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Always check the classes message board before doing any work on the assignment.

Assignment 3

Corrections: [none yet]

1. Suppose A(s) is a differentiable family of positive definite symmetric ma-
trices. Suppose that A has a Cholesky factorization A(s) = L(s)Lt(s).
Here, L is lower triangular. Find a formula for

L̇ =
d

ds
L(s)

as a function of L, L−1 and Ȧ. It is a useful fact that the inverse of a
lower triangular matrix is lower triangular.

2. Suppose A is an n× n matrix. Show that the power series

etA =

∞∑
0

1

n!
tnAn .

converges in any matrix norm. Hint: Never mind the first N terms. What
matters is the “tails”, the terms Mn = 1

n! t
nAn for n ≥ N . Choose N so

that N ≥ 2 |t| ‖A‖. Then

Mn =
1

n
tAMn−1 .

Therefore, if n ≥ N ,

‖Mn‖ ≤
1

N
|t| ‖A‖ ‖Mn−1‖ ≤

1

2
‖Mn−1‖ .

Therefore, if n > N , we have ‖Mn‖ ≤ 1
2n−N ‖MN‖. The tail sum satisfies∥∥∥∥∥

∞∑
n=N

Mn

∥∥∥∥∥ ≤
∑

n≥N

1

2n−N

 ‖MN‖ ≤ 2 ‖MN‖ <∞ .

The tail converges absolutely so the whole sum does too.

3. (Properties of the matrix exponential)

(a) Show that the matrix S(t) = etA satisfies a matrix differential equa-
tion and commutes with A:

d

dt
S(t) = AS(t) = S(t)A .
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(b) Show that S(t)→ I as t→ 0.

(c) Show that S(t1)S(t2) = S(t1 + t2). Hint: You can do this using part
(d) below, or you can do it directly. For the direct argument, define
p = t1

t1+t2
and q = t2

t1+t2
and write the formula (p + q)n = 1 as∑

j+k=n

(
n

k

)
pjqk =

∑
j+k=n

n!

j!k!
pjqk = 1 .

Then write

S(t1)S(t2) =
∑
j

∑
k

1

j!

1

k!
tj1t

k
2A

j+k =
∑
n

 ∑
j+k=n

n!

j!k!
pjqk

 tnAn .

(d) Suppose that A = RΛL, where RL = I and Λ is the diagonal matrix
of eigenvalues. Allow the possibility that R, L, and Λ are complex.
Show that S(t) = RetΛL. Show that etΛ is diagonal and find formulas
for the numbers on the diagonal.

(e) The Python package linalg has routines for computing the eigen-
values and eigenvectors of a non-symmetric matrix. Use this to
write a Python module that evaluates S(t) given A and t. Test

your module by calling it for the case A =

(
0 1
−1 0

)
. In this case

S(t) =

(
cos(t) sin(t)
− sin(t) cos(t)

)
. Warning: because of roundoff in complex

arithmetic, the computed result might not be real. The imaginary
part of the computed S(t) is all error.

4. Another way to compute the matrix exponential is to compute S(∆t) using
a few terms of the Taylor series, then take powers to apply the formula
S(n∆t) = S(∆t)n. Experiment with k terms of the Taylor series. Then
choose n depending on t, and then ∆t = t/n so that k terms are enough
to get S(∆t) ten significant digits.

(a) Compute the Taylor series numerically using Horner’s rule which is

x0I + x1A + · · ·+ xk−1A
k−1 + xkA

k

= x0I + x1A + · · ·+ xk−1A
k−1

(
I +

xk

xk−1
A

)
= x0I + x1A + · · ·+ xk−2A

k−2

(
I +

xk−1

xk−2
A

(
I +

xk

xk−1
A

))
= · · ·

= x0

(
I +

x1

x0
A

(
I +

x2

x1
A (· · · )

))
This gives a way to calculate the k term sum using k matrix multi-
plications. Doing it directly takes O(k2) multiplications.
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(b) Compute a power Bn in the following way. First compute B1 = B2,

then B2 = B2
1 = B4, then B3 = B2

2 = B23

, etc. Then write n =
n0 + 2n1 + 4n2 + · · · , where nj = 0 of nj = 1 (expand n base 2) and
compute

Bn =
∏
nj=1

Bj .

Show that this computes Bn in O(log(n)) matrix multiplications.

(c) Test your program on the A from problem 3.

5. Consider the differential equation system

dxk

dt
= p(xk+1 − xk) + q(xk−1 − xk) if 1 < k < n

dx1

dt
= p(x2 − x1)

dxn

dt
= q(xn−1 − xn) .

Here, xk could represent the number of particles at spot k, and p represents
the rate at which particles move to the left (from k + 1 to k or from k to
k−1) and q represents the rate at which they move to the right. Particles
cannot go from k = 1 to k = 0 or from k = n to k = n+1. Try your codes
from Problem 4 and Problem 5 on this system. If you explore p > q and n
relatively large, you should find that the eigenvalue method breaks down
because the eigenvalue/eigenvector calculation is too ill conditioned. You
will need code to create the matrix A. Note (check) that M =

∑
k xk(t)

is a constant. Start with x1(n) = 1, and xk(0) = 0 for k < n. The
solution has x(t)→ x∗ as t→∞. You can find x∗ by setting Ax∗ = 0 and∑

k xk = 1. Here are some things to explore as time and interest permits

• Find values of n, p > 0, q > 0, and t so that the eigenvalue method
breaks down.

• The eigenvalues of A are all real. Monitor the imaginary parts of the
computed eigenvalues.

• The problem of finding etA for this problem is well conditioned. The
eigenvalue method is an unstable algorithm.

6. Write Python code to compute the matrix product AB when A and B are
n×n matrices. You can initialize the matrices how you want because the
values are unimportant. Do it in three ways:

• Scalar loop, as

for i in range(n):

for j in range(n):

c[i,j] = 0.

for k in range(n):

c[i,j] += a[i,k]*b[k,j]
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• Hand coded vector loops, as (names and syntax wrong, please fix)

c[i,j] = np.sum( a[i,:]*b[:,j] )

• The numpy matrix multiply routine, as

c = np.linalg.matrixMultiply(a, b)

Learn how to time sections of Python code. Print the times for the three
methods as a function of n for an interesting range of n. Comment on the
differences.
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