
Stochastic Calculus, Courant Institute, Fall 2018

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2018/StochCalc.html

Always check the classes message board before doing any work on the assignment.

Assignment 6, due October 22

Corrections: [none yet]

Two of the most important things you can get from this class are the ability
to create mathematical models (equations) from verbal descriptions intuition
about stochastic processes, the intuition coming from solutions in specific cases.
These exercises address those goals.

1. Consider a random process involving a particle that either is moving ran-
domly or is stuck. If it is moving, it sticks in time interval (t, t + dt)
with probability λ(x)dt. If it is stuck, it comes unstuck in time in-
terval (t, t + dt) with probability µ(x)dt. If it is moving, it satisfies
dX = a(X)dt + b(X)dWt. There are two densities, u(x, t) and v(x, t).
The first is the density of the particle if it is not stuck. The second is the
density of the particle if it is stuck. These satisfy

Pr(Xt is stuck ) =

∫ ∞
−∞

v(x, t) dx

Pr(Xt is not stuck ) =

∫ ∞
−∞

u(x, t) dx .

Write an equation system for ∂tu(x, t) and ∂tv(x, t). These are coupled in
the sense that the u equation involves v and the v equation involves u.
Show that your equation system has the property that

d

dt

(∫ ∞
−∞

u(x, t) dx+

∫ ∞
−∞

v(x, t) dx

)
= 0 .

2. Consider a random process involving a particle that either moves randomly
with Xt < a or sticks at x = a. If Xt touches x = a it either sticks or
is “reflected” back into the region x < a where it does a random motion.
Let v(t) = Pr(Xt = a). You may assume (and it’s true) that the particle
is at x = a only if it is stuck, almost surely. Let u(x, t), for x < a, be
the probability density for the particle if it isn’t stuck at x = a. Write a
differential equation system for u(x, t) and v(t). You will find that v and
∂tv = d

dtv occurs only in the boundary condition for u at x = a. Verify
that your equation system has the property that

d

dt

(
v(t) +

∫ ∞
−∞

u(x, t) dx

)
= 0 .

You need to use two parameters, λ and µ, where λ governs the rate of
sticking if a moving particle touches x = a and µ governs the rate at
which stuck particles become unstuck.
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3. Suppose Xt is a Brownian motion with drift rate zero and variance σ2t.
Consider a “linear” interest rate rXt, so that the value at time T starting
from x at time t is

f(x, t) = Ex,t

[
e
∫ T
t
rXsds

]
.

Write the backward equation for this f . Find the solution using an ansatz
of the affine (more properly exponential affine) form

f(x, t) = ea(t)x+b(t) .

For this, you need to find the differential equations a(t) and b(t) satisfy
together with the final conditions for these quantities at t = T . That will
determine a and b completely.

4. Let Xt be a Brownian motion with standard variance and fixed constant
drift rate r. This means that r is a constant, X0 = 0, and dX = rdt+dW .
This exercise explores the hitting time τa = min{t|Xt = a} with a > 0,
depending on whether r > 0 or r < 0. This exercise takes the PDE
approach.

(a) Write the forward equation and the boundary condition at a for
u(x, t), which is the probability density at time t of a particle with
τa > t.

(b) Write a formula for fa(t), the PDF of τa, in terms of u and ∂xu at
x = a.

(c) Show that this equation and boundary condition from part (a) can be
transformed into the standard heat equation with the same boundary
condition at x = a. To do this, define v(x, t) = eµxeλtu(x, t) and find
µ and λ so that v satisfies ∂tv = 1

2∂
2
xv.

(d) Use the method of images solution for v to find u and from there get
fa(t).

(e) Show that when r > 0, (the drift is toward the boundary x = a)
τa <∞ almost surely and E[τa] <∞.

(f) Show that when r < 0 (drift away from the boundary), Pr(τa <∞) <
1. That is, there is a positive chance that Xt never touches the
boundary.

(g) Write the differential equation for g(y) = Pr(τa <∞ | X0 = y). Find
the boundary condition g satisfies at x = a. Show that this equation
has a solution that is a decreasing exponential as x→ −∞ if r < 0.

(h) Check that your solution to part (g) has the feature that g(y)→ 1 as
r → 0 with r < 0. How is this consistent with what you know about
Brownian motion without drift?

(i) Write a differential equation for h(y) = E[τa|X0 = y]. Find the
boundary condition at y = a. Show that this equation has a so-
lution that grown linearly as x→ −∞.
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(j) Check that your solution to part (i) has the feature that h(y) → ∞
as r → 0 with r > 0. How is this consistent with what you know
about Brownian motion without drift?
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