Stochastic Calculus, Courant Institute, Fall 2018
http://www.math.nyu.edu/faculty /goodman/teaching/StochCalc2018/StochCalc.html

Always check the classes message board before doing any work on the assignment.

Assignment 2, due September 24

Corrections: [none yet]

1. Suppose times T7,...,Ty; are chosen randomly, independently, and with

a uniform density in the interval [0, R]. Suppose A > 0 is a rate parameter
and we choose M = AR and take the limit R — oo (or R = M/\ with
M — o0). Define Ty = minTy, T as the smallest Ty, > Tjyj, and so
on. Then {Tl, ce ,TN} = {T[l], R ,T[N]} and T[l] < T[g] < el (The
probability of two times being equal is zero.) As R — oo, the increasing
sequence T converges to a Poisson process with rate A. The number of

arrivals up to time ¢ is
Ny =# {T}.C < t} .

(a) Show that in the limit R — oo, we have

tn — At
Pr(N; = n) = —

n!
This is called the Poisson random variable.

(b) Show that the probability density of Tj;; converges to ui(t) = Ae™*.
Hint: it may be easier to calculate the limit as R — oo of Pr(V; = 0).

(¢) Show that (in the Poisson limit R — o0), and p =1, 2, 3, 4,
E[(AN)?] = AAt + O(AF?) .
Here, AN = N¢yar — Ni. Conclude that N, is not a diffusion.
. Consider the Ornstein Uhlenbeck problem (5). The transition density is*
o2

Xigrt ~ N <e”tXt0, > (1- 62“)) .

If you know Xy,, the conditional mean at time tq + ¢ is X;,e~ 7" and
2

the conditional variance is §- (1 — e=2"). The conditional distribution is

Gaussian with those parameters.

(a) Show that this is consistent in the following sense. Suppose you start
at X at time tg = 0 (to simplify the notation only) and go to Y at
time ¢ using the transition distribution given. Then you start at Y
and go to Z time t + s using the transition distribution for time s

IWe will derive this easily in a future lesson. For now, please just accept that it is true.



starting at Y. The result (if it’s consistent) is that Z comes from X
with the transition distribution given for time ¢ + s. Hint: one way
to do this is to calculate integrals using Gaussian probability density
formulas. Another way is to use the following trick: if Y ~ N(u, s?),
then Y may be represented as Y = p+ s, where £ ~ A(0,1). In the
Ornstein Uhlenbeck case, this becomes

Y =e X + o (1—e ") ' ¢
27y ’

o2 , 3
Z =e 7Y + [2 (1 —e” 75)} n.

8
(b) Show that a process with this transition density has the infinitesimal
mean and infinitesimal variance of Ornstein Uhlenbeck (a = —~uz,

and v = 02).
(¢) Show that the fourth moment satisfies

E[(Ax)4 |]—"t} =0 (AR) .
(d) Find the following value function directly

f(.%‘,t) =E;: [XIQ"]

(hint: you can get this from the transition distribution). Show that
the this f satisfies the backward equation for Ornstein Uhlenbeck
and that it satisfies the final condition f(z,T) = z?.

3. Let W, be standard Brownian motion and consider the formula
02
S, = Soe Vet (=)t

Show by direct calculation (not by the Ito calculus, if you know it) that
the infinitesimal mean and variance are those of the geometric Brownian
motion (6). That is

E[AS | Fi] = pSiAt + O(At?) |
and

E[(AS)2 | ]-'t] = 02S2At + O(AP?)

and

E[(AS)4 | ]—'t] = O(AtY) .

Conclude that this formula defines a geometric Brownian motion. You
may use the formula

1 1
AW _ {1 G AW ingW 1 60—2AW3 +O0(AW?Y) .

This is not actually true, but it’s off only by stuff so technical that only a
really pure mathematician would object. If you feel like doing the calcu-
lation actually correctly, fine.



