Assignment 1, due September 20

Corrections: [none yet]

1. We want to design a special floating point format that uses the fewest bits so that any x with $|x| \leq 400$ and $|x|>.1$ is represented to $.05 \%$ relative accuracy (the relative error is not more than $5 \cdot 10^{-4}$). We need one sign bit, q exponent bits, p fraction bits and an exponent offset e_{0}. (These are car velocities in km / h. No car (hopefully) goes faster than $400 \mathrm{~km} / \mathrm{hr} \approx 240 \mathrm{mi} / \mathrm{hr}$, and $.1 \mathrm{~km} / \mathrm{hr} \approx .06 \mathrm{mi} / \mathrm{hr}$ is a "rolling stop".) Note that the range of speed exponents is not symmetric, so you may be able to save a bit by choosing the offset carefully.
2. We want to evaluate $f(x)=e^{x}-1$ accurately in double precision floating point when x is close to zero. For this problem, assume that exponentiation and multiplication and addition are done with relative accuracy at least $\epsilon_{\text {mach }}$, the machine precision of double precision arithmetic.
(a) Estimate the relative accuracy of the direct code $f=n p \cdot \exp (x)-1$. Assume that $\mathrm{np} \cdot \exp (\mathrm{x})$ evaluates e^{x} to full double precision floating point accuracy.
(b) Estimate the relative accuracy of the Taylor series approximation $\mathrm{f}=\mathrm{x}+.5 * \mathrm{x} * \mathrm{x}$. Assume that the arithmetic is done with double precision floating point accuracy and that the error in the Taylor approximation is $f(x)-\left(x+.5 x^{2}\right)=(1 / 6) x^{3}$. (This is an accurate estimate of the error for the very small x we have in mind.)
(c) Consider the hybrid approximation
```
if ( np.abs(x) < epsilon ):
    f = x + . 5*x*x
else:
    f = np.exp(x)-1.
```

Within the range of normalized numbers, the error for this approximation is largest around $x= \pm \epsilon$. For $|x|<\epsilon$ the Taylor expansion becomes more accurate as $|x|$ decreases. For $|x|>\epsilon$, the direct formula becomes more accurate as $|x|$ increases. Find the ϵ that minimizes this largest error. What is the worst case accuracy, given in the number of correct digits of the answer?
3. The logistic function with positive length parameter r is

$$
s(x, r)=\frac{e^{x / r}}{1+e^{x / r}}
$$

As a function of x, this function switches from $s \approx 0$ when x is a large negative number to $s \approx 1$ when x is a large positive number. It is used in logistic regression, which is one of the tools used in data science for classification. The parameter r controls the range of x values where the transition from 0 to 1 happens. The logistic function is used to create soft threshholds, which are an alternative to hard threshholds. Hard threshholds are equal to zero (on one side of some criterion) or one (on the other side). Evaluate the condition number of the problem of evaluating $s(x, 1)$ (set $r=1$ for simplicity). Figure out whether it is well conditioned for large negative and positive x. The inverse logistic function problem is find x so that $s(x)=y$, for a given y between 0 and 1 . Figure out whether the inverse logistic problem is well conditioned for y near 0 and y near 1 .
4. The Fibonacci recurrence relation is

$$
f_{n+1}=f_{n}+f_{n-1}
$$

The initial conditions are the values f_{0} and f_{1}. Once the initial conditions are specified, the rest of the numbers f_{n} are determined. The target values are f_{L} and f_{L+1}, where L is some positive integer. We are interested in Fibonacci sequences of length L. The Fibonacci numbers are produced using initial conditions $f_{0}=1$ and $f_{1}=1$.
(a) Show that any Fibonacci sequence has the form

$$
f_{n}=a_{1} z_{n}^{n}+a_{2} z_{2}^{n} .
$$

The coefficients a_{1} and a_{2} depend on the initial conditions but the roots z_{1} and z_{2} do not. Hint: The sequence $f_{n}=z^{n}$ satisfies the Fibonacci recurrence if and only if z is one of the roots of a given quadratic characteristic polynomial. Show it is always possible to find a_{1} and a_{2} so that $f_{0}=a_{1}+a_{2}$ and $f_{1}=a_{1} z_{1}+a_{2} z_{2}$. The roots z_{1} and z_{2} are positive. Suppose $z_{1}>z_{2}$ The larger root is the golden mean.
(b) Show that $f_{n+1} / f_{n} \rightarrow z_{1}$ as $n \rightarrow \infty$ unless $a_{1}=0$. In particular, show that the Fibonacci numbers have this property.
(c) Show that the condition number of computing the target values from the initial conditions is bounded as $L \rightarrow \infty$ unless $a_{1}=0$, when the condition number grows exponentially with L.
(d) Consider initial conditions with $a_{1} \neq 0$ and consider the problem of computing the initial conditions from the target values. Show that the condition number of this problem grows exponentially with L.
5. Write a code in Python 3 related to Problem 4. The code should start with initial conditions (given in the code), compute target values, then reverse the recurrence to re-compute the initial conditions from the target values

$$
f_{0}, f_{1} \xrightarrow{\text { floating point }} \widehat{f}_{L}, \widehat{f}_{L+1} \xrightarrow{\text { floating point }} \widehat{f}_{0}, \widehat{f}_{1}
$$

Print the error $f_{0}=\widehat{f_{0}}$ as a function of L.
(a) Start with $f_{0}=\sqrt{2}$ and $f_{1}=e$. Show that the errors are roughly explained by the condition number analysis of Problem 4.
(b) Repeat the exercise with the Fibonacci numbers. Why is there no error until L reaches a given point? What determines the L value where error starts?

