Scientific Computing, Courant Institute, Fall 2018

http://www.math.nyu.edu/faculty/goodman/teaching/ScientificComputing2018/ScientificComputing.html before doing any work on the assignment.

Final exam practice

Information

- The final exam is Thursday, December 20 in room 1302 from 5:10 to 7pm.
- The exam starts promptly at 5:10, don't be late.
- You are allowed one standard size $(8\frac{1}{2}'' \times 11'')$ sheet of paper with any information you like. No other information or electronics are allowed.
- Write all answers in one or more blue books provided. Hand in only the blue books.
- Write your name on each blue book and number them (e.g. 1 of 1, 2 of 3 etc.)
- You will receive 20% credit for question if you write nothing.
- Anything you do write may be counted against you if it is wrong.
- Cross out anything you think is wrong. If you have two answers, the wrong one will count against the right one.
- On multiple choice or true/false questions, give a few words or sentences of explanation. You may lose points even with a correct answer, if it isn't explained.
- Suppose that W_t is standard Brownian motion and $dX_t = W_t^2 dt$. Evaluate the quadratic variation

Practice questions

True/False

- 1. The local convergence for gradient descent optimization is faster than for Newton's method.
- 2. Spline interpolation applies when the interpolation points are not evenly spaced.
- 3. FFT based trigonometric interpolation applies when the points are not evenly spaced.

Multiple choice

- 1. Which of the following numbers is represented exactly in the IEEE double precision floating point standard?
 - (a) 1.33
 - (b) *e*
 - (c) 1.25×10^{20}
 - (d) $1 + 1.23456789 \times 10^{-13}$.
- 2. Suppose A and B are n×n matrices and we want to calculate the matrix product C = AB. This can be done in vector Python with a loop over i and j containing C[i,j] = np.dot(A[i,:],B[:,j]). Or it can be done with the single instruction C=np.matmul(A,B). Which of the following is true about the relative speed for large n?
 - (a) The two methods are about as fast.
 - (b) The np.matmul method is faster because Python is interpreted, not compiled.
 - (c) The np.matmul method is faster because it used block matrix multiplication that makes better use of cache memory.
 - (d) The np.dot method is faster because dot products are faster than matrix multiplies.
- 3. Which of the following operations is not computed to high relative accuracy in double precision floating point using built-in Python procedures for special functions:
 - (a) $\sqrt{123456789} + \sqrt{123456788}$ (the numbers differ in the last digit)
 - (b) $\sqrt{123456789} \sqrt{123456788}$ (the numbers differ in the last digit) (c) e^{1000}
 - (d) e^{-1000}

Full answer questions

1. Find an estimator of the form

$$f'(x) = \frac{af(x) + bf(x+h) + cf(x+2h)}{h} + O(h^p) + O(h$$

Find the coefficients a, b, and c and the optimal order, p.

2. Find an estimator of the form

$$\int_0^h f(x) dx = h \left[a f(0) + b f(h) + c f(2h) \right] + O(h^p) + O(h$$

Find the coefficients and the best possible p.

3. Suppose $f_0 = f_1 = g_0 = g_1$ and

$$f_{n+1} = f_n + f_{n-1}$$

$$g_{n+1} = \frac{3}{2}g_n + \frac{1}{3}g_{n-1} .$$

Show that $f_n/g_n \to 0$ as $n \to \infty$ exponentially. Hint: (to the accuracy given) $\sqrt{5} = 2.236$ and $\sqrt{2.25 + \frac{4}{3}} = 1.893$.

4. The solution to a differential equation is calculated with time step Δt . The exact answer is 4.28×10^7 . The computed errors at time T are

Δt	.1	.05	.025
error	32.61	4.17	.522

Estimate the order of accuracy of the method from this information.