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Always check the classes message board before doing any work on the assignment.

Assignment 5

Corrections: [none yet]

1. (Gradient descent and condition number) The gradient descent algorithm
for minimizing V (x) is

xn+1 = xn − tn∇V (xn) .

The positive number tn is the step size, or learning rate for iteration n. For
this exercise, assume a constant learning rate, which is tn = t for all n. The
local convergence of gradient descent to a local minimum is determined
by the local behavior of V near the local minimum, x∗. Suppose V is
smooth near x∗ and the Hessian H(x∗) is positive definite. Then the
local convergence behavior is determined by H (you don’t have to show
this). Consider a function in n dimensions V (x) = 1

2x
tHx− xtb, for some

positive definite H and vector b ∈ Rn.

(a) Show that V is convex and the unique global minimum satisfies
Hx∗ = b.

(b) Show that the Hessian of V is constant.

(c) Suppose that the eigenvalues of H are λn ≥ λn−1 ≥ · · · ≥ λ1 > 0.

(d) Show that when analyzing convergence for this V , we may assume
b = 0 and x∗ = 0. Hint: let yn = xn − x∗ and find yn+1 in terms of
yn.

(e) Show that gradient descent converges for any initial guess if and only
if |1− tλn| < 1 and |1− tλ1| < 1.

(f) Show that
‖xn − x∗‖2 ∼ Cr

n as n→∞

for generic initial guess if

r = max
k
|1− tλk| .

and r < 1. (Note: part (c) is a consequence of this).

(g) Find a formula for the learning rate (t) that gives the optimal generic
convergence rate (r).

(h) Show that condition number of H (in the norm ‖·‖2) satisfies

κ2(H) = ‖H‖2
∥∥H−1

∥∥
2

=
λn
λ1

.
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(i) Suppose that κ2(H) � 1 (that is, H is ill conditioned). Show in
this case that the optimal generic convergence rate (with the optimal
learning rate) satisfies

ropt ≈ 1− 2

κ2(H)
.

(j) Estimate the number of gradient descent iterations required to reduce
‖x− x∗‖2 by a factor of e as a function of κ2(H) ifH is ill conditioned.
This shows that gradient descent is slow for ill conditioned problems
even with the optimal parameters.

(k) Suppose A is an n × n invertible matrix, and that W (y) = V (Ay).
Consider gradient descent applied to W with the optimal learning
rate for that problem. Show that if A is well chosen, then the W
problem may have much faster convergence than the V problem.
The matrix A is called a preconditioner.

2. It is commonly said that gradient descent is globally convergent if the
learning rate is small enough, and if V is smooth and strictly convex, and if
there is a minimum. Show that this is not true. Hint: try V (x) = ex+e−x.

3. (Affine invariance) If x ∈ Rn, a transformation of the form x = Ay + b is
called affine. For this exercise, b is irrelevant and we take b = 0, but
we retain the terminology affine. Consider Newton’s method for op-
timizing V (x) without safeguards. Call the iterates xn. They satisfy
xn+1 = xn − HV (xn)−1∇V (xn). Suppose W (y) = V (Ay) and we apply
Newton’s method to W , resulting in iterates yn. Show that if xn = Ayn
then xn+1 = Ayn+1. That is, Newton’s method is affine invariant. Affine
invariance means that an affine preconditioner does not change the con-
vergence behavior or convergence rate.

4. (Gauss-Newton) The nonlinear least squares problem is to find x ∈ RN to
minimize

V (x) =

M∑
j=1

(Dj − fj(x))
2
.

Problems like this come up in data fitting. You have M measured data
values Dj and a model that predicts dj = fj(x). The model cannot fit all
the data because the model is not exactly correct and because the data
are not measured exactly. If the model, the functions fj(x), is nonlinear,
then the least squares criterion becomes non-linear. The functions fj form
the components of f(x) ∈ RM . The data values Dj form the components
of D ∈ RM . The objective function may be written in vector notation as

V (x) = ‖D − f(x)‖22 .

If N = M , we can hope to set all the residuals Dj − f(xj) to zero and
solve the nonlinear equations D = f(x). If M > N (more data than
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parameters), in general it is impossible to set all the residuals to zero.
Instead, the objective function is to minimize the residuals in the least
squares sense.

The derivatives of f are

Ajk =
∂fj
∂xk

, Bjkl =
∂2fj
∂xk∂xl

Here, A is the Jacobian matrix A(x) = f ′(x), and B(x) is a three in-
dex array of second partials written informally as B(x) = f ′′(x). The
linearization of the model f about a point x is the linear approximation

f(x+ y) ≈ f(x) +A(x)(y − x) .

The Gauss Newton method is an iteration xn → xn+1 where we find xn+1

by solving the linearized least squares problem, xn+1 = xn + y, where y
satisfies

min
y
‖D − (f(xn) +A(xn)(y − xn)‖22 .

Recall that Newton’s method for solving the nonlinear equations uses the
linearization to get xn+1 from xn and has local quadratic convergence.
Assume that M > N and that A(x) has full rank N at every x.

(a) Find a formula for H(x) = V ′′(x) and show that the Gauss-Newton
method for nonlinear least squares is not the same as Newton’s
method for minimizing V .

(b) Show that the Gauss-Newton method produces a descent direction –
the M it uses in place of the Hessian is positive definite.

(c) Show that the Gauss-Newton iteration converges (if it converges)
linearly rather than quadratically.

(d) Show that the linear convergence rate improves as the residual at the
solution decreases.

5. Write a Python procedure to compute the modified Cholesky factoriza-
tion of a symmetric H. Your code should use Python vector instructions
(rather than scalar loops) for the inner loops as much as possible. You
should call it using L,p = mCh(H), where H is a Numpy array of the n×n
symmetric matrix H. It should return a tuple L, P, where L is the n× n
lower triangular factor and P is a logical variable which is true if H was
positive definite and false otherwise. Test your procedure on several ma-
trices of your choice including some that are positive definite and some
that are not. Calculate an example that you can use to see that the code
produces the correct answer in both cases.
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