Assignment 1, due September 17

Corrections: [none yet]

1. Let X_{t} be the standard Brownian motion.
(a) Calculate $\mathrm{E}\left[X_{t}^{4}\right]$.
(b) The formula $\mathrm{E}\left[X_{t}^{2}\right]=t$ is thought of as representing the fact that $\left|X_{t}\right|$ is on the order of \sqrt{t}. Can you get a similar picture from the fourth moment calculation of part a?
2. Integrate the formula (4) for u_{2} over the variable x_{1} to see that the u_{2} formula is consistent with $u_{1}\left(x_{2}, t_{2}\right)=\left(2 \pi t_{2}\right)^{-1 / 2} e^{-\frac{x_{2}^{2}}{2 t_{2}}}$.
3. Repeat the fourth moment calculation to calculate (assume $0 \leq t<T$)

$$
f(x, t)=\mathrm{E}\left[X_{T}^{4} \mid X_{t}=x\right]
$$

Calculate the appropriate partial derivatives of f to see that it satisfies the backward equation (11).
4. Repeat exercise 3 for the function

$$
f(x, t)=\mathrm{E}\left[e^{a X_{T}} \mid X_{t}=x\right]
$$

Show that this value function f also satisfies the backward equation (11).
5. Show that $\mathrm{E}\left[\tau_{a}\right]=\infty$ by showing that the integral that defines the expectation diverges.
6. The hitting probability is $\int_{0}^{\infty} v_{a}(t) d t$. An event happens almost surely if its probability is equal to one. Show that a Brownian motion particle hits $x=a$ almost surely, for any $a>0$. Hint: calculate the integral using the change of variables $t=s^{-\frac{1}{2}}$.
7. The stopped process Y_{t} is defined by

$$
Y_{t}=\left\{\begin{array}{cl}
X_{t} & \text { if } t<\tau_{a} \\
a & \text { if } t \geq \tau_{a}
\end{array}\right.
$$

The stopped process is a Brownian motion that "sticks" the first time it touches $x=a$.
(a) Show that $Y_{t} \rightarrow a$ as $t \rightarrow \infty$ almost surely
(b) Show that $\mathrm{E}\left[Y_{t}\right]=0$ for all $t>0$. Hint: Show that $\frac{d}{d t} E\left[Y_{t}\right]=$ $a v_{a}(t)+\int_{-\infty}^{a} x \partial_{t} u(x, t) d x$.
These two calculations show that the limit of $E\left[Y_{t}\right]$ is not equal to the expected value of the limit of Y_{t}.
8. Here is an example related to the phenomenon of Problem 7. A random variable S is log-normal if $X=\log (S)$ is normal. For any volatility parameter, σ, there is an m so that $S=e^{\sigma Z-m}$ has $\mathrm{E}[S]=1$. Here, and many times in this class, we use Z to represent the standard normal random variable. That means $Z \sim \mathcal{N}(0,1)$, which is the Gaussian distribution with mean zero and variance one.
(a) Find this relation
(b) Suppose $\epsilon>0$. Show that $\operatorname{Pr}(S>\epsilon) \rightarrow 0$ as $\sigma \rightarrow \infty$. Hint: Show that $S>\epsilon$ is equivalent to $Z>r$, where r is some number that depends on σ and ϵ. Show that $r \rightarrow \infty$ as $\sigma \rightarrow \infty$.

Thus, the random variables S_{σ} all have expected value equal to one even though the probability mass is concentrating at zero. The probability density of S_{σ} must be forming long tails on the positive side to balance the mass near zero.

