Assignment 5, due October 15

Corrections: [none yet]

1. Suppose X_{t} satisfies the Ornstein Uhlenbeck $\operatorname{SDE} d X=-\gamma X d t+\sigma d W$. Suppose $X_{t}=y$ is known. We saw in Assignment 4 that conditional on this, X_{t+s} is normal with mean $e^{-\gamma s} y$ and variance

$$
\frac{\sigma^{2}}{2 \gamma}\left(1-e^{-2 \gamma s}\right)
$$

(a) Use this information to write a formula for the Green's function (transition density) $G(x, y, s)$.
(b) Verify by direct calculation that G satisfies the forward equation as a function of x and s for each y.
(c) Verify by direct calculation that G satisfies the backward equation as a function of y and s for each x.
2. (This exercise shows that the forward and backward equations, at least for Brownian motion, have a "gain of regularity". The solution at $t>0$ or $t<T$ is more regular (differentiable) than the data $u_{0}(x)$ or $V(x)$. This implies that the forward equation cannot be run backwards and the backward equation cannot be run forwards.) The Green's function for Brownian motion is

$$
G(x, y, s)=\frac{1}{\sqrt{2 \pi s}} e^{-\frac{(x-y)^{2}}{2 s}}
$$

(a) Show that, for all y,

$$
\int_{-\infty}^{\infty}\left|\partial_{x} G(x, y, s)\right| d x=\frac{C}{s^{\frac{1}{2}}}
$$

Find C. Hint: First explain why the answer does not depend on y, then set $y=0$. Second, do a scaling argument to show why the answer has $s^{-\frac{1}{2}}$ (substitute $\frac{x^{2}}{s}=z^{2}$) and set $s=1$. The answer is $2 \int_{0}^{\infty} \cdots d z$.
(b) This inequality is "obvious". For "any" two functions g and h,

$$
\left|\int g(y) h(y) d y\right| \leq\left(\int|g(y)| d y\right)\left(\max _{y}|h(y)|\right)
$$

Use this and part (a) to show that if u satisfies the forward equation for Brownian motion, then

$$
\left|\partial_{x} u(x, t+s)\right| \leq \frac{C}{s^{\frac{1}{2}}} \max _{y}|u(y, t)|
$$

(c) Show that if f satisfies the backward equation for Brownian motion, then

$$
\max _{x}\left|\partial_{x} f(x, t-s)\right| \leq \frac{C}{s^{\frac{1}{2}}} \max _{x}|f(x, t)|
$$

Use this to show that there is a bounded but discontinuous payout function $V(x)$ leads to a differentiable (and therefore continuous) value function $f(x, t)$ for $t<T$. Therefore, not every bounded function can be the value function for a bounded payout function.
3. Consider a linear diffusion process with a control

$$
d X_{t}=a X_{t} d t+\sigma d W_{t}+B u_{t} d t
$$

The control u_{t} must be chosen to be known at time t in terms of $W_{[0, t]}$ and/or $X_{[0, t]}$. Optimal stochastic control is the problem of choosing u to optimize (maximize or minimize) something. A linear feedback controller has the form

$$
u_{t}=K X_{t}
$$

It is linear because u is a linear function of X. It is feedback because u_{t} is a function of X_{t} at the same time t. The constant K is for Kalman, who developed linear stochastic control theory. If $a>0$ then the system without a control $(u=0)$ is unstable in the sense that $\left|X_{t}\right| \rightarrow \infty$ exponentially (almost surely) as $t \rightarrow \infty-$ not good.
(a) Show that if K is chosen properly, then the system is stabilized in the sense that the controlled system has a limiting variance and mean converging to zero as $t \rightarrow \infty$. This says that the system is stabilizable.
(b) Let $\mathrm{E}_{\mathrm{ss}}[\cdot]$ represent the expectation in this steady state. Find a formula for K in terms of the other parameters $(a, \sigma \neq 0, B \neq 0, Q>0$, and $R>0$) to minimize the steady state cost function

$$
C=Q \mathrm{E}_{\mathrm{ss}}\left[X^{2}\right]+R \mathrm{E}_{\mathrm{ss}}\left[u^{2}\right]
$$

The parameter Q represents the cost of X deviating from its resting value $X=0$. The parameter R represents the cost of the controller. Show that the cost goes to zero as the control becomes free $(R \rightarrow 0)$.
4. Consider a discrete time controlled linear stochastic system

$$
X_{n+1}=A X_{n}+\xi_{n}+B u_{n}
$$

Here $|A|<1$ makes the uncontrolled system stable. Suppose the noise process ξ_{n} are independent normals with mean zero and variance σ^{2}. Suppose that the control u_{n} is chosen based on a "noisy measurement" of X_{n}, which means

$$
u_{n}=K Y_{n}, \quad Y_{n}=X_{n}+\eta_{n}
$$

where the measurement errors η_{n} are independent mean zero gaussians with mean zero and variance r^{2}. Find the optimal feedback parameter K to minimize

$$
C=\mathrm{E}_{\mathrm{Ss}}\left[X^{2}\right] .
$$

Note that we cannot achieve $C=0$ even if the control is free.
5. Suppose that $\vec{y}_{t} \in \mathbb{R}^{n}$ is some time dependent vector. A backward process for the $n \times n$ matrix A (assume A is non-singular) is an $\vec{x}_{t} \in \mathbb{R}^{n}$ that satisfies $\frac{d}{d t} \vec{x}=A \vec{x}$. Suppose that $\left\langle y_{t}, x_{t}\right\rangle$ is independent of time for every backward process \vec{x}. Show that y is a forward process in the sense that $\frac{d}{d t} \vec{y}=A^{*} \vec{y}$. Here, A^{*} is the adjoint of A in the sense that $\langle\vec{y}, A \vec{x}\rangle=$ $\left\langle A^{*} \vec{y}, \vec{x}\right\rangle$ for every pair \vec{y} and \vec{x}. Use only properties of the inner product (symmetry, bi-linear), and not a specific inner product.

