Stochastic Calculus, Courant Institute, Fall 2018

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2018/StochCalc.html Always check the classes message board before doing any work on the assignment.

Assignment 1, due September 17

Corrections: [none yet]

- 1. Let X_t be the standard Brownian motion.
 - (a) Calculate $E[X_t^4]$.
 - (b) The formula $E[X_t^2] = t$ is thought of as representing the fact that $|X_t|$ is on the order of \sqrt{t} . Can you get a similar picture from the fourth moment calculation of part a?
- 2. Integrate the formula (4) for u_2 over the variable x_1 to see that the u_2 formula is consistent with $u_1(x_2, t_2) = (2\pi t_2)^{-1/2} e^{-\frac{x_2^2}{2t_2}}$.
- 3. Repeat the fourth moment calculation to calculate (assume $0 \le t < T$)

$$f(x,t) = \mathbf{E} \left[X_T^4 \mid X_t = x \right]$$

Calculate the appropriate partial derivatives of f to see that it satisfies the backward equation (11).

4. Repeat exercise 3 for the function

$$f(x,t) = \mathbf{E} \left[e^{aX_T} \mid X_t = x \right] \; .$$

Show that this value function f also satisfies the backward equation (11).

- 5. Show that $E[\tau_a] = \infty$ by showing that the integral that defines the expectation diverges.
- 6. The hitting probability is $\int_0^\infty v_a(t) dt$. An event happens almost surely if its probability is equal to one. Show that a Brownian motion particle hits x = a almost surely, for any a > 0. Hint: calculate the integral using the change of variables $t = s^{-\frac{1}{2}}$.
- 7. The stopped process Y_t is defined by

$$Y_t = \begin{cases} X_t & \text{if } t < \tau_a \\ a & \text{if } t \ge \tau_a \end{cases}$$

The stopped process is a Brownian motion that "sticks" the first time it touches x = a.

(a) Show that $Y_t \to a$ as $t \to \infty$ almost surely

(b) Show that $E[Y_t] = 0$ for all t > 0. Hint: Show that $\frac{d}{dt}E[Y_t] = av_a(t) + \int_{-\infty}^a x \partial_t u(x,t) dx$.

These two calculations show that the limit of $E[Y_t]$ is not equal to the expected value of the limit of Y_t .

- 8. Here is an example related to the phenomenon of Problem 7. A random variable S is *log-normal* if $X = \log(S)$ is normal. For any *volatility* parameter, σ , there is an m so that $S = e^{\sigma Z m}$ has E[S] = 1. Here, and many times in this class, we use Z to represent the *standard* normal random variable. That means $Z \sim \mathcal{N}(0, 1)$, which is the Gaussian distribution with mean zero and variance one.
 - (a) Find this relation
 - (b) Suppose $\epsilon > 0$. Show that $\Pr(S > \epsilon) \to 0$ as $\sigma \to \infty$. Hint: Show that $S > \epsilon$ is equivalent to Z > r, where r is some number that depends on σ and ϵ . Show that $r \to \infty$ as $\sigma \to \infty$.

Thus, the random variables S_{σ} all have expected value equal to one even though the probability mass is concentrating at zero. The probability density of S_{σ} must be forming long tails on the positive side to balance the mass near zero.