Stochastic Calculus, Courant Institute, Fall 2018
http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2018/StochCalc.html
Always check the classes message board before doing any work on the assignment.

Assignment 2, due September 24

Corrections: [none yet]

1. Suppose times T_{1}, \ldots, T_{M} are chosen randomly, independently, and with a uniform density in the interval $[0, R]$. Suppose $\lambda>0$ is a rate parameter and we choose $M=\lambda R$ and take the limit $R \rightarrow \infty$ (or $R=M / \lambda$ with $M \rightarrow \infty)$. Define $T_{[1]}=\min T_{k}, T_{[2]}$ as the smallest $T_{k}>T_{[1]}$, and so on. Then $\left\{T_{1}, \ldots, T_{N}\right\}=\left\{T_{[1]}, \ldots, T_{[N]}\right\}$ and $T_{[1]}<T_{[2]}<\cdots$. (The probability of two times being equal is zero.) As $R \rightarrow \infty$, the increasing sequence $T_{[k]}$ converges to a Poisson process with rate λ. The number of arrivals up to time t is

$$
N_{t}=\#\left\{T_{k}<t\right\}
$$

(a) Show that in the limit $R \rightarrow \infty$, we have

$$
\operatorname{Pr}\left(N_{t}=n\right)=\frac{t^{n} e^{-\lambda t}}{n!}
$$

This is called the Poisson random variable.
(b) Show that the probability density of $T_{[1]}$ converges to $u_{1}(t)=\lambda e^{-\lambda t}$. Hint: it may be easier to calculate the limit as $R \rightarrow \infty$ of $\operatorname{Pr}\left(N_{t}=0\right)$.
(c) Show that (in the Poisson limit $R \rightarrow \infty$), and $p=1,2,3,4$,

$$
\mathrm{E}\left[(\Delta N)^{p}\right]=\lambda \Delta t+O\left(\Delta t^{2}\right)
$$

Here, $\Delta N=N_{t+\Delta t}-N_{t}$. Conclude that N_{t} is not a diffusion.
2. Consider the Ornstein Uhlenbeck problem (5). The transition density is ${ }^{1}$

$$
X_{t_{0}+t} \sim \mathcal{N}\left(e^{-\gamma t} X_{t_{0}}, \frac{\sigma^{2}}{2 \gamma}\left(1-e^{-2 \gamma t}\right)\right)
$$

If you know $X_{t_{0}}$, the conditional mean at time $t_{0}+t$ is $X_{t_{0}} e^{-\gamma t}$ and the conditional variance is $\frac{\sigma^{2}}{2 \gamma}\left(1-e^{-2 \gamma t}\right)$. The conditional distribution is Gaussian with those parameters.
(a) Show that this is consistent in the following sense. Suppose you start at X at time $t_{0}=0$ (to simplify the notation only) and go to Y at time t using the transition distribution given. Then you start at Y and go to Z time $t+s$ using the transition distribution for time s

[^0]starting at Y. The result (if it's consistent) is that Z comes from X with the transition distribution given for time $t+s$. Hint: one way to do this is to calculate integrals using Gaussian probability density formulas. Another way is to use the following trick: if $Y \sim \mathcal{N}\left(\mu, s^{2}\right)$, then Y may be represented as $Y=\mu+s \xi$, where $\xi \sim \mathcal{N}(0,1)$. In the Ornstein Uhlenbeck case, this becomes
\[

$$
\begin{aligned}
& Y=e^{-\gamma t} X+\left[\frac{\sigma^{2}}{2 \gamma}\left(1-e^{-2 \gamma t}\right)\right]^{\frac{1}{2}} \xi \\
& Z=e^{-\gamma s} Y+\left[\frac{\sigma^{2}}{2 \gamma}\left(1-e^{-2 \gamma s}\right)\right]^{\frac{1}{2}} \eta
\end{aligned}
$$
\]

(b) Show that a process with this transition density has the infinitesimal mean and infinitesimal variance of Ornstein Uhlenbeck ($a=-\gamma x$, and $v=\sigma^{2}$).
(c) Show that the fourth moment satisfies

$$
\mathrm{E}\left[(\Delta X)^{4} \mid \mathcal{F}_{t}\right]=O\left(\Delta t^{2}\right)
$$

(d) Find the following value function directly

$$
f(x, t)=\mathrm{E}_{x, t}\left[X_{T}^{2}\right]
$$

(hint: you can get this from the transition distribution). Show that the this f satisfies the backward equation for Ornstein Uhlenbeck and that it satisfies the final condition $f(x, T)=x^{2}$.
3. Let W_{t} be standard Brownian motion and consider the formula

$$
S_{t}=S_{0} e^{\sigma W_{t}+\left(\mu-\frac{\sigma^{2}}{2}\right) t}
$$

Show by direct calculation (not by the Ito calculus, if you know it) that the infinitesimal mean and variance are those of the geometric Brownian motion (6). That is

$$
\mathrm{E}\left[\Delta S \mid \mathcal{F}_{t}\right]=\mu S_{t} \Delta t+O\left(\Delta t^{2}\right)
$$

and

$$
\mathrm{E}\left[(\Delta S)^{2} \mid \mathcal{F}_{t}\right]=\sigma^{2} S_{t}^{2} \Delta t+O\left(\Delta t^{2}\right)
$$

and

$$
\mathrm{E}\left[(\Delta S)^{4} \mid \mathcal{F}_{t}\right]=O\left(\Delta t^{4}\right)
$$

Conclude that this formula defines a geometric Brownian motion. You may use the formula

$$
e^{\sigma \Delta W}=1+\sigma \Delta W+\frac{1}{2} \sigma^{2} \Delta W^{2}+\frac{1}{6} \sigma^{2} \Delta W^{3}+O\left(\Delta W^{4}\right)
$$

This is not actually true, but it's off only by stuff so technical that only a really pure mathematician would object. If you feel like doing the calculation actually correctly, fine.

[^0]: ${ }^{1}$ We will derive this easily in a future lesson. For now, please just accept that it is true.

