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Always check the classes message board before doing any work on the assignment.

Assignment 2, due September 24

Corrections: [none yet]

1. Suppose times T1, . . . , TM are chosen randomly, independently, and with
a uniform density in the interval [0, R]. Suppose λ > 0 is a rate parameter
and we choose M = λR and take the limit R → ∞ (or R = M/λ with
M → ∞). Define T[1] = minTk, T[2] as the smallest Tk > T[1], and so

on. Then {T1, . . . , TN} =
{
T[1], . . . , T[N ]

}
and T[1] < T[2] < · · · . (The

probability of two times being equal is zero.) As R → ∞, the increasing
sequence T[k] converges to a Poisson process with rate λ. The number of
arrivals up to time t is

Nt = # {Tk < t} .

(a) Show that in the limit R→∞, we have

Pr(Nt = n) =
tne−λt

n!
.

This is called the Poisson random variable.

(b) Show that the probability density of T[1] converges to u1(t) = λe−λt.
Hint: it may be easier to calculate the limit as R→∞ of Pr(Nt = 0).

(c) Show that (in the Poisson limit R→∞), and p = 1, 2, 3, 4,

E[ (∆N)
p
] = λ∆t+O(∆t2) .

Here, ∆N = Nt+∆t −Nt. Conclude that Nt is not a diffusion.

2. Consider the Ornstein Uhlenbeck problem (5). The transition density is1

Xt0+t ∼ N
(
e−γtXt0 ,

σ2

2γ

(
1− e−2γt

))
.

If you know Xt0 , the conditional mean at time t0 + t is Xt0e
−γt and

the conditional variance is σ2

2γ

(
1− e−2γt

)
. The conditional distribution is

Gaussian with those parameters.

(a) Show that this is consistent in the following sense. Suppose you start
at X at time t0 = 0 (to simplify the notation only) and go to Y at
time t using the transition distribution given. Then you start at Y
and go to Z time t + s using the transition distribution for time s

1We will derive this easily in a future lesson. For now, please just accept that it is true.
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starting at Y . The result (if it’s consistent) is that Z comes from X
with the transition distribution given for time t + s. Hint: one way
to do this is to calculate integrals using Gaussian probability density
formulas. Another way is to use the following trick: if Y ∼ N (µ, s2),
then Y may be represented as Y = µ+ sξ, where ξ ∼ N (0, 1). In the
Ornstein Uhlenbeck case, this becomes

Y = e−γtX +

[
σ2

2γ

(
1− e−2γt

)] 1
2

ξ ,

Z = e−γsY +

[
σ2

2γ

(
1− e−2γs

)] 1
2

η .

(b) Show that a process with this transition density has the infinitesimal
mean and infinitesimal variance of Ornstein Uhlenbeck (a = −γx,
and v = σ2).

(c) Show that the fourth moment satisfies

E
[

(∆X)
4 |Ft

]
= O

(
∆t2

)
.

(d) Find the following value function directly

f(x, t) = Ex,t
[
X2
T

]
(hint: you can get this from the transition distribution). Show that
the this f satisfies the backward equation for Ornstein Uhlenbeck
and that it satisfies the final condition f(x, T ) = x2.

3. Let Wt be standard Brownian motion and consider the formula

St = S0e
σWt+

(
µ−σ2

2

)
t
.

Show by direct calculation (not by the Ito calculus, if you know it) that
the infinitesimal mean and variance are those of the geometric Brownian
motion (6). That is

E[ ∆S | Ft] = µSt∆t+O(∆t2) ,

and
E
[

(∆S)
2 | Ft

]
= σ2S2

t ∆t+O(∆t2) ,

and
E
[

(∆S)
4 | Ft

]
= O(∆t4) .

Conclude that this formula defines a geometric Brownian motion. You
may use the formula

eσ∆W = 1 + σ∆W +
1

2
σ2∆W 2 +

1

6
σ2∆W 3 +O(∆W 4) .

This is not actually true, but it’s off only by stuff so technical that only a
really pure mathematician would object. If you feel like doing the calcu-
lation actually correctly, fine.
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