞
−∞

V (x)u(x) dx

=

∫ ∞
−∞

V (x)
u(x)

v(x)
v(x) dx

=

∫ ∞
−∞

V (x)L(x) v(x) dx , L(x) =
u(x)

v(x)

Eu[V (X)] = Ev[V (X)L(X)] , L(x) =
u(x)

v(x)
. (14) eq:cmlr

In finance people imagine that there is a “u−world” where X ∼ u and a
“v−world” where X ∼ v. In the u−world, the number you want is E[V (X)].
In the v−world, it’s E[V (X)L(X)]. A typical value of V or X in the u−world
may be very different from typical values in the v−world. The likelihood ratio
L(x) makes the expectations equal.

The measure of success in importance sampling is variance reduction. You
hope that the v−world variance is less than the original u−world variance.
These variances are

σ2
u(V (X)) , and σ2

v(V (X)L(X)) .

In practical estimation, you can estimate the variances and see whether you
decreased the variance. If you choose a bad strategy, then fancy v−world im-
portance sampling can have a higher variance than direct u−world simulation.

Take the geometric Brownian motion example. If we want to make large Z
more likely, we can sample from a Gaussian with a positive mean Z ∼ N (µ, 1).
The likelihood ratio for this is (the random variable is z in this example)

L(z) =
u(z)

v(z)

=

1√
2π
e−

1
2 z

2

1√
2π
e−

1
2 (z−µ)2

= exp

[
z2 − 2xµ+ µ2 − z2

2

]
= e−zµe

1
2µ

2

.

The importance sampling formula is

EN (0,1)[V (Z)] = e
1
2µ

2

EN (µ,1)

[
V (Z) e−µZ

]
. (15) eq:isG

On the right side, we “pull” Z to the right by giving a mean µ > 0. We
“discount” the larger Z values with the discount factor e−µZ . If you did this
with V = 1, the expected value would go down because most of the samples
would be discounted. The outside factor e

1
2µ

2

fixes this effect, giving the exact
answer even if V = 1.
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4 Probability measure

The probabilities of paths that we use in stochastic calculus cannot be defined
directly using probability densities. The expected values of random variables
cannot be found directly by integration with respect to a probability density.
The issue is that there is nothing in path space that is like dx in Rn. Instead
of integration on Rn with respect to dx, we integrate in probability space with
a probability measure dP .

The first step is to define abstract probability measure and integration (ex-
pected value) with respect to a general (abstract) probability measure. The
second step is to define the specific probability spaces and probability measures
that are relevant for stochastic calculus. These are path space and versions
of Wiener measure. This Stochastic Calculus class is not a course in abstract
measure theory and integration any more than an ordinary Calculus class is a
course on mathematical analysis. Many mathematical details are missing, as
they are in an ordinary calculus class. Still, abstract probability measures seem
to be the simplest way to understand some important topics such as importance
sampling and change of measure for diffusion processes.

Probability measure is an abstract concept that forms the basis for most
modern probability theory. Here is a superficial description of abstract measure
based probability theory. A good graduate probability theory book has a more
complete discussion. In the abstract approach, a “probability” consists of three
things:

• A probability space, Ω. We think of this as the set of all possible “out-
comes”. A specific outcome is ω ∈ Ω.

• A σ−algebra, F , of subsets of Ω. We think of A ∈ Ω as an event, which is
a set of outcomes whose probability we know. We say A is measurable if
A ∈ F .

• A probability measure, P , which is a number P (A) ∈ [0, 1]. We think of
P (A) as the probability that the event A happens. In terms of random
outcomes, P (A) = Pr(ω ∈ A).

Probability theory requires F to be “complete” in a sense similar to the
completeness of the real numbers. This makes the algebra a σ−algebra. The
measure P must be “continuous” in the sense that the probability of a limit
event is the limit of the probabilities. This is called countable additivity. The
term complete in probability does not refer to the σ−algebra property, but to
something more technical that is irrelevant in this course.3

3A probability is complete if any set of outcomes that “should” have probability zero does
have probability zero. More technically, if A ∈ F and P (A) = 0, and if B ⊆ A, then B ∈ F
and P (B) = 0. This may seem natural, but it is inconvenient in the common setting where we
have two probability measures P1 and P2 with different events of probability zero. It is hard
to have F1 = F2 (the same measurable events), when this happens. (Comment for experts:
For Ω = [0, 1], this corresponds to using Borel measure, which is not complete, rather than
the complete Lebesgue measure.)
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Here are more details of σ−algebra and probability measure. It may help to
look ahead to the examples if this seems too vague. Suppose F is a collection of
subsets of Ω. We want A ∈ F to mean “we know whether ω ∈ A”. We say F is
an algebra if it is closed under the operations of intersection (and), union (or),
and complement (not). Closed means that doing one of the operations does not
take you out of F . For example, suppose A1 ∈ F and A2 ∈ F . If we know
whether ω ∈ A1 and whether ω ∈ A2, then it is reasonable to assume that we
know whether ω ∈ A1 ∩ A2. The intersection A1 ∩ A2 is the set of outcomes
in A1 and in A2. The union A1 ∪ A2 is the set of outcomes in A1 or in A2, or
both. The complement Ac1 is the set of outcomes not in A1. If we know whether
ω ∈ A1, then we know whether ω ∈ Ac1, which is the same as ω /∈ A1. Ordinary
algebra (ordinary arithmetic, actually) has binary operations +, ∗ (operations
on two numbers), and a uniary operation − (taking the negative of a number).
The algebra of sets has binary operations union (∪) and intersection (∩) and
the uniary operation of complement (A→ Ac).

There may be subsets A ⊆ Ω so that we don’t know whether ω ∈ A or not.
Not every set is measurable. Two particular sets must be measurable, A = Ω
and A = ∅ (the empty set is the set with no elements). This is natural from the
”what we know” interpretation. We know whether ω ∈ Ω (it is). We require
that an algebra of sets satisfy the axiom Ω ∈ F . We know whether ω ∈ ∅ (is
isn’t). We require that ∅ ∈ F . Note that if Ω ∈ F , then the complement axiom
(A ∈ F =⇒ Ac ∈ F) implies that ∅ = Ωc ∈ F .

A set algebra is a σ−algebra if it is closed under infinite sequences of union or
intersection operations. If An ∈ F is an infinite sequence of measurable events,
then the infinite union

A =

∞⋃
n=1

An

also has A ∈ F . This is something like completeness of the real number system.
Suppose ak > 0 is a sequence of real numbers whose sum is bounded in the
sense that

n∑
k=1

ak < C

for all n (there is a C > 0 so that ... ). In the real number system, there is an
S so that

S =

∞∑
k=1

ak .

This is not true in the rational numbers (fractions with integers on the top and
bottom). For example, the Taylor series for ex gives

e =

∞∑
k=0

1

k!
.

All the terms on the left are rational numbers, but the infinite sum, e = 2.718..
is not a rational number. The rational numbers are not complete because a
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limit or an infinite sum of rational numbers may not be a rational number. A
σ−algebra is a family of sets that includes set limits (unions and intersections
of infinite sequences of sets).

A measure is a number P (A) associated to each measurable A ∈ F . For
a probability measure, 0 ≤ P (A) ≤ 1 for every A ∈ F . This represents the
probability that the event A happens, which is the probability that ω ∈ A. A
measure must be additive, which means that if A1 ∈ F and A2 ∈ F , and if
A1 ∩A2 = ∅ (A1 and A2 are disjoint), then P (A1 ∪A2) = P (A1) +P (A2). This
implies that if A ⊂ B then P (A) ≤ P (B). This is because B = A∪ (Ac∩B, and
A is disjoint from (Ac ∩B), and therefore P (B) = P (A) + P (Ac ∩B) ≥ P (A).

A measure is countably additive if it respects limits in the following way.
Suppose A1 ⊂ A2 · · · is an “increasing” sequence of events. The “limit” event
is the event is

A =

∞⋃
n=1

An .

The definition of countable additivity is that the probability of the limit event
is the limit of the probabilities:

P (A) = lim
n→∞

P (An) . (16) eq:ca

From this abstract point of view, to make a probability model of random
something you have to say what sets are measurable events and say how the
probability of these events is defined. The usual way to define F is to define
some sets that you want to be measurable (whose probability you want to define)
and then say that F is the smallest σ−algebra that contains these events. This
F will contain all the sets you said, and all limits of those, and limits of those,
and so on. This σ−algebra is generated by the sets you give. Any collection of
sets generates a σ−algebra.

Measure from a probability density. A probability density on R defines
a probability measure with Ω = R as its measure space. The σ−algebra is
generated by all intervals [a, b]. The σ−algebra that contains these also contains
infinite intervals. There are many ways to see this including

[0,∞) =

∞⋃
n=0

[n, n+ 1] =

∞⋃
n=0

[0, n] .

It contains “open” intervals (intervals that do not contain the endpoints) such
as (note: (−∞, a]c = (a,∞), etc.)

(a, b) = (−∞, a]c ∩ [b,∞)c .

This σ−algebra is called the Borel sets.
If u is a probability density and A is a Borel set, then the probability measure

is

P (A) =

∫
A

u(x) dx .
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This definition works (we are not going to show) because it makes sense if A is
an interval and because the integral respects limits.

Combining measures. Suppose P1 and P2 are two probability measures with
the same probability space Ω and the same σ−algebra F . Suppose that q1 ≥ 0
and q2 ≥ 0 and q1 + q2 = 1. Then there is a combined probability measure
P (A) = q1P1(A) + q2P2(A). You can check that P is countably additive and
has P (Ω) = 1 as a probability measure should. You can think of ω ∼ P as first
tossing a coin – with probability q1 you take ω ∼ P1 and otherwise you take
ω ∼ P2. You can take combinations of n measures, if you take measure Pk with
probability qk. This would be P (A) =

∑
k qkPk(A). You can even take integral

combinations, integrating Pt with respect to a probability density u(t). That
would be P (A) =

∫
Pt(A)u(t) dt.

Singular measures. Some measures on Ω = R do not have a probability
density. A measure like that is called singular, or, more properly, singular with
respect to Borel measure. The most singular measure on R is a point mass, or
delta measure. This is the measure that has all it’s probability at the point
x = a and no probability at any other point. This is called δa. It is defined by
δa(A) = 1 if a ∈ A and δa(A) = 0 if a /∈ A. This measure is countably additive,
and checking this fact clarifies something about countable additivity. Suppose,
for example An is the interval

An =

[
1

n
, 1

]
.

This is an increasing family of events because An ⊂ An+1. All of them have
δ0(An) = 0 because 0 /∈

[
1
n , 1
]
. The limit (the union) of the An is

A = (0, 1] =

∞⋃
n=1

An .

Note that 0 /∈ A, because (0, 1] does not include the left endpoint 0. The limit
of the numbers 1

n is 0, but the union of the sets An does not include zero.
The Dirac delta function, which is written δ(x), is an informal way to express

the singular measure δ0. This function is infinite at x = 0 and zero elsewhere

in a way that
∫ b
a
δ(x)dx = 1 if a < 0 < b and zero if b < 0 or a > 0. The

point mass probability measure makes sense in any dimension and even in any
probability space. Integral combinations of point mass measures give other
singular measures.

For example, in 2d (Ω = R2), define a(t) = (cos(t), sin(t)) and consider the
probability measure

P =
1

2π

∫ 2π

0

δa(t) dt .

This is a uniform density on the unit circle. If A is the event that (x, y) is in the
“first quadrant” (i.e., x > 0 and y > 0), then P (A) = 1

4 , because one quarter of
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the unit circle is in the first quadrant. IF A ⊆ R2 is any measurable event, then

P (A) = Pr( (cos(t), sin(t) ) ∈ A) .

This singular measure “lives” on the unit circle.

Continuous path space, diffusion measures. For this example, a path is a
continuous function Xt defined for 0 ≤ t ≤ T . The space of paths like this is
written C([0, T ]). The probability space is Ω = C([0, T ]). This is often called
path space.

There can be several ways to generate a desired σ−algebra. The standard
one for diffusions can be generated by events that depend on X at some time
t ∈ [0, T ], such as

X[0,T ] ∈ A if a ≤ Xt ≤ b .

By taking intersections we get events selected by criteria like

a1 ≤ Xt1 ≤ b1 and a2 ≤ Xt2 ≤ b2 .

Taking intersections of an infinite sequence (because it’s a σ−algebra) we can
get the event4

Xt ≥ 0 for all t ∈ [0, T ] .

5 Expectation and integration

In abstract probability, the expected value is the integral with respect to the
probability measure. This section describes abstract measure-theoretic inte-
gration with respect to an abstract probability measure. Abstract probability
measure is useful, in part, because this abstract integral is easy to define. Sup-
pose Ω is a probability space with F and P , and that V (ω) is a function we
want to integrate. The integral we need to define is

EP [V ] =

∫
Ω

V (ω) dP (ω) . (17) eq:ai

When Ω = R (and ω is x), and u(x) is a probability density, the abstract
expectation (

eq:ai
17) is the same as

Eu[V ] =

∫ ∞
−∞

V (x)u(x) dx .

The abstract and concrete expectations should agree in the concrete setting.

4It is possible to put the positive rational numbers in into a single list. For example, you
can make a list (q1, q2, q3, · · · ) = (1/1, 2/1, 2/2, 3/1, 3/2, 3/3, · · · ). It’s OK for the list to have
duplicates (like 1/1 = 2/2). Take the event An to be Xqn ≥ 0. The intersection of the
sequence A = ∩An has X ∈ A if and only if Xq ≥ 0 for every positive rational number q. But
Xt is a continuous function of t, so this implies that Xt ≥ 0 for every t.
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The two expressions for expectation are related through the informal identity

dP (x) = u(x)dx . (18) eq:Pu

This says that the probability of a little bit of x space around x is equal to
u(x) multiplied by the length of that little bit. Earlier, we expressed this as
Pr(x ≤ X ≤ x+ dx) = u(x)dx. In view of this, many people feel it’s more
natural to write P (dx) than dP (x). Either way, (

eq:Pu
18) expresses the probability

measure P in terms of the “natural” measure, usually called Lebesgue5 measure.
For this class, the point of abstract probability measures is that there is no
natural measure like dx to help define the probability measure for diffusions.
There is a natural dx in R or Rn, but not on C([0, T ]). Diffusion measure is a
probability measure without a probability density.

Think of finding the expected value of a function V (x) when the random
variable X ∼ u(x) is one dimensional with probability density u. The expecta-
tion is the area “under” the graph of a function V (x)u(x),

E[V ] = I =

∫ ∞
−∞

V (x)u(x) dx .

The Riemann integral approach is to divide the x−axis into pieces of size ∆x.
An x−point xk = k∆x has an approximate piece of area Ak = ∆xV (xk)u(xk).
The ∆x approximation to the total area is

IR,∆x =
∑
k

∆xV (xk)u(xk) .

The Riemann integral is the limit

IR = lim
∆x→0

IR,∆x .

Measure theoretic approach to integration (outlined below) was invented be-
cause the limit is problematic if V is a “general” function (not continuous, not
monotone, not the sum continuous and/or monotone functions).

The Riemann approach to integration has another disadvantage for general
measure spaces: there is no analogue of little x intervals of length ∆x, if you
are integrating over a general probability space Ω. The trick to avoid this is
to consider little intervals of length ∆v on the y−axis instead. The v−points,
which are vk = k∆v, divide the v−axis into small pieces of height ∆v. Define
events

Ak = {k∆y ≤ V < (k + 1)∆y} .

The approximation V (ω) ≈ v(x) is accurate with an error less than ∆v in Ak.
Therefore, the part of the expectation/integral over Ak is approximately

vkP (Ak) .

5After the French mathematician who participated in developing measure theory, pro-
nounced “luh-beg”.

13



The ∆v approximation to (
eq:ai
17) comes from adding up these approximate inte-

grals:

Ia,∆v =
∑
k

vkP (Ak) . (19) eq:aai

The measure-theoretic expectation/integral is the limit as ∆v → 0.
It is “easy” to show that the limit (

eq:aai
19) exists. The first step is to make sure

the approximations are defined, which is the hard part if there is a hard part. A
function V (ω) is called measurable if sets defined by inequalities are measurable

Lv = {ω | V (ω) < v} , Mv = {ω | V (ω) ≤ v} . (20) eq:me

Measurable means that Lv ∈ F and Mv ∈ F for all v. The hypothesis Lv ∈ F ,
informally, is that P (V < v) is well defined. If the probabilities of the events,
V < v and V ≤ v are not defined, then (in this theory), E[V ] is not defined
either. Strict inequality, P (V < v) can be different from non-strict inequality,
P (V ≤ v) if P is a delta measure, or if the random variable V is constant a lot
of the time.

In earlier lessons we replaced the general limit ∆t→ 0 with the specific limit
∆t = 2−n, with n→∞. We use that philosophy here and define ∆v = 2−n and
take n→∞. With this trick, the step from n to n+ 1 means dividing an event
Ak into two disjoint pieces:

Ak = Bk ∪ Ck , Bk ∩ Ck = ∅ ,

with

Bk =
{
vk ≤ V < vk + 1

2∆v
}
, Ck =

{
vk + 1

2∆v ≤ V < vk+1

}
.

Note that the event V = vk+ 1
2∆v (if V lands exactly on the boundary between

Bk and Ck) is assigned to Ck and is not in Bk. When you go from n to n+ 1,
the contribution from Ak becomes the sum of contributions from Bk and Ck.
The result changes a little:

vkP (Ak) = vk [P (Bk) + P (Ck)]
n→n+1−→ vkP (Bk) + (vk + 1

2∆v)P (Ck) .

The n + 1 contribution is larger (technically, not smaller). Therefore the ap-
proximate integral (

eq:aai
19) increases (doesn’t decrease), but not by much (the last

step uses
∑
P (Ck) ≤ 1):

Ia, 12 ∆v =
∑
k

vkP (Bk) + (vk +
1

2
∆v)P (Ck)

≤ Ia,∆v +
1

2
∆v
∑
k

P (Ck)

≤ Ia,∆v +
1

2
∆v .

14



We have a sequence of approximations satisfies (writing n for ∆vn = 2−n)

|Ia,n+1 − Ia,n| ≤ 2−n .

We saw in an earlier lesson that
∑

2−n <∞ implies that

E[V ] =

∫
Ω

V (ω)dP (ω) = Ia = lim
n→∞

Ia,n (21) eq:aid

exists.
This definition can also be given in terms of simple functions. The indicator

function of an event D ⊆ Ω is

1D(ω) =

{
1 if ω ∈ D
0 if ω /∈ D .

The integral of an indicator function, hich is its expected value if ω ∼ P , should
be ∫

Ω

1D(ω)dP (ω) = E[ 1D] = P (D) .

A function W (ω) is a simple function if it takes only finitely many values. This
is the same as saying there are events Dj ⊆ Ω and numbers wj so that

W (ω) =

M∑
j=1

wj1Dj
(ω) .

The integral of a simple function should be∫
W (ω)dP (ω) =

M∑
j=1

wj

∫
Ω

1Dj
(ω)dP (ω) =

M∑
j=1

wjP (Dj) .

If V ≥ 0 is any measurable function, and if W is a simple function with W (ω) ≤
V (ω) for all ω ∈ Ω, then we should have∫

Ω

V (ω)dP (ω) ≥
∫

Ω

W (ω)dP (ω) .

The definition (
eq:aid
21) is equivalent to∫

Ω

V (ω)dP (ω) = sup

∫
Ω

W (ω)dP (ω) ,

over all simple functions W ≤ V . On the right, sup means supremum. This is
like maximum except that the supremum may not be attained.6 The approxi-
mations (

eq:aai
19) are integrals of simple functions

W =
∑

vk1Ak
.

6Suppose S is some collection of numbers. The supremum is the largest number you can
get as a limit of numbers s ∈ S. It is a theorem in mathematical analysis that if S is bounded
(there is some t with s ≤ t for all s ∈ S), then S has a supremum. For example, the supremum
of the numbers 1− 1

n
is 1, which is not attined because 1− 1

n
< 1 for all n. If S is not bounded

we say the supremum is ∞.
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It often happens that ∫
Ω

V (ω)dP (ω) =∞ .

In this case we say the integral diverges. If the integral is finite, we sometimes
say V is integrable. This is not to be confused with the term measurable, which
refers to the level sets of V .

If V has both negative and positive values, we write V+(ω) = max(V (ω), 0)
and V−(ω) = |V (ω)− V+(ω)| for the positive part and negative part of V (some
people define the negative part without |·| to be negative). If V+ and V− are
integrable (finite integrals), then we say that V is integrable and define the
integral as ∫

Ω

V (ω)dP (ω) =

∫
Ω

V+(ω)dP (ω)−
∫

Ω

V−(ω)dP (ω) .

The condition that V+ and V + − are integrable is the same as the condition
that |V | is integrable.

In probability language, suppose X is a random variable. A mathematical
probabilist would say that the expected value of X exists if

E[ |X|] <∞ .

The expected value is
µX = E[X] .

The Kolmogorov strong law of large numbers says that if |X| is integrable, and
if Xn are independent “copies” of X (independent with the same probability
distribution), then the sample means converge to µX almost surely. The sample
means are

Sn =
1

n

n∑
k=1

Xk .

The strong law says

Sn → µX as n→∞ almost surely .

The hypothesis |X| <∞ is crucial. Consider the Cauchy random variable with
u(x) = 1

π
1

1+x2 . It may seem that E[X] = 0 by symmetry, but

E[|X|] =
2

π

∫ ∞
0

x

1 + x2
dx =∞ .

The sample means of a Cauchy random variable do not converge at all (a home-
work exercise).
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6 Abstract change of measure

Importance sampling with diffusions needs a change of measure formula to re-
place (

eq:cmlr
14). The formula (

eq:cmlr
14) relies on probability densities, which don’t exist

for path space probability measures. We describe change of measure for dif-
fusions in two stages. This section describes the very general abstract Radon
Nikodym theorem. Suppose P and Q are two probability measures with the
same probability space Ω and σ−algebra F . This says when it is possible to
find a “likelihood ratio” function L(ω) so that

EP [V (ω)] = EQ[V (ω)L(ω)] . (22) eq:apcm

The condition is that measure P is absolutely continuous with respect to Q
(definition below). It is written P � Q. If Q is also absolutely continuous with
respect to P , which is Q � P , then we say P and Q are equivalent measures.
“Equivalent” may be an unfortunate term for this relationship because P and
Q may be quite different from each other even though they are equivalent in
this sense.

We motivate the definition of absolutely continuity of measures, P � Q
with the problem of hypothesis testing in statistics. This concept is covered in
most beginning statistics classes. The abstract question is: you have a sample
ω ∈ Ω and you want to decide whether ω ∼ P or ω ∼ Q. More concretely, the
sample space (as probability spaces are called in statistics) Ω may be sequences
of numbers that come from a set of experiments or observations. For example,
ω might be n height measurements of n randomly chosen students in a class.
Then there is a null hypothesis, H0, which is the P “story”, and an alternative
hypothesis, H1, which is the Q story. A story is a probabilistic description or
model of how the data are generated. Saying ω ∼ P is the same as accepting
the null hypothesis, while saying ω ∼ Q is rejecting the null hypothesis in favor
of the alternative hypothesis. Hypothesis testing is usually uncertain. The
statistician thinks it is likely that ω ∼ P or ω ∼ Q, but cannot be absolutely
sure. The statistical terms confidence and power refer to the probabilities of
saying Q when P is the right answer and P when Q is the answer. These
probabilities may be small, but they’re not zero.

If you had an infinite amount of data, or if some measurements could be
made exactly (mathematical idealizations that may be appropriate in some sit-
uations), then it might be possible to create a hypothesis test that is completely
reliable. A hypothesis test is equivalent to an event A ⊆ Ω so that you say P
if ω ∈ A and Q if ω /∈ A. Whatever your criterion is, there is a set of out-
comes ω that get classified as P , which we call the event A. It the P test is
completely reliable, then P (A) = 1 and Q(A) = 0. If there is such an A, then
we say measures P and Q are completely singular with respect to each other.
We sometimes write P ⊥ Q for measures completely singular with respect to
each other. The symbol ⊥ is for things that are perpendicular (orthogonal) to
each other. We use the ⊥ for measures even though there is no angle or inner
product between measures.
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There are many examples of singular measures in finite dimensions. For
example, a delta mass is singular with respect to a Gaussian probability dis-
tribution, or to any probability distribution given by a probability density. If
u(x) and v(x) are probability densities with u(x) = 0 for x < 0 and v(x) = 0
for x > 0, then the corresponding probability measures are completely singular.
The interesting examples in path space are more subtle than these examples.

There may be a hypothesis test for measures P and Q that sometimes is
completely reliable. That is, there may be an event A so that P (A) > 0 but
Q(A) = 0. If ω ∈ A, then we are completely certain (the technical term is almost
sure) that ω ∼ P because there is zero probability that ω ∈ A if ω ∼ Q. For
example, suppose Ω = R, P corresponds to a Gaussian and Q corresponds to
an exponential random variable. If x < 0, then we know x is not an exponential
(exponential random variables are always positive). If x > 0 we cannot rule out
exponential or Gaussian.

We say P � Q, (P is absolutely continuous with respect to Q) if, for any
measurable event A ∈ F ,

Q(A) = 0 =⇒ P (A) = 0 . (23) eq:acm

Measures P and Q are equivalent if this relationship goes both ways. That is,
for any A ∈ F ,

P (A) = 0 ⇐⇒ Q(A) = 0 .

Any two Gaussian measures in finite dimensions are equivalent in this sense.
The Radon Nikodym theorem says that if Q � P , then there is a function

L(ω) so that the change of measure formula (
eq:apcm
22) holds for “any” measurable

function V . The event condition (
eq:acm
23) is a necessary condition for the likelihood

ratio to exist. Suppose A is an event with Q(A) = 0 and P (A) > 0. Take
V (ω) = 1A(ω). For indicator functions like this,

EP [1A(ω)] = P (A) > 0 ,

and

EQ[1A(ω)L(ω)] =

∫
Ω

1A(ω)L(ω) dQ(ω)

=

∫
A

1A(ω)L(ω) dQ(ω) .

You can check in the definition of the abstract integral with respect to a prob-
ability measure that if Q(A) = 0, then for any function V ,∫

A

V (ω)dQ(ω) = 0 .

Therefore, the change of measure formula (
eq:apcm
22) would be

P (A) =

∫
A

1A(ω)L(ω) dQ(ω) = 0 .
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In simpler terms, you can’t “blow up” a set of measure 0 to a set of positive
measure using a likelihood ratio.

The hard part about the Radon Nikodym theorem is showing that if Q �
P then there is a change of measure “likelihood ratio” function L. In math
jargon, the “obvious” necessary condition (

eq:acm
23) is also a sufficient condition.

The likelihood ratio L is also called the Radon Nikodym derivative because of
the formal derivation that imitates the real derivation in Section 3.

EP [V ] =

∫
Ω

V (ω)dP (ω)

=

∫
Ω

V (ω)
dP (ω)

dQ(ω)
dQ(ω)

= EQ[V L] , L(ω) =
dP (ω)

dQ(ω)
.

You may see the formal experssion

L(ω) =
dP (ω)

dQ(ω)
. (24) eq:fd

The construction of L works by finding set A where L ≈ λ by finding the biggest
set A so that if B ⊆ A then P (B) ≈ λQ(B), which is something like the formal
derivative formula (

eq:fd
24).

7 Change of measure in diffusions

The change of measure theorem for diffusions is called Girsanov’s theorem. It
says, roughly, that diffusion measures (diffusion processes) P and Q are equiva-
lent if they have the same noise. The formula for L, when L exists, is Girsanov’s
formula. A less complete version of this is called the Cameron Martin formula.
I am not sure exactly what Girsanov did that Cameron and Martin did not do.

Suppose there are diffusions labelled P and Q given by

EP [ ∆X | Ft] = aP (Xt)∆t+O(∆t2)

EP

[
(∆X)

2 | Ft
]

= vP (Xt)∆t+O(∆t2)

EQ[ ∆X | Ft] = aQ(Xt)∆t+O(∆t2)

EQ

[
(∆X)

2 | Ft
]

= vQ(Xt)∆t+O(∆t2) .

A change of measure formula would be (the random outcome ω is the path
X[0,T ])

EP
[
V (X[0,T ])

]
= EQ

[
V (X[0,T ])L(X[0,T ])

]
.

Recall the quadratic variation of a diffusion process

Mt = lim
∆t→0

[∑
tk<t

(
Xtk+1

−Xtk

)2]
.
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We saw that

Mt =

∫ t

0

v(Xt) dt . (25) eq:qvi

As a reminder, this comes from E
[

(∆X)
2 | Ft

]
= v(Xt)∆t + O(∆t2). You

substitute for
(
Xtk+1

−Xtk

)2
the expected value, and you get

Mt = lim
∆t→0

∑
tk<t

v(Xtk)∆t+O(∆t2) .

and (this is the Riemann integral)

∑
tk<t

v(Xtk)∆t+O(∆t2) →
∫ t

0

v(Xt) dt .

We justified replacing ∆X2 by its mean by calculating the variance with ∆t > 0
and seeing that this variance goes to zero as ∆t→ 0. The variance of the sum is
a double sum, and (this was the main step) the off diagonal terms in the double
sum are zero.

The quadratic variation formula (
eq:qvi
25) explains why vP = vQ is a necessary

condition for P � Q. Suppose you have a path X[0,T ] and you want to now
whether it’s a P diffusion or a Q diffusion. You calculate Mt, which is a function
of the path. The limit exists almost surely. That means, almost surely you get
(
eq:qvi
25) with v = vP or v = vQ. Usually, if vP 6= vQ, then the path integrals will

be different. If the path integrals are different, then each one must be either vP
or vQ. Of course, it is possible that vP (x) 6= vQ(x) only for x < 0, say. If that
happens, then we can’t tell whether X[0,T ] ∼ P or X[0,T ] ∼ Q unless Xt < 0
for some t ∈ [0, T ]. That would mean that some paths are distinguishable
(the ones with Xt < 0 at some point) and some are not. In real problems,
if vP (x) 6= vQ(x), then the integrals

∫
vP (Xt)dt and

∫
vQ(Xt)dt are different

almost surely. For example, if σP 6= σP in Ornstein Uhlenbeck processes or in
geometric Brownian motion, then the quadratic variation integrals are different
almost surely. This is the easy part of Girsanov’s theorem.

The hard part is showing that if vP = vQ then P � Q. This is done by
constructing the change of measure function, the “likelihood ratio” L(X[0,T ]).
The formula for L involves two integrals, a stochastic integral and a Riemann
integral. The formula is complicated enough that it seems better to do it in
the special case of constant noise: vP = vQ = 1. We will simplify even more
by taking the Q process to have zero drift. This is a typical mathematician’s
point of view: if you can transform aP to aQ and also aQ to aR, then you can
transform aP to aR. It may be simpler to do the aP → aR transformation in
two steps if aQ is simpler.

We come at last to the technical part. Suppose the P process is

dXt = a(Xt)dt+ dWt . (26) eq:Pp
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We write a instead of aP because there is no aQ in this discussion to confuse it
with. The Q process is just

dXt = dWt . (27) eq:Qp

The strategy would be to compute the PDF for P and Q then use the likelihood
ratio (

eq:cmlr
14) to find L. That doesn’t work (as we said before) because P and

Q don’t have probability densities. The don’t have densities because the path
space Ω = C([0, T ]) is infinite dimensional.

We get around this by making finite dimensional approximations to C([0, T ]).
The finite dimensional approximations have probability densities un(~x) for P
and vn for Q. The densities un and vn do not have limits as n → ∞, but
the ratio Ln = un

vn
does. We use approximations to the true densities (see

below). A rigorous proof based on these approximations would take quite a few
pages. Fortunately, once we have the Girsanov formula, it is easy to check it
directly using the Ito calculus. We used a similar strategy in deriving backward
equations. There was a non-rigorous but clear derivation followed by a more
rigorous but less clear verification of the formula.

As before, take ∆t = 2−n and take time tk = k∆t. The discrete path
~x ∈ RM will be the observations of the continuous path at observation times tk.
We use an abuse of notation, which may be preferable to the more complicated
notation we would have to use otherwise.

xk = xtk , tk < T , M = max {k with tk < T} . (28) eq:ot

The vector of observations is ~x = (x1, . . . , xM ). (Notation for these paragraphs:
x ∈ R is a number. x[0,T ] is a path. ~x ∈ RM is a discrete approximation to the
path consisting of M observations. xk is one of the components of ~x. xt is one
of the values of x[0, T ].)

The PDF for the vector of observations is constructed using the transition
probabilities and the Markov property. If x1, x2, x3, . . . is any sequence of ran-
dom variables, then the PDF is given by (denoting any PDF or conditional PDF
by u)

u(x1, x2, . . .) = u(x1) · u(x2|x1) · u(x3|x2, x1) · · · · .

The Markov property implies that u(x3|x1, x2) = u(x3|x2), etc. When talking
about diffusions, we used G(x, y,∆t) for the transition density, which gives the
PDF for X = Xt+∆t conditional on Y = Xt. Therefore

u(x1, x2, . . . , xM ) = G(x2, x1,∆t) ·G(x3, x2,∆t) · · · · ·G(xM , xM−1,∆t) . (29) eq:pdG

We don’t have an exact formula for the transition densities, but we have an
approximate formula given by the Euler Maruyama approximation

Xt+∆t ≈ Xt + a(Xt)∆t+ b(Xt)
√

∆tZt .

Here, Zt ∼ N (0, 1) is a standard normal that is independent of all the other
standard normals used to make an approximate path. This implies that Xt+∆t
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(conditional on Ft) is approximately normal with mean Xt+a(Xt)∆t and vari-
ance v(Xt)∆t = b2(Xt)∆t. In view of this, we use the approximation

G(xk+1, xk,∆t) ≈
1√

2π∆t
e−

1
2∆t [xk+1−(xk+a(xk)∆t)]2 . (30) eq:Ga

We get the probability density of the sequence of observations by multiplying
together the M transition densities:

u(x1, . . . , xM ) ≈ 1

(2π∆t)
M/2

M∏
k=1

e−
1

2∆t [xk+1−(xk+a(xk)∆t)]2 .

We multiply out the quadratic in the exponent,

1

2∆t
[xk+1 − xk − a(xk)∆t]

2
=

1

2∆t
(xk+1−xk)2−a(xk)(xk+1−xk)+

∆t

2
a(xk)2

This yields a more helpful version of the total density in terms of three expo-
nential sums:

u(~x) ≈ 1

Z
e−

∆t
2

∑M
k=1

(xk+1−xk)2

∆t2 (31) eq:es1

×e−
∑M

k=1 a(xk)(xk+1−xk) (32) eq:es2

×e+ −∆t
2

∑M
k=1 a(xk)2

. (33) eq:es3

Each of the terms in this product formula have a story. The prefactor is

1

Z
with Z = (2π∆t)

M
2 .

The first exponential factor is all there would be for pure Brownian motion
without drift. If Xt were a differentiable function of t, then we would have

dX

dt
= Ẋt ≈

Xt+∆t −Xt

∆t

This would make the sum a Riemann sum approximation to the integral

∆t
∑
tk<T

(xk+1 − xk)2

∆t2
≈
∫ t

0

(ẋt)
2
dt .

The limit ∆t→ 0 gives the sort-of formula for the Brownian motion part, which
is

u(x[0,T ]) =
1

Z
e−

1
2

∫ T
0
ẋ2
tdt . (34) eq:Fi

This doesn’t make mathematical sense because Z → 0 as ∆t→ 0 and M →∞.
More seriously, it doesn’t make sense because, almost surely ẋ2

t = ∞ for all t.
For example

Xt+∆t −Xt ∼ ∆t =⇒ (Xt+∆t −Xt)
2

∆t2
∼ 1

∆t
→∞ .
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Nevertheless, the Feynman integral formula (
eq:Fi
34) is helpful for understanding

many features of Brownian motion. It gives, for example, a simple way to
estimate the probability of some kinds of unlikely events. Formulas don’t have
to be literally true in the mathematical sense to be useful.

The second sum (
eq:es2
32) is

M∑
k=1

a(xk)(xk+1 − xk)

We saw that when ∆t→ 0, this converges almost surely to the Ito integral∫ T

0

a(Xt)dXt .

In the same sense, the third sum (
eq:es3
33) converges to the Riemann integral∫ T

0

a2(Xt) dt .

The PDF for the Q diffusion (
eq:Qp
27) is the same as (

eq:es1
31), (

eq:es2
32), (

eq:es3
33) except that

the sums (
eq:es2
32) and (

eq:es3
33) are zero because a = 0. The 1

Z prefactor and the part
from (

eq:es1
31) cancel. This leaves

Ln(~x) =
un(~x)

vn(~x)

= e−
∑M

k=1 a(xk)(xk+1−xk)e−
−∆t

2

∑M
k=1 a(xk)2

.

We take the limit n→∞, which gives M →∞ and ∆t→ 0, and we get

L(x[0,T ]) = e−
∫ T
0
a(xt)dxte

1
2

∫ T
0
a(xt)

2dt . (35) eq:G

This is Girsanov’s famous change of measure formula.
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