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Lesson 2, Diffusion processes

1 Introduction

A diffusion process is a kind of random process. We let Xt be the value of the
process at time t. Most interesting diffusions have more than one component:
Xt = (X1,t, . . . , Xd,t) ∈ Rd. You can picture Xt as the location of a particle
moving at random, but not completely randomly. The motion is governed by
a deterministic component called drift or infinitesimal mean, and by a random
noise. We specify a diffusion process by giving the drift and the noise level, both
as a function of Xt. The model is a stochastic differential equation, or SDE. It
becomes an ordinary differential equation (ODE) if the noise coefficient is zero.
For an Ito type SDE, Xt is a martingale if the drift is zero.

This lesson discusses only the case d = 1, so Xt is just a number. A process
is a diffusion (diffusion process) if it has these properties

1. The time variable t is continuous. For convenience we often imagine that
the process starts at time t = 0 and is defined for every (real number)
t > 0.

2. It is a Markov process. This means that Xt0 determines the distribution
of Xt for t > t0 “completely”. The Markov property is explained in more
detail below.

3. Xt is a continuous function of t. There are no “jumps”.

Many random processes are modeled as diffusions, either exactly or approxi-
mately.

The Markov property has to do with conditional expectation and conditional
probability of the future of a path given its present and its past. The path over
an interval [t1, t2] (with t2 > t1) is denoted by X[t1,t2]. At time t1, the past is
the time interval [0, t1]. The “information” from the past consists of the path
X[0,t1]. The information of the present is the single value Xt1 . The Markov
property concerns the path in the future of t1. It is that the distribution of
X[t1,t2] conditional on the past is the same as the distribution conditional on the
present. The distribution conditional on X[0,t1] is the same as the distribution
conditional on Xt1 .

You specify a Markov process by giving its transition probability distribu-
tions. Suppose t2 > t1 and Xt is a Markov process. Write Y for Xt2 and X for
Xt1 . The probability density for Xt2 conditional on Xt1 is G(y, t2, x, t1). This
is a probability density in the y variable in the sense that

Pr(y ≤ Xt2 ≤ y + dy) = G(y, t2, Xt1 , t1) dy .
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It may be thought of as the density for transitions

( Xt1 = x at time t1 ) −→ ( Y = Xt2 at time t2 near y ) .

In Lesson 1 we used Bayes’ rule for Brownian motion to write the joint density
for Xt at two times. The same reasoning applies here, except that the transition
density may depend on t1 and t2 separately, not just on the length of the time
interval t2 − t1. The result is

u2(x1, t1, x2, t2) = u(x1, t1)G(Xt1 , t2, Xt1 , t1) .

The joint density of Xt2 and Xt1 is equal to the marginal density of Xt1 mul-
tiplied by the conditional density of Xt2 given Xt1 . For times t1 < t2 < t3,
similar reasoning leads to

u3(x1, t1, x2, t2, x3, t3) = u(x1, t1)G(x2, t2, x1, t1)G(x3, t3, x2, t2) .

This is the joint PDF for the three values X1 = Xt1 . X2 = Xt2 and X3 = Xt3 .
If X is not a Markov process, this last formula is more complicated. The
“transition density” for X3 would depend on both X2 and X1.

In continuous time, we need something like the transition distribution for
time dt. We will see in future lessons that this is related to what is called the
generator of the process. For now, it suffices to say that for diffusion processes,
the time dt transitions are determined by what is called here the infinitesimal
mean and infinitesimal variance. The proper names for these are drift and
quadratic variation. The infinitesimal mean is defined by (slightly more formal
versions are given below)

E[Xt+dt − x | Xt = x] = a(x, t) dt . (1)

The infinitesimal variance is defined by

var[Xt+dt | Xt = x] = v(x, t) dt . (2)

There is a theorem like the central limit theorem that says that a diffusion
process is completely determined by its infinitesimal mean and variance.

Some Markov processes are not diffusions. Just Brownian motion is the
simplest diffusion, the Poisson arrival process is the simplest non-diffusion con-
tinuous time Markov process. The Poisson arrival process models random events
called “arrivals”. The number of arrivals from time zero to time t > 0 is Nt.
The probability of an arrival in (t, t + dt) is λ dt, with λ being the arrival rate
parameter. Arrivals in disjoint time intervals are independent. The time to the
first arrival has probability density λe−λt (we will see). This arrival process
satisfies (1) and (8) with a(x, t) = λ and v(x, t) = λ. The infinitesimal mean
and variance do not determine the process completely unless we also know that
the process is a diffusion.

A diffusion is a dynamic stochastic model of something. We interpret the
Markov property as saying that the model is “complete” in that the state of
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the system at time t, which is Xt, contains all the information about the past
that is relevant for predicting the future. The SDE that describes the diffusion
process is written in Ito form as

dXt = a(Xt) dt+ b(Xt) dWt . (3)

In this SDE, a(x) is the drift and b(x) is the noise coefficient. If b(x) = 0 (no
noise), this might be rewritten in more familiar ODE form as

dXt

dt
= a(Xt) . (4)

More general diffusions are not written in ODE form because Xt is not a differ-
entiable function of t even though Xt is a continuous function of t.

The dW in the noise term has two interpretations. One is as the “differential
increment” of Brownian motion.1 That is, dWt = Wt+dt−Wt. We saw in Lesson
1 that dWt is a Gaussian random that is independent of everything up to time
t. The mean is zero and the variance is dt. Therefore, the mean of b(Xt)dWt is
zero (because dWt is independent of Xt) and the variance is

var( b(Xt)dWt | Xt) = E
[
b(Xt)

2 (dWt)
2 | Xt

]
= b2(Xt) dt .

The infinitesimal variance of a diffusion is the square of the noise term in the
SDE.

The other interpretation does not connect the noise to Brownian motion. In
this interpretation, dWt is just a convenient way to write “mean zero, variance
dt, independent of whatever happened before time t”. The first interpretation
(the strong form is helpful in technical analysis of diffusion processes. The
second (the weak form), is more useful for modeling. In modeling, you are
interested in the process Xt on its own, and not in relation to some idealized
Brownian motion that is not part of the system you are modeling. In the strong
form, X is a function of W . In the weak form, X lives on its own.

Brownian motion itself is the simplest interesting diffusion. It was called
Xt in Lesson 1, but it is often called Wt to distinguish it from other diffusion
processes. Recall that standard Brownian motion is Gaussian with the properties

1. W0 = 0.

2. If t2 > t1, then E[Wt2 |Wt1 ] = Wt1 (the martingale property).

3. var[Wt2 −Wt1 ] = t2 − t1.

Brownian motion is a particularly simple Markov process in which the increment
is independent of the present and the past. The increment between time t1 and
time t (with t > t0) is ∆W = Wt −Wt1 . The increment of Brownian motion is
independent of W[0,t1]. The SDE that describes Brownian motion has zero drift
(a = 0) and constant noise coefficient b = 1.

1Brownian motion is also called the Wiener process, after MIT mathematician Norbert
Wiener. The notation Wt is for Wiener.
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The Ornstein Uhlenbeck process has a linear drift that seeks to return X to
zero and a constant noise:

dXt = −γXt dt+ σdWt . (5)

The mean reversion rate coefficient γ, and the noise coefficient σ are constants
of the model. The OU process is often a good model of a system with a stable
equilibrium that is subject to small outside disturbances. It was used by Einstein
as a model of the velocity of a small particle in a fluid, with Xt being the velocity
at time t. A moving particle will slow because of friction with the fluid, which is
modeled by −γX, the friction force is proportional to the velocity. The particle
also is subject to random forces caused by collisions from water molecules. In
Einstein’s simple model the amount of noise is constant, independent of time
and the speed of the particle. This is σdW .

Geometric Brownian motion models exponential growth (or decay) in the
presence of noise. It differs from the OU process in that the noise is proportional
to the level. It is defined by a growth rate parameter µ and a volitility parameter
σ.

dSt = µSt dt+ σSt dWt . (6)

Geometric Brownian motion is a simple model of the random price of a share of
stock through time. If there is no noise, then the stock is a simple exponential.
The noise is made proportional to the level so that the value of N “shared”
of stock doesn’t change under a “stock split”. A stock split is replacing each
share by two shares worth half the amount: n→ 2n, and S → 1

2S. This is our
first model with multiplicative noise, which means that b(x) is not a constant
but varies with x. The generic Xt is replaced by St (for “stock”) for geometric
Brownian motion.

This Lesson begins the discussion of diffusion processes. The next section
gives a more technical definition of the Markov property, drift and noise. The
main goal of this lesson is the partial differential equations (PDEs) related to
Xt, which are the backward equation and the forward equation.

2 Diffusions

It is a theorem (not proved in this course) that a diffusion process is determined
by the infinitesimal mean and infinitesimal variance. Infinitesimal mean is often
called drift and infinitesimal variance is called quadratic variation. “Information
about the past” of t is denoted Ft. The precise definition of Ft is not important
yet. The important thing here is that if A is anything determined by the path,
then

E
[
A|X[0,t1]

]
= E[A|Ft1 ] . (7)

Suppose dt > 0 is an infinitesimal increment of time.2 The corresponding
increment of the diffusion process is dXt = Xt+dt−Xt. The infinitesimal mean

2Mathematicians don’t like dt because dt is supposed to be smaller than any positive
number and yet not zero. As a mathematical fact, if Q ≥ 0 and Q is less than any posi-
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and variance defined above may be written

E[ dXt | Ft] = a(Xt, t) dt , E
[

(dXt)
2 | Ft

]
= v(Xt, t) dt .

The infinitesimal variance, v(x, t) is defined by

var[dXt|Ft] = v(Xt, t)dt . (8)

For more careful (but still not completely rigorous) mathematical work, we
define ∆t > 0 to be a small but not infinitely small increment of time and
∆Xt = Xt+∆t − Xt the corresponding small increment of X. We will derive
simple formal formulas involving differentials using more complicated formulas
involving ∆X and ∆t. For example, much of ordinary (deterministic) calculus
may be summarized by saying (dt)2 = 0 even though dt > 0. For example,

d(t2) = (t+ dt)2 − t2 = t2 + 2t dt+ dt2 − t2 = 2t dt (because dt2 = 0).

We might then divide by dt to get

d

dt
t2 = 2t .

Here’s the same thing done less informally with ∆t.

∆(t2) = (t+ ∆t)2 − t2 = 2t∆t+O(∆t2) .

Therefore

d

dt
t2 = lim

∆t→0

∆(t2)

∆t

= lim
∆t→0

[
2t∆t+O(∆t2)

∆t

]
= lim

∆t→0
[2t+O(∆t)]

= 2t .

The definition of Q = O(∆tp) is: there is an ε > 0 and a C > 0 so that
if ∆t ≤ ε then |Q| < C∆tp. We say that the quantity Q is “on the order of”
∆tp. We used two facts about “big Oh” orders. One is that if Q = O(∆tp) and
p > 1, then Q/∆t = O(∆tp−1). The other is that if R = O(∆tp

′
), with p′ > 0

then R→ 0 as ∆t→ 0. We write “O(∆tp)” instead of “Q, with Q = O(∆tp)”.
If you did not study mathematical analysis in college these definitions may
be confusing at first. But they do not get more complicated than this and
should quickly seem natural. You basically treat O(∆tp) as though it were ∆tp,

tive number, then Q = 0. Our dt is less formal – very small, positive, yet not zero. The
English/Irish philosopher George (Bishop) Berkeley mocked Newton’s infinitesimals as the
“ghosts of departed quantities”. “Departed” means dead; dt has died (gone to zero) and yet
lives on (isn’t zero).
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even though the truth is more complicated. In the above calculation, we used
O(∆t2)/∆t = O(∆t) and then O(∆t)→ 0 as ∆t→ 0.

In the ∆t framework, infinitesimal mean is

E[ ∆Xt | Ft] = a(Xt, t) ∆t+O(∆t2) . (9)

the infinitesimal variance is

var( ∆Xt | Ft) = v(Xt, t) ∆t+O(∆t2) . (10)

There is a simpler expression

E
[

(∆Xt)
2 | Ft

]
= v(Xt, t) ∆t+O(∆t2) . (11)

The formula (10) is equivalent to (11), because, if we assume 11), then

var( ∆Xt | Ft) = E
[

(∆Xt)
2 | Ft

]
− E[ ∆Xt | Ft]2

= E
[

(∆Xt)
2 | Ft

]
−
[
a(Xt, t)∆t+O(∆t2)

]2
= v(Xt, t)∆t+O(∆t2) .

Here we use more facts about “big Oh”. One is that ∆t + O(∆t2) = O(∆t).

Another is that (O(∆t))
2

= O(∆t2). The above calculation should convince
you that “big Oh” is a convenient way to reason about small quantities whose
exact size isn’t relevant.

The formula (11) may be interpreted as saying that ∆Xt is approximately
on the order of

√
∆t, because ∆X2 is, in the expected value, on the order of

∆t. If ∆X is on the order of ∆t
1
2 , then ∆X4 should be on the order of ∆t2.

The Poisson arrival process shows that this reasoning is flawed. In fact,

E[ ∆N | Ft] = λ∆t+O(∆t2) ,

E
[

(∆N)
2 | Ft

]
= λ∆t+O(∆t2) ,

E
[

(∆N)
4 | Ft

]
= λ∆t+O(∆t2) .

The first two seem fine, but the last one violated the reasoning. More on this
in the exercises.

Most of the time you can tell a diffusion process from another Markov process
fourth moments. A diffusion process has a fourth moment that follows the
informal reasoning:

E
[

(∆X)
4 | Ft

]
= O(∆t2) . (12)

For most purposes, particularly in this class, you reason about diffusions using
the infinitesimal mean (9), the infinitesimal square (11), which is equivalent
to the infinitesimal variance (10), and the fourth moment bound (12). Future
lessons will have more on the fourth moment bound.

6



2.1 Proofs with big Oh

The statement Q = O(P ) as ∆t→ 0 literally means that Q and P are functions
of ∆t and there is an ε > 0 and a C < ∞ so that |Q| ≤ CP if ∆t ≤ ε.
In a formula like A = B + O(P ) as ∆t → 0 the O(P ) is a quantity Q with
Q = O(P ). There can be more than one big Oh quantity in a formula, for
example A = B + O(P ) + O(R) as ∆t → 0. Here O(P ) represents a quantity
Q1 with Q1 = O(P ) and O(R) represents a Q2 with Q2 = O(R). A typical
application has P or R being powers of ∆t. Someone who has understood a
class in “Mathematical Analysis” (ε and δ proofs) will be able to reason with
big Oh. These examples are for people who haven’t taken such a class or are
rusty.
Example 1. Show that O(∆tp)/∆t = O(∆tp−1). A solution: Let P =
O(∆tp) be the quantity on the left and R = P/∆t. From the definition, there
is an ε > 0 and a C > 0 so that |P | ≤ C∆tp if ∆t ≤ ε. Therefore, if ∆t ≤ ε,
R ≤ C∆tp/∆t = C∆tp−1.
Example 2. Show that O(∆tp1)O(∆tp2) = O(∆tp1+p2). A solution: Call the
two functions P1 = O(∆tp1) and P2 = O(∆tp2). By the definitions, there is an
ε1 > 0 and a C1 so that |P1| ≤ C1∆tp1 if ∆t ≤ ε1. There also is an ε2 and
C2 for P2. Take ε = min(ε1, ε2). The min of two positive numbers is a positive
number. If ∆t ≤ ε then ∆t ≤ ε1 and ∆t ≤ ε2. Therefore |P1| ≤ C1∆tp1 and
|P2| ≤ C2∆tp2 . Therefore |P1, P2| ≤ C1C2∆tp1+p2 if ∆t ≤ ε. This proves that
|P1, P2| ≤ C∆tp1+p2 , with C = C1C2. Comment: Example 1 is a special case
of Example 2, with p2 = −1.
Example 3. Is it true that O(∆tp1)/O(∆tp2) = O(∆tp1−p2)? A solution: It’s
not true. If |P2| ≤ C2∆tp2 it might be that P2 is much smaller than this. For
example, ∆t2 = O(∆t). If P2 = ∆t2, and P1 = ∆t2, then P1/P2 is not order
p1 − p2 = 2 − 1 = 1. It is common to write P = O(∆tp) to imply that P is
about that size and not very much smaller. But this is not part of the “big Oh”
definition.
Example 4. Suppose that f(x) and f ′ and f ′′ are continuous functions of x.
Show that f(x) = f(0) + xf ′(0) +O(x2) as x→ 0. Comment: we use x instead
of ∆t as the variable that is going to zero. A solution: One form of the Taylor
series remainder formula is

f(x) = f(0) + xf ′(0) +
1

2
x2f ′′(ξ) , |ξ| ≤ x .

Here, we know there is a ξ but do not know its value. Since f ′′ is continuous,
there is a C so that

max
|x|≤1

|f ′′(x)| = C <∞ .

Take ε = 1 and use the C given.

2.2 Cauchy Schwarz inequality

Suppose A and B are two random variables. The Cauchy Schwarz inequality is

E[AB] ≤
√

E[A2] E[B2] . (13)
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The proof is a clever trick. For every real number t,

E
[

(A− tB)
2
]
≥ 0 .

If a random quantity is non-negative, then its expected value cannot be negative.
Calculating, we get

0 ≤ E
[
A2
]
− 2tE[AB] + t2E

[
B2
]
.

Since the right side is non-negative for every t, its minimum is non-negative.
Minimizing over t (differentiate with respect to t, set the derivative to zero,
solve for t), the minimum is achieved at

t∗ =
E[AB]

E[B2]
.

This gives

0 ≤ E
[
A2
]
− E[AB]

2

E[B2]
.

Finally, multiply by the non-negative quantity E
[
B2
]

and you get

E[AB]
2 ≤ E

[
A2
]

E
[
B2
]
.

The square root form of this is (13).
The Cauchy Schwarz inequality implies an inequality involving variance and

covariance. Suppose
A = E[A] , B = E[B] .

Replace A with A−A and B with B. The covariance is

cov(A,B) = E
[

(A−A)(B −B)
]
.

The Cauchy Schwarz gives

cov(A,B) ≤
√

var(A) var(B) .

This may be re-written in terms of the correlation coefficient between two ran-
dom variables:

corr(A,B) =
cov(A,B)√

var(A) var(B)

This is a dimensionless measure of the statistical relationship between A and
B. The Cauchy Schwarz inequality implies that

−1 ≤ corr(A,B) ≤ 1 .

Absolute number bounds make sense for correlation because it is dimensionless.
We are interested in the Cauchy Schwarz inequality here because of some-

thing technical we are about to do. There will soon be a Taylor series calculation
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up to order ∆X2 with an error that is of order ∆X3. We need to “bound” ∆X3

in terms of the second and fourth moments. For this, apply Cauchy Schwarz
with A = |∆X| and B =

∣∣∆X2
∣∣. The result is

E
[
|∆X|3

]
= E

[
|∆X| (∆X)

2
]

≤
√

E
[

(∆X)
2
]

E
[

(∆X)
4
]

If X is a diffusion process, then we can use the variance bound (11) and the
fourth moment bound (12), and some “big Oh calculations” to get

E
[
|∆X|3

]
=
√
O(∆t)O(∆t2) = O(∆t3/2) . (14)

3 Backward equation

Suppose V (x) is a payout function. The corresponding value function, f(x, t),
is defined for t ≤ T , by

f(x, t) = E[V (XT ) | Xt = x] = Ex,t[V (XT ) | Xt = x] . (15)

The terms “payout” and “value” come from financial applications, but the ideas
are more general than finance. The value function f depends on the payout
function V and also on the diffusion process X. The goal of this section is to
show that the value function satisfies the partial differential equation called the
backward equation

∂tf + a(x)∂xf +
1

2
v(x)∂2

xf = 0 . (16)

Be careful not to confuse the payout function V (x) with the infinitesimal vari-
ance v(x).

The derivation of the backward equation has two steps. The first step is the
tower property, also called the law of total probability. This allows us to express
the values f(x, t) in terms of the values f(x, t1) with t1 > t. The Markov
property also enters. It implies that

E[V (XT ) | Xt = x and Xt1 = y] = E[V (XT ) | Xt1 = y] = f(y, t1) . (17)

This leads to the equation

f(x, t) = Ex,t[ f(Xt1 , t1)] . (18)

The value function at time t is represented as the expected value of the value
function at a future time t1 > t.

The second step is to apply the tower property with t1 = t + ∆t and do
Taylor series calculations in ∆t. There is an increment ∆X corresponding to
the time increment ∆t. We will have to expand f to first order in ∆t and to
second order in ∆X. This is because E[∆X2] = O(∆t).
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The tower property is that the expected value of the expected value is the
expected value. Suppose (Y,Z) is a two dimensional random variable with a
joint PDF u2(y, z). Suppose V (z) is a payout function and g(y) is the condi-
tional expectation of V (Z) given that Y = y. Suppose f is the unconditional
expectation of V (Z). The tower property is

f = E[ g(Y )] . (19)

The overall expectation is the expected value of the conditional expectation.
this is a “tower” of expectations and conditioning.

Here are the formulas for (19). The marginal probability density for Y is

u1(y) =

∫
u2(y, z) dz .

The conditional density for Z given Y = y is

u(z|y) =
u2(y, z)

u1(y)
.

You can check that u(z, y) is a probability density in z for each y by integrating∫
u(z|y) dz =

1

u1(y)

∫
u2(y, z) dz =

u1(y)

u1(y)
= 1 .

The conditional expectation may be written in several ways:

g(y) = Ey[V (Z)] = E[V (Z) | Y = y] =

∫
V (z)u(z|y) dz .

The overall expectation is

f = E[V (Z)] =

∫ ∫
V (z)u2(y, z) dydz .

The tower property is that this is the expected value of g:

f = E[ g(Y )] =

∫
g(y)u1(y) dy .

We can verify this by substituting some of the above definitions:∫
g(y)u1(y) dy =

∫ ∫
V (z)u(zy)u1(y) dydz

=

∫ ∫
V (z)

u2(y, z)

u1(y)
u1(y) dydz

=

∫ ∫
V (z)u2(y, z) dydz .

We apply the tower property with Z = XT and Y = Xt1 . The starting value
Xt = x is fixed throughout. All these calculations assume that (are conditioned
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on) Xt = x. The conditional expectation, called g in the abstract calculations
above, is

g(y) = E[V (XT ) | Xt1 = y and Xt = x] .

The Markov property makes the second condition on the right irrelevant. Since
T is in the future of t1, which is in the future of t, once we know Xt1 = y, the
value of Xt is irrelevant for expectations involving XT . Therefore (this may be
the main step in the whole thing)

g(y) = E[V (XT ) | Xt1 = y] = f(y, t1) .

The equation (18) follows from this when we substitute the definition Y = Xt1 .
The second step is the Taylor calculations. Take t1 = t + ∆t and Xt1 =

x + ∆x. We expand f(x + ∆x, t + ∆t) in Taylor series about x and t. Error
“estimates”3 in Taylor series are usually “the first neglected terms”. Example 4
in the big Oh section is like that. It is also true, if you are careful, for functions
of more than one variable like f(x, t). If we assume that partial derivatives of
f up to third order are continuous, then

f(x+ ∆x, t+ ∆t) = f + ∆x ∂xf +
1

2
∆x2∂2

xf + ∆t ∂tf (20)

+O(|∆x|3) +O(∆t |∆x|) +O(∆t2) . (21)

The arguments x, t are left out of every term on the right on the top line (20).
We write, f for f(x, t), ∂tf for ∂tf(x, t), etc. One of the “first neglected terms”

is 1
6∆x3∂3

xf . This is on the order of |∆x|3. The other lowest order neglected
terms involve ∂2

t f and ∂t∂xf . They give the other two error contributions on
the second line (21).

We put the expansion (20) (21) into the tower property formula (18) with
t1 = t+ ∆t and Xt1 = x+ ∆X. We take expected values. Terms at time t with
argument x come out of the expectation because they are determined (when
Xt = x). The result is

f = f + Ex,t[ ∆X] ∂xf +
1

2
Ex,t

[
∆X2

]
∂2
xf + ∆t∂tf

+ Ex,t

[
O
(
|∆X|3

)]
+ ∆tEx,t[O (|∆X|)] +O

(
∆t2

)
.

We evaluate the expectations on the top line using the infinitesimal mean and
variance formulas (9) and (11). The O(∆t2) error terms in those formulas
contribute to the O(∆t2) on the second line.

0 = a(x)∆t∂xf +
1

2
v(x)∆t∂2

xf + ∆t∂tf

+ Ex,t

[
O
(
|∆X|3

)]
+ ∆tEx,t[O (|∆X|)] +O

(
∆t2

)
.

3An estimate in mathematical proofs is not a guess at how large something is, but an upper
bound. Any “big Oh” formula is an “estimate” in this sense.
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We showed that Ex,t

[
|∆X|3

]
= O(∆t

3
2 ). It is an exercise to show that Ex,t[ |∆X|] =

O(∆t
1
2 ). This gives (since O(∆t

3
2 ) +O(∆t2) = O(∆t

3
2 ))

0 = a(x)∆t∂xf +
1

2
v(x)∆t∂2

xf + ∆t∂tf +O(∆t
3
2 ) .

Finally, we divide both sides by ∆t and take the limit ∆t → 0. The result is
the backward equation (16).
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