Principles of Scientific Computing

Jonathan Goodman
Department of Mathematics
Courant Institute of Mathematical Sciences
New York University
goodman@cims.nyu.edu

Date compiled: January 21, 2003

Preface

Last revised: January 2, 2003

This book grew out of a course in Scientific Computing for graduate students
at New York University, a first course that covers the basic principles common to
most applications. It addresses the question: What are the basics that everyone
doing scientific computing needs to know? The answer is: some mathematics,
the most basic algorithms, a bit about the workings of a computer, and an idea
how to build software for scientific computing applications. Naturally, specific
applications (e.g. computing stresses in a bridge) also require more advanced
specific material (enginering mechanics, finite elements, etc.).

The principles of scientific computing are a collection of simple, almost obvi-
ous, ideas and points of view. The practitioner is hardly a cook relying printed
recipies or downoaded software, but a creative problem solver who can devise
algorithms and build trustworthy software for new computational challenges. 1
hope that the reader will come to share my delight in the simplicity and admi-
ration of the power of these simple principles.

This book requires a facility with the mathematics that is common to most
quantitative modeling: multivariate calculus, linear algebra, and basic proba-
bility. These subjects may be reviewed using books in the Schaum’s Qutline
series, particularly, Multivariate Calculus, Linear Algebra, and Probability. The
exercises require programming in C or C++. The differences between these are
not so important for the small simple programs called for. The book is struc-
tured so that an ambitious student can learn programming as he or she goes.
See Appendix I. It is possible to do the programming in Fortran, but students
are discouraged from using a programming language, such as Java, Visual Basic,
or Matlab, not designed for efficient large scale scientific computing.

Visualization and data analysis are an essential part of scientific computing.
We recommend Matlab as a simple and reliable system for visualization and
examination of computational results. Students familiar with other scientific
visualization software are welcome to use it. However, we warn the student
that Mathematica is often unreliable. Excel users will need to be sophisticated
enough to turn off the default features intended for business presentations, such
as shading on bar graphs.

Many students will want to compute on their personal computer. Any cur-
rent laptop or desktop should be powerful enough. The student will need a
C/C++ compiler and visualization software such as Matlab. Some of the exer-

ii PREFACE

cises require the student to download files and software, but always plain text
files or C/C++ source code.

Many of my views on scientific computing were formed during my association
with the remarkable group of faculty and graduate students at Serra House,
the numerical analysis group of the Computer Science Department of Stanford
University, in the early 1980’s. I mention in particularly Marsha Berger, Petter
Bjorstad, Bill Coughran, Gene Golub, Bill Gropp, Eric Grosse, Bob Higdon,
Randy LeVeque, Steve Nash, Joe Oliger, Michael Overton, Nick Trefethen, and
Margaret Wright. Colleagues at the Courant Institute who have influenced this
book include Leslie Greengard, Gene Isaacson, Peter Lax, Charlie Peskin, Luis
Reyna, Mike Shelley, and Olof Widlund. I also acknowledge the lovely book
Numerical Methods by Germund Dahlquist and Ake Bjork.

Contents

Preface
1 Introduction

2 Sources of Error
2.1 Relative and absolute error oo
2.2 Computer arithmetic,
2.2.1 Introducing the standard
2.2.2 Representation of numbers, arithmetic operations
2.2.3 Exceptions oo
2.3 Truncation error o
2.4 Tterative Methods
2.5 Statistical error in Monte Carlo
2.6 Error amplification and unstable algorithms
2.7 Condition number and ill conditioned problems
2.8 Software tips
2.8.1 Floating point numbers are (almost) never equal
2.8.2 Plotting data curves
2.9 Furtherreading
2.10 Exercises e

3 NumericalAnalysis
3.1 Software tips
3.1.1 Write flexible and verifiable codes
3.1.2 Report failures oo
3.2 EXercises

il

iv

CONTENTS

Chapter 1

Introduction

Scientific Computing is truly multidisciplinary.
do question 2.77
see figure 2.9
See 2.1 relatively soon.

CHAPTER 1. INTRODUCTION

Chapter 2

Sources of Error

In scientific computing, we never expect to get the exact answer. Inexactness
is practically the definition of scientific computing. Getting the exact answer,
generally with integers or rational numbers, is symbolic computing, an interesting
but distinct subject.

To put this technically, suppose we are trying to compute the number A.
The computer will produce an approximation, which we call A. This notation is
borrowed from statistics, where an estimate for a quantity A is often called A.
Whether A and A agree to 16 decimal places or differ by 30%, we never expect
the identity A = A to be true in the mathematical sense, if only because we do
not have an exact representation for A. For example, if we need to find z so
that 22 = 175, we might get 13 or 13.22876, depending on our computational
method, but we cannot represent the exact v/175 if we only allow finitely many
digits.

Since the answer is never exactly right, it can be hard to know whether
errors in computed results are due to a poor algorithm, an impossible problem
(technically, ill conditioned), or a software bug. Understanding the sources of
error will help us know their behavior well enough to recognize them and tell
them apart. We will use this constantly in devising algorithms and building and
testing software.

Of the four sources of error mentioned, we discuss only roundoff error in
detail here. The others are discussed at length in later chapters. To explain
roundoff error, we pause to discuss computer floating point arithmetic in some
detail. Thanks to the IEEE Floating Point Standard [], it we can predict the
outcome of inexact computer arithmetic in most cases on most computers.

2.1 Relative and absolute error

The absolute error in approximating A by Aise = A— A. The relative er-
ror, which is € = e/A, is usaually more meaningful. Some algebra puts these

3

4 CHAPTER 2. SOURCES OF ERROR
definitions into the form
A=A+e (absolute error) , A=A (1+e€) (relative error). (2.1)

For example, the absolute error in approximating A = /175 by A=13ise=
13.22876 - - - —13 ~ .229. The corresponding relative error is e/A ~ .229/13.23 ~
.017 < 2%. Saying that the error is less than 2% is probably more informative
than saying that the error is less than .25 = 1/4.

Relative error is a dimensionless measure of error. In practical situations,
the desired A probably has units, seconds, meters, etc. Knowing that the error
is, say, .229 meters does not tell you whether that is large or small. If the correct
length is half a meter, then .229 meters is a large error. If the correct length
is 13.22876 - - - meters, the approximate answer is off by less than 2%. If we
measure lengths in centimeters, then the error becomes 22.9cm. Is 22.9 a large
error? It is less than 2% of the exact length, 1,322.876---cm

2.2 Computer arithmetic

One of the many sources of error in scientific computing is inexact computer
arithmetic, which is called roundoff error. Roundoff error is inevitable but
its consequences vary. Some computations yield nearly exact results, while
others give answers that are completely wrong. This is true even for problems
that involve no other approximations. For example, solving systems of linear
equations using gaussian elimination would give the exact answer if all the
computations were performed exactly. When these computations are done in
finite precision floating point arithmetic, we might or might not get something
close to the right answer.

A single floating point operation almost always produces high relative ac-
curacy. For given B and C, let A = B (O C, with () standing for one of the
arithmetic operations: addition, subtraction, multiplication, or division. Then,
with the same B and C, the computer will produce A which satisfies (2.1)
with [e| < € 0ch, Where € .1 is the machine precision. Normally €., is
2724 ~ 6-10~° for single precision and 273 ~ 107 !¢ for double precision. The
rough approximation 2!° = 1024 ~ 1000 = 103 gives 224 = 24.220 = 16-(2!Y)? ~
16+ (10%)%2 = 16 - 105, so 2724 ~ 1 6107 6 =6.25-1078. Also, 2°2 ~ 8-10' so the
double precision machine premsmn is about 1 10_15 =1.25-10"16.

With uniformly high relative accuracy, how does computer arithmetic ever
lead to the wrong answer? The answer is that A may not be computed from
the exact B and C, but from computed approximations B and C The relative
accuracy of A can be worse than the relative accuracies of B and C. High
relative accuracy can lost, quickly or slowly, during a multi stage computation.
See Section 6, below.

2.2. COMPUTER ARITHMETIC)

2.2.1 Introducing the standard

The IEEE floating point standard is a set of conventions on computer repre-
sentation and processing of floating point numbers. Modern computers follow
these standards for the most part. The standard has four main goals:

1. To make floating point arithmetic as accurate as possible.
2. To produce sensible outcomes in exceptional situations.

3. To standardize floating point operations across computers.
4. To give the programmer control over exception handling.

The standard specifies exactly how numbers are represented in hardware.
The most basic unit of information that a computer stores is a bit, a variable
whose value may be either 0 or 1. Bits are organized into 32 bit or 64 bit words
words. A 32 bit word is a string of 32 bits. The number of 32 bit words, or bit
strings, is approximately (recall 210 ~ 10%) 232 = 22.239 ~ 4 x (10%)? = 4 billion.
A typical computer should take well under a minute to list all 32 bit words. A
computer running at 1GHz in theory can perform one billion operations per
second, though that is rarely achieved in practice. The number of 64 bit words
is about 1.6 - 10'° 64, which is too many to be listed in a year.

There are two basic computer data types that represent numbers. A fixed
point number, or integer, has type int or longint in C/C++, depending on the
number of bits. Floating point numbers have type float for single precision
32 bit words, and double for double precision, or 64 bit words. In early C
compilers, a float by default had 64 bits instead of 32.

Integer arithmetic, also called fixed point, is very simple. For example, with
32 bit integers, the 4 - 10° distinct words represent that many consequtive inte-
gers, filling the range from about —2-10° to about 2-10°. Addition, subtraction,
and multiplication are done exactly whenever the answer is within this range.
The result is unpredictable when the answer is out of range (overflow). Results
of integer division are rounded down to the nearest integer below the answer.

2.2.2 Representation of numbers, arithmetic operations

For scientific computing, integer arithmetic has two drawbacks. One is that
there is no representation for numbers that are not integers. Equally important
is the small range of values. The number of dollars in the US national debt,
several trillion (10'2), cannot be represented as a 32 bit integer but is easy to
approximate in 32 bit floating point.

A floating point number is a binary version of the exponential (“scientific”)
notation used on calculator displays. Consider the example expression:

—.2491E -5

which is one way a calculator could display the number —2.491 - 1076, This
expression consists of a sign bit, s = —, a mantissa, m = 2491 and an exponent,

6 CHAPTER 2. SOURCES OF ERROR

e = —5. The expression s.mEe corresponds to the number s-.m-10¢. Scientists
like to put the first digit of the mantissa on the left of the decimal point (—2.491-
10~°) while calculators put the whole thing on the right (—.2491-1075). In base
2 (binary) arithmetic, the scientists’ convention saves a bit, see below.

The IEEE format for floating point numbers replaces the base 10 with base
2, and makes a few other changes. When a 32 bit word (bit string) is interpreted
as a floating point number, the first bit is the sign bit, s = £. The next 8 bits
form the “exponent”, e, and the remaining 23 bits determine the “fraction”, f.
There are two possible signs, 28 = 256 possible exponents (ranging from 0 to
255), and 223 ~ 8 million possible fractions. Normally a floating point number
has the value

A=£27127(Lf), (2.2)

where f is base 2 and the notation (1.f), means that the expression 1.f is inter-
preted in base 2. Note that the mantissa is 1.f rather than just the fractional
part, f. Any number (except 0) can be normalized so that its base 2 mantissa
has the form 1.f. There is no need to store the “1.” explicitly, which saves one
bit.

For example, the number 2.752 - 103 = 2572 can be written

2752 = 2M 429 427 496
= 2" . (1+272427%+279)
= 2. (1+(.01), + (.0001), + (.00001),)
2. (1.01011),
Altogether, we have, using 11 = (1011),,
2752 = +(1.01011) D2 |

Thus, we have sign s = +. The exponent is e — 127 = 11 so that e = 138 =
(10001010),. The fraction is f = (01011000000000000000000),. The entire 32
bit string corresponding to 2.752 - 10? then is:

1 1000101001011000000000000000000
S —— f
S €

For arithmetic, the standard mandates the rule: the exact answer, correctly
rounded. For example, suppose x, y, and z are computer variables of type
float, and the computer executes the statement x = y / z;. Let B and C be
the numbers that correspond to the 32 bit strings y and z using the standard
(2.2). Let A be the exact mathematical quotient, A = B/C. Let A be the
number closest to A that can be represented exactly in the single floating point
format. The computer is supposed to set the bit string x equal to the bit string
representing that A. For exceptions to this rule, see below.

The ezxact answer correctly rounded rule implies that the only error in float-
ing point arithmetic comes from rounding the exact answer, A, to the nearest

2.2. COMPUTER ARITHMETIC 7

floating point number, A, Clearly, this rounding error is determined by the
distance between floating point numbers. The worst case would be to put A in
the middle of the largest gap between neighboring floating point numbers, B
and B’. For a floating point number of the form B = (1.f)s - 2P, the next larger
floating point number is usually B’ = (1.f)s - 2P, where we get f’ from f by
adding the smallest possible fraction, which is 2722 for 23 bit single precision
fractions. The relative size of the gap between B and B’ is, after some algebra,

. — B — B _ (1f/)2 - (].f)g _ 2723

B (1.f)2 (1.f)2

The largest € is given by the smallest denominator, which is (1.0---0)y = 1,
which gives e€mqr = 2723, The largest rounding error is half the gap size, which
gives the single precision machine precision €, .1, = 2724 stated above.

The 64 bit double precision floating point format allocates one bit for the
sign, 11 bits for the exponent, and the remaining 52 bits for the fraction. There-
fore its floating point precision is given by emach = 27>3. Double precision arith-
metic gives roughly 16 decimal digits of accuracy instead of 7 for single preci-
sion. There are 2'! possible exponents in double precision, ranging from 1023
to —1022. The largest double precision number is of the order of 21023 ~ 10307,
The largest single precision number is about 2'2¢ ~ 103%. Not only is dou-
ble precision arithmetic more accurate than single precision, but the range of
numbers is far greater.

2.2.3 Exceptions

The extreme exponents, e = 0 and e = 255 (e = 2! — 1 = 2047 for double
precision) do not correspond to numbers. Instead, they have carefully engineered
interpretations that make the IEEE standard distinctive. If e = 0, the value is

A =40.f-27125 (single precision), A = +0.f-272%46 (double precision).

This feature is called gradual underflow. Underflow is the situation in which
the result of an operation is not zero but is closer to zero than any floating
point number. The corresponding numbers are called denormalized. Gradual
underflow has the consequence that two floating point numbers are equal, x = v,
if and only if subtracting one from the other gives exactly zero.

Introducing denormalized numbers makes sense when you consider the spac-
ing between floating point numbers. If we exclude denormalized numbers then
the smallest positive floating pont number (in single precision) is A = 27126
(corresponding to e = 1 and f = 00---00 (23 zeros)) but the next positive
floating point number larger than A is B, which also has e = 1 but now has
f=100---01 (22 zeros and a 1). Because of the implicit leading 1 in 1.f, the
difference between B and A is 22 times smaller than the difference between A
and zero. That is, without gradual underflow, there is a large and unnecessary
gap between 0 and the nearest nonzero floating point number.

8 CHAPTER 2. SOURCES OF ERROR

The other extreme case, e = 255, has two subcases, inf (for infinity) if
f =0 and NaN (for Not a Number) if f # 0. C/C++ prints! “inf” and “NaN”
when you print out a variable in floating point format that has one of these
values. An arithmetic operation produces inf if the exact answer is larger than
the largest floating point number, or 1/x if x = £0. (Actually 1/ + 0 = +inf
and 1/ — 0 = -inf). Invalid operations such as sqrt(-1.), log(-4.), produce
NaN. Any operation involving a NaN produces another NaN. It is planned that
f will contain information about how or where in the program the NaN was
created but this is not standardized yet. Operations with inf are common
sense: inf + finite = inf, inf/inf = NaN, finite/inf = 0., inf — inf = NaN.

A floating point arithmetic operation is an exeption if the result is not a
normalized number in floating point format. The standard mandates that a
hardware flag (a binary bit of memory in the processor) should be set (given
the value 1) when an exception occurs. There should be a separate flag for
the underflow, inf, and NaN exceptions. The programmer should be able to
specify what happens when an exception flag is set. Either the program exection
continues without interruption or an exeption handler procedure is called. The
programmer should be able to write procedures that interface with the exception
handler to find out what happened and take appropriate action. Only the most
advanced and determined programmer will be able to do this. The rest of us
have the worst of both: the exception handler is called, which slows the program
execution but does nothing useful.

Many features of IEEE arithmetic are illustrated in Figure 2.1. Note that
€204 gives inf in single precision but not in double precision because the range of
values is larger in double precision. We see that inf and NaN work as promised.
The main rule, “exact answer correctly rounded”, explains why adding pairs
of floating point numbers is commutative: the mathematical sums are equal so
they round to the same floating point number. This does not force addition
to be associative, which it is not. Multiplication is also commutitative but
not associative. The division operator gives integer or floating point division
depending on the types of the operands. Integer arithmetic truncates the result
to the next lower integer rather than rounding it to the nearest integer.

// A program that explores floating point arithmetic in the IEEE
// floating point standard. The source code is SourcesOfError.C.

#include <iostream.h>
#include <math.h>

int main() {

float xs, ys, zs, ws; // Some single precision variables.
double yd; // A double precision variable.

n keeping with the Microsoft pattern of maximizing incompatibility, the its compiler
prints something different.

2.2. COMPUTER ARITHMETIC 9

xs = 204.; // Take an exponential that is out of range.
ys = exp(xs);
cout << "The single precision exponential of " << xs <<
" is " << ys << endl;
yd = exp (xs); // In double precision, it is in range.
cout << "The double precision exponential of " << xs <<
" is " << yd << endl;

zs = xs / ys; // Divide a normal number by infinity.
cout << xs << " divided by " << ys << " gives " << zs << endl;

WS = ys; // Divide infinity by infinity.
zs = ws / ys;
cout << ws << " divided by " << ys << " gives " << zs << endl;

zs = sqrt(-1.) ; // sqrt(-1) should be NaN.
cout << "sqrt(-1.) is " << zs << endl;

WS = XS + zs; // Add NaN to a normal number.
cout << xs << " + " << zg << " gives " << ws << endl;

Xs = sin(1.); // Some generic single precision numbers.
ys = 100. *sin(2.);
zs = 10000.*sin(3.);
float xsPys, ysPxs, xsPzs, zsPxs; // xsPzx holds xs + zs, etc.
xsPys = xs + ys;
ysPxs = ys + xs; // Try commuting pairs.
xsPzs = xs + zs;
zsPxs = zs + xs;
if ((xsPys == ysPxs) && (xsPzs == zsPxs))
cout << "Adding " << xs << " " << ys << " and "<< zs <<
" in pairs commutes." << endl;

else
cout << "Adding " << xs << " " << ys << " and "<< zs <<
" in pairs does not commute." << endl;
float xsPysPzs, ysPzsPxs; // Test for associativity.

xsPysPzs = (xs + ys) + zs;
ysPzsPxs = (ys + zs) + xs;
if (xsPysPzs == ysPzsPxs)
cout << "Adding " << xs << " " << ys << " and "<< zs <<
" is associative." << endl;
else

10 CHAPTER 2. SOURCES OF ERROR

cout << "Adding " << xs << " " << ys << " and "<< zs <<
" is not associative." << endl;

int xi, yi; // Some integer variables.

xi = 9; // Compute the quotient using integer
yi = 10; // and floating point arithmetic.

zs = xi/yi;

ws = ((float) xi) / ((float) yi); // Convert, then divide.

cout << "Integer division of " << xi << " by " << yi << " gives " <<
zs << ". Floating point gives " << ws << endl;

return(0) ;

3

Figure 2.1: A program that illustrates some of the features of arithmetic using
the IEEFE floating point standard.

2.3 Truncation error

Truncation error is the error in analytical approximations such as

fl@+h)— f(z)
f(z) = — (2.3)
This is not an exact formula, but it can be a useful approximation. We often
think of truncation error as arising from truncating a Taylor series. In this case,
the Taylor series formula,

Flo+B) = f() + hf'@) + 5hF" @)+

is truncated by neglecting all the terms after the first two on the right. This
leaves the approximation

fx+h) ~ f(x) +hf'(x),

which can be rearranged to give (2.3). Usually, truncation is the main source of
error in numerical integration or solution of differential equations. The analysis
of truncation error using Taylor series will occupy the next two chapters.

As an example, we take f(x) = ze®, x = 1, and a variety of h values. The
results are in Figure 2.3. In Chapter 3 we will see that in exact arithmetic (i.e.
without rounding), the error would be roughly proportional th h for small h.
These numbers were computed in double precision arithmetic and the effect of
roundoff error is appearent in for the smallest h values. It is rare in a practical
application that i would be so small that roundoff error would be a significant
factor in the overall error.

2.4. ITERATIVE METHODS 11
h 3 01 107° 108 10710
| 684 5.48 5.4366 5.436564 5.436562
etor | 1.40 | 4.10-1072 | 4.08-107° | =5.76-10"% | —1.35-10°°

Figure 2.2: Estimates of f’(z) using (2.3). The error is ey, which is a combi-
nation of truncation and roundoff error. Roundoff error is apparent only in the
last two estimates.

n 1 3 6 10 20 50
Ty 1 1.46 1.80 1.751 1.74555 1.745528
en | =745 | =277 [55-1072 | 5.9-1073 | 2.3-107° | 1.2- 10712

Figure 2.3: Iterates of z,41 = In(y) — In(z,,) illustrating convergence to a limit
that satisfies the equation ze® = y. The error is e, = z,, — . Here, y = 10.

2.4 Iterative Methods

Suppose we want to find a number, A, by solving an equation. Often it is im-
possible to find a formula for the solution. Instead, iterative methods construct
a sequence of approximate solutions, A,, for n = 1,2,... . Hopefully, the ap-
proximations converge to the right answer: A,, — A as n — oo. In practice, we
must stop the iteration process for some large but finite n and accept that A,
as the approximate answer.

For example, suppose we have a y > 0 and we want to find z with ze” = y.
There is not a formula for z, but we can write a program to carry out the
iteration: 1 = 1, x,41 = In(y) — In(z,,). The numbers z,, are the iterates. If
the limit of the iterates exists, x,, — = exists as n — oo, then that x should be
a fized point of the iteration, i.e. x = In(y) — In(z). Figure 2.4 demonstrates the
convergence of the iterates in this case. If we stop after 10 iterations, the 20th
iterate has an error egy ~ 2.3 - 1072, which might be small enough, depending
on the application.

2.5 Statistical error in Monte Carlo

Monte Carlo is a computational technique that uses random numbers as a com-
putational tool. For example, we may be able to use the computer random
number generator to create a sequence of random variables X, X5, ..., with
the same distribution. We could use these samples to estimate the average, A,
by the computer generated sample mean

Statistical error is the difference between the estimate A and the correct answer,
A. Monte Carlo statistical errors typically would be larger than roundoff or

12 CHAPTER 2. SOURCES OF ERROR

n 10 100 10* 10° 10° 109
A .603 518 511 .5004 .4996 4991
error | .103 [1.8-1072 [1.1-1072 [44-107%*] —40-107% | =8.7-107¢

Figure 2.4: Statistical errors in a demonstration Monte Carlo computation.

truncation errors. This makes Monte Carlo a method of last resort, to be used
only when other methods are not available.

We illustrate the behavior of statistical error with a simple example. Here
the X} are independent random variables with the same probability distribu-
tion that have average value A = .5. Figure 2.5 gives the approximations and
statistical errors for several values of n. The value n = 106 is repeated several
times to illustrate the fact that statistical error is random (see Chapter mc*me
for a clarification of this). Note the size of the errors even with a million samples
and compare these to the errors in Figures 7?7 and 77?.

2.6 Error amplification and unstable algorithms

Errors can be amplified during sequence of computational steps. For example,
suppose we are using the divided difference (2.3) to approximate f’(x) using
approximate values]?1 = f(z) + €1 and fg = f(x 4+ h) + e2. This is practically
inevitable, since we cannot evaluate f exactly. Using these values gives

f($+h)—f(l“)+€2—€1 Le

h h "
= fl(x)+ ey +eam+er .

F

Here ey, is the truncation error

e = w — f(x),

e, is the roundoff error in evaluatmg (fg - fl) /h, in floating point, given the

floating point values f1 and f1 The remaining error, and often the largest, is
the amplification error
€y — €1
€am = n

We see that the errors e; and ey are amplified by the factor 1/h, which is quite
large if h is small. For example, if A = .01, then the error in evaluating f’ is
likely to be a hundred times larger than the error in approximating f.

This point may be put in a more technical form: addition or subtraction
with cancellation can amplify relative errors in the operands. This is only true
for relative error, which is a major reason relative error is important. Consider
the operations A = B+ C and A=B+C. We suppose for simplicity that the

2.6. ERROR AMPLIFICATION AND UNSTABLE ALGORITHMS 13

sum is done exactly, so that all the error in A is due to error in the operands, B
and C. The absolute and relative errors, e4, €4, etc. are defined by (see (2.1):

A= A+es = (1+€a)A B = B+ep = (14€p)B , C= C+ec = (1+€ec)C .

With absolute errors there are no surprises: e4 = eg + ec. We do not know
the signs of ep and ec, but we can write |es| < |eg| + |ec|. This says that
the magnitude of the absolute error of the result is at most the sum of the
absolute errors in the operands. If floating point arithmetic were to produce
high absolute accuracy, which it does not, we could perform tens of thousands
of single precision operations always come out with high absolute accuracy.

With relative error, amplification through cancellation is possible. The rel-
ative error of A may be larger or much larger than sum of the relative errors in
the operands. Some algebra leads to the formula

leal = [esWp + ecWe| < max(legl, |ec|)(|Ws| + [Wel) (2.4)
where
B C
= — = :1.
We=prc - We=gpig Wetle

If B and C have the same sign, then |Wg| = [W¢| = 1, and (2.4) shows that
lea| is less than both |ea| and |e4]: the relative error has not been amplified.
On the other hand, if B = 1.01 and C = —1, then |Wg| = |W¢| = 100: the
relative error may be amplified by a factor of 100.

Cancellation is the situation A = B4+C (or A= B—C) and |A| < |B|+|C|.
Addition has cancellation if the operands B and C' have opposite signs. The
previous paragraph shows that addition and subtraction amplify relative errors
only if there is cancellation. A similar argument shows that multiplication and
division produce high relative accuracy in (almost) all cases, no cancellation
there. Performing 1,000 arithmetic operations will generate a relative error not
larger than 1000€,,, , .5, and probably much smaller, if there is no cancellation
in the additions and subtractions.

It is possible to lose many decimal places of accuracy in a single subtraction.
This is called catistrophic cancellation. More insideous is the possiblilty of small
error amplification at each stage of a long calculation. For example, if we start
with a relative error of 10716 characteristic of double precision arithmetic and
amplify by 5% in each of 1000 steps, then we have well over 100% relative error
at the end. A computational algorithm is called unstable if it loses accuracy
because of cancellation, either catastrophically or, which is worse, gradually.
One of the main uses of mathematical analysis in scientific computing is in
understanding the stability of multistage computational algorithms.

Inaccuracy because of an unstable algorithm very is hard to discover by
standard debugging techniques. In a large calculation, the error may grow a
seemingly negligible amount at each step but grow to swamp the correct answer
by the time the computation is finished.

14 CHAPTER 2. SOURCES OF ERROR

2.7 Condition number and ill conditioned prob-
lems

The condition number of a computational problem measures the sensitivity of
the answer to small changes in the data, in relative terms. The condition number
limits the accuracy we can expect to achieve in a computation even with the
best algorithm. If a problem is sufficiently #ll conditioned, the condition number
is too large, then even inevativle rounding errors in the input may lead to
unacceptable errors in A.

We write A(x) to indicate that the answer, A, depends on the data, z. In
the simplest case, both A and z are single numbers, and A(z) is a differentiable
function of z. A perturbation in the data, Az, will lead to a change in the
answer, AA = A(z + Az) — A(z). If Az is small enough, AA/Azx ~ da'(z), so
that

AA=~ Al(z)Az .

The absolute change in the answer is related to the absolute change in the data
by the derivative, A’.
The relative change of the answer is related to the relative change in the
data by the condition number, x:
AA Az
— R K— . (2.5)
A x
For small Az, we may use the derivative approximation to get, after a bit of

algebra,
oo BAA
Ax/z A
Everybody’s definition of k differs from this one in that nobody allows the
condition number to be negative; they use the absolute value of this x:

(2.6)

This has the property that the ratio of the relative size of |AA| to the relative
size of Ax is not very sensitive to Az, provided Az is small enough:

AAl/|A
% ~ K , for small Az. (2.7)
z|/|z

In most real problems, both the answer and the data are more complex than
a single number. We still write Az and AA for perturbations in the data and
answer, but now norms |[|Az|| and ||AA|| measure the size of the perturbation.
We will discuss norms in Chapter ?7?. A measure of the relative size of Ax
is ||Az|| /||z|. Unlike the univariate case (2.7), here ||AA|| depends on the
direction of Az, not just its size. The condition number is taken to be the worst
case sensitivity:

o [AAl /AN
Ax small HA{EH / ||$H

2.8. SOFTWARE TIPS 15

double x = (double(l)) / 7, yil, y2;
yl=x+x+x +x + X;

y2 = b*x;
if (y1 == y2) cout << "Equal" << endl;
else cout << "Not equal" << endl;

Figure 2.5: A code fragment in which roundoff error can lead to numbers that
should be equal in exact arithmetic not being equal in floating point.

We rewrite this to resemble (2.5) by saying that is the smallest number so

that
[AA]

1A]

[Az]]
]

<z~ K , for all small enough Ax. (2.8)

Floating point rounding makes it is inevatible that |Ax /x| is of the order of
€mach- Lherefore, if K > 1/€,, p. than (2.5) or (2.8) show that AA will be
as large as A, total error. Unfortunately, condition numbers as large as 107 or
1016 occur in practice.

Computational errors caused by large condition number cannot be cured
by changing the computational algorithm. None of our discussion of condition
number referred to any particular computational algorithm. If a problem has

Anyone engaged in scientific computing should keep conditioning in mind.
He or she should be aware that a problem may be ill conditioned, and try to
estimate the condition number, at least roughly. High quality numerical software
often includes estimators of condition number with the results, which should be
checked. Even in complex situations, it may be possible to find an analogue of
(2.6) by differentiation. Chapter ?? has some examples.

2.8 Software tips

2.8.1 Floating point numbers are (almost) never equal

Because of inexact floating point arithmetic, two numbers that should be equal
in exact arithmetic often are not equal in the computer. For example, the
code in Figure 2.5 prints Not equal. In general, an equality test between two
variables of type float or double is a mistake. Even worse, if we have y1 =
y2; and then do not reassign either y1 or y2, many lines later the test (y1 ==
y2) may evaluate to false. For example, on a Pentium 4 chip there are 80
bit registers for holding variables of type double. The computer often holds a
variable in a register rather than returning it to memory to save time. If the
variable is returned to memory, only the 64 bits of the IEEE standard are stored,
the remaining 16 bits being lost. If y1 but not y2 was returned to memory, then
they may no longer be equal.

16 CHAPTER 2. SOURCES OF ERROR

double tStart, tFinal, t, dt;

int n;

tStart = . . . // Some code that determines the start
tFinal = . . . ; // and ending time and the number of

n = . . . 5 // equal size steps.

dt = (tFinal - tStart) / n; // The size of each step.

while (t = tStart, t < tFinal, t+= dt)
{. . .3 // Body of the loop does not assign t.

Figure 2.6: A code fragment illustrating a pitfall of using a floating point variable
to regulate a while loop.

double tStart, tFinal, t, dt;

int n, , 1

tStart = . . . // Some code that determines the start
tFinal = . . . ; // and ending time and the number of

n = . . . ; // equal size steps.

dt = (tFinal - tStart) / n; // The size of each step.

while (i = 0, i < n, i++)
{ t = tStart + i*dt; // In case the value of t is needed
. // in the loop body.

Figure 2.7: A code fragment using an integer variable to regulate the loop of
Figure 2.6.

A common mistake in this regard is to use floating point comparisons to
terminate a loop. Figure 2.6 illustrates this. In exact aritmetic this would give
the desired n iterations. Because of floating point arithmetic, after the n'”?
iteration, the variable t may be equal to tFinal but is much more likely to be
above or below roundoff error. Unfortunately, it is impossible to predict which
way the roundoff error will go. Therefore, we do not know whether this code
will execute the while loop body n or n + 1 times.

To guarantee n executions of the while loop body, use integer (fixed point)
variables, as illustrated in Figure 2.7

2.8.2 Plotting data curves

Careful visualization is a key step in understanding any data, particularly the
results of a numerical computation. Time spent making plots carefully and
thoughtfully is usually rewarded. The first rule is that a plot, like a piece of

2.9. FURTHER READING 17

Figure 2.8: Plots of the first n Fibonacci numbers, linear scale on the left, log
scale on the right

code, should be self documenting. In coding, we take the time to type comments,
format carefully, etc. In plots, we take the time to label axes and print titles
with relevant plot parameters. Otherwise, a week later nobody will know which
plot is which.

Careful scaling can make the data more clear. If you have a function f(z)
with values in the range from 1.2 to 1.22, the Matlab plot function will lable
the vertical axis from 0 to 2 and plot the data as a nearly horizontal line. This
is illustrated in Figure 2.8, where the first 70 Fibonacci numbers, are plotted
on a linear scale and a log scale. The Fibonacci numbers, f;, are defined by
fo=fi=1,and fi41 = fi + fi—1, for i > 1. On the linear scale, f; through
f57 sit on the horizontal axis. The log plot lets us see how big each of the 70
numbers is. It also makes it clear that log(f;) is nearly proportional to . If
log(f;) ~ a+bi, then f; ~ cd’. It is common to understand the data by plotting
it in various ways.

The Matlab script that made the plots of Figure 2.8 is in Figure 2.9. Nor-
mally, one need not comment up throwaway scripts like this. The only real
parameters are n, the largest ¢ value, and whether the plot is on a linear or log
scale. Both of those are recorded in the plot. Note the convenience and clarity
of not hard wiring n = 70. It would take just a moment to make plots up to
n = 100.

2.9 Further reading

The idea for starting a book on computing with a discussion of sources of error
comes from the book Numerical Methods and Software by David Hahaner, Cleve

18 CHAPTER 2. SOURCES OF ERROR

% Matlab code to generate and plot Fibonacci numbers.

clear £ % If you decrease the value of n, the plots still work.
n = 70; % The number of Fibonacci numbers to compute.
fi =1; % Start with fO = f1 = 1, as usual.
fiml = 1;
£f(1) = fi; % Record f(1) = f1.
for i = 2:n
fipl = fi + fiml; % £(i+1) = £(i) + £(i-1) is the recurrence
fiml = £fi; % relation that defines the Fibonacci numbers.
fi = fipil;
f(i) = fi; % Record f(i) for plotting.
end
plot(£)
xlabel(’i’) % The horizontal and vertical axes are
ylabel(’£’) % 1 and f respectively.
topTitle = sprintf(’Fibonacci up to n = %d’,n); % Put n into the title.
title(topTitle)
text(n/10, .9*f(n), ’Linear scale’);
grid % Make it easier to read values in the plot.

set (gcf, ’PaperPosition’, [.25 2.5 3.2 2.5]);
% Print a tiny image of the plot for the book.
print -dps FibLinear_se

Figure 2.9: A code fragment using an integer variable to regulate the loop of
Figure 2.6.

2.10. EXERCISES 19

Moler, and Steve Nash. Another interesting version is in Scientific Computing
by Michael Heath. My colleague, Michael Overton, has written a nice short
book IEEFE floating point arithmetic.

2.10 Exercises

1. For each of the following, indicate whether the statement is true or false
and explain your answer.

a. The for loop in line 4 below is will be executed 20 times no matter what
x is generated by rand(). Here float rand() generates random
numbers uniformly distributed in the interval [0, 1].

float x = 100*rand() + 2; // line 1
int n = 20; // line 2
float dy = x/n; // line 3
for (float y = 0; y < x; y += dy;) { // line 4

body does not change x, y, or dy }

b. The for loop in line 4 always will always be executed at least 20 times.
c. The for loop in line 4 never will be executed more than 20 times.

d. There is a function, f(z) that we wish to compute numerically. We
know that for z values around 1072, f is about 10° and f’ is about
109, This function is too ill conditioned to compute in single preci-
sion.

2. Show that in the IEEE floating point standard with any number of fraction
bits, €,,,cp 18 the largest floating point number, €, so that 1 + € gives 1
in floating point arithmetic. Whether this is mathematically equal to the
definition in the text depends on how ties are broken in rounding, but the
difference between the two definitions is irrelevent (show this).

3. Starting with the declarations

float x, y, z, w;
const float oneThird = 1/ (float) 3; // const means these can never
const float oneHalf = 1/ (float) 2; // be reassigned

we do lots of arithmetic on the variables x, y, z, w. In each case below,
determine whether the two arithmetic expressions result in the same float-
ing point number (down to the last bit) as long as no NaN or inf values
or denormalized numbers are produced.

a.

(x*xy)+(z-w)
(z-w)+ (y*x)

20

CHAPTER 2. SOURCES OF ERROR

b.
(x+ y)+z
x + (y + z)
c.
x * oneHalf + y * oneHalf
(x +y) * oneHalf
d. x * oneThird + y * oneThird

(x +y) * oneThird

4. The fibonacci numbers, fi, are defined by fo =1, f{ =1, and

fr+1 = fx + fr—1 (2.9)

for any integer £k > 1. A small perturbation of them, the pib numbers
(“p” instead of “f” to indicate a perturbation), py, are defined by py = 1,
p1 =1, and

Dk+1 = C* Pk + Pk—1
for any integer k > 1, where ¢ =1+ \/5/100.

a. Make one plot of log(f,,) and log(p,,), or plot the f,, and p,, together on
a log scale, as a function of n. On the plot, mark 1/¢,, . .» for single
and double precision arithmetic. This can be useful in answering the
questions below.

b. Rewrite (2.9) to express fy_1 in terms of fj and fr11. Use the com-
puted f, and f,,_1 to recompute fi for k =n—2,n-3,...,0. Make a
plot of the difference between the original fo = 1 and the recomputed
fo as a function of n. What n values result in no accuracy for the
recomputed fo?7 How do the results in single and double precision
differ?

c. Repeat b. for the pib numbers. Comment on the striking difference in
the way precision is lost in these two cases. Which is more typical?
Extra credit: predict the order of magnitude of the error in recom-
puting po using what you may know about recurrence relations and
what you should know about computer arithmetic.

. The binomial coefficients, a,, 1, are defined by

o n\ n!
Ik =\ k) T K — k)

To compute the ay j, for a given n, start with a, o = 1 and then use the
: _ n—k
recurrence relation a, jy+1 = Zﬁanyk.

a. For a fixed of n, compute the ay this way, noting the largest a,, and
the accuracy with which a,, , =1 is computed. Do this in single and
double precision. Why is it that roundoff is not a problem here as it
was in problem 47

2.10. EXERCISES 21

b. Use the algorithm of part (a) to compute
E(k) = L ; kan i = n (2.10)
" k=0 ’ - .

In this equation, we think of k as a random variable, the number of
heads in n tosses of a fair coin, with E(k) being the expected value
of k. This depends on n. Write a program without any safeguards
against overflow or zero divide (this time only/)?. Show (both in single
and double precision) that the computed answer has high accuracy as
long as the intermediate results are within the range of floating point
numbers. As with (a), explain how the computer gets an accurate,
small, answer when the intermediate numbers have such a wide range
of values. Why is cancellation not a problem? Note the advantage
of a wider range of values: we can compute E(k) for much larger n
in double precision. Print E(k) as computed by (2.10) and M, =
maxy, an, k. For large n, one should be inf and the other NaN. Why?

c. For fairly large n, plot a, ; as a function of k for a range of k chosen
to illuminate the interesting “bell shaped” behavior of the a,, ; near
their maximum.

d. (Extra credit, and lots of it!) Find a way to compute
S(k) = (—1)" sin(2r sin(k/n))an
k=0

with good relative accuracy for large n. This is very hard, so don’t
spend too much time on it.

6. What day is it

20ne of the purposes of the IEEE floating point standard was to allow a program with
overflow or zero divide to run and print results

22

CHAPTER 2. SOURCES OF ERROR

Chapter 3

NumericalAnalysis

Manipulation of Taylor series expansions is one of the most common techniques
in scientific computing. Most computational methods for differentiation, inte-
gration, and solution of differential equations are based directly on Taylor series.
Series expansions not only lead to computational algorithms, but they also tell
us how accurate these algorithms should be and predict properties of the error
that are the basis for code validation and sophisticated adaptive computational
software.

In this chapter we apply the Taylor series method for three specific problems,
differentiation, integration, and interpolation. Numerical differentiation is the
problem of finding (as accurately as necessary) a derivative of a function, given
several values of the function itself. Numerical integration is the problem of
computing the integral. Interpolation is the problem of evaluating a function
at some value of its arguments given function values at other values of the
arguments.

For all these purposes, we use Taylor series as asymptotic expansions. To
see what this means, consider the expansion

1 1
e =1+z4+ 2’4+ =24 . (3.1)
2 n!
One could use this formula to compute e? by taking 2 = 2 and adding up enough
terms to get the desired accuracy. That is not what we do here. Instead, we fix
the number of terms, for example

1
e“"zl+x+§x2, (3.2)

and ask about the range of x values for which this approximation is accurate
enough. In real problems, Taylor series beyond the first few may be difficult
or impossible to compute. Fortunately, most of the methods in this chapter
apply to any function that has a Taylor series expansion, in the asymptotic
sense explained below. We rarely need explicit expressions for the coefficients.

23

24 CHAPTER 3. NUMERICALANALYSIS

As we stated in Chapter 2, errors that arise from taking just a few terms of
an infinite Taylor series are called truncation errors. For example, we truncate
the infinite series (3.1) to get the three term approximation (3.2). This chapter
is about truncation error. We generally neglect roundoff error, since truncation
error is usually larger. We will have to revisit this assumption if our problem
is ill posed, if our computational algorithm is unstable, or if the step size is too
small.

For each of the problems discussed we will start with simple approximations
of modest accuracy and proceed to methods of increasing complexity and accu-
racy. The simplest methods may be adequate for casual computing. Why spend
more time optimizing a code than possibly could be saved in a computation that
takes the computer less than a second? However, the basic operations of inte-
gration and differentiation are often at the hearts of computational algorithms
whose running times are a serious concern; time discovering and implementing
more complex and accurate approximations may be repaid amply.

We work with a step size, which is generically called h but may have other
names in specific contexts. The approximations become more accurate as h
becomes smaller. The rate of improvement is the order of accuracy. More
accurate approximations generally lead to faster computations. For example,
in estimating f; f(x)dx, the region of integration, [a,b] is divided into panels
of size h. The smaller h, the more panels and longer it takes the computer
to process them all. If a sophisticated integration method achieves 1% error
with A = .1 while the simple one requires A = .01, the sophisticated method
will be, maybe, five times faster — twice the cost per panel but ten times fewer
panels. Whether this factor of five speedup is worth days of extra analysis and
programming depends on the situation.

We will often use the phrase “for sufficiently small 2” without clarifying how
small is small enough. One answer might be that h should be small compared
to “natural length scales” in the problem. Unfortunately, this question is too
problem dependent to settle in a simple general way. When h is small enough,
we say that h is in the asymptotic range, the range in which an asymptotic
expansion gives useful information. It is often clear from the problem roughly
how large the asymptotic range is likely to be, and that range is usually large
enough to cover practical h values. If a code is completely unable to produce
results consistent with an asymptotic error analysis, it is generally not because
the asymptotic range is inaccessible. Look instead for a bug in the code, in the
method, or in the error analysis. See Software tip 7?7 for more on this point.

3.1 Software tips

3.1.1 Write flexible and verifiable codes

The main way to verify correctness of a code it to check that it gets the right
answer. For this reason, it is helpful to build codes general enough to calculate
a variety of answers, some of which we already know.

3.2. EXERCISES 25

3.1.2 Report failures

A code should not fail silently. If a procedure is unable to do what it is asked
to do, it must report this in some way. Most procedures used in a computation
can fail on some problems they would be exposed to. Most user want know
that the answer is wrong if it is. As a principle of programming practice, every
procedure should have some way to communicate failure, either to the calling
procedure (preferred for serious codes) or directly to the user.

There are several ways to report failure. The simplest is just to print an
error message, such as:

cout << "Procedure Integrate failed because n = " << n
<< " was larger than N_MAX = " << N_MAX << endl;

Notice that the message told the user the name of the routine, the reason for
the problem, and the offending number.

3.2 Exercises

1. We want to study the function

1
f(2) :/0 cos (zt*) dt . (3.3)

Step 1: Write a procedure (or “method”) to estimate f(z) using a panel
integration method with uniformly spaced points. The procedure
should be well documented, robust, and clean. Robust will mean
many things in future assignments. Here is means: (i) that it should
use the correct number of panels even though the points ¢; are com-
puted in inexact floating point arithmetic, and (ii) that the procedure
will return an error code and possibly print an error message if one of
the calling arguments is out of range (here, probably just n < 0). It
should take as inputs z and n = 1/At and returns the approximate
integral with that x and At value. This routine should be written so
that another person could easily substitute a different panel method
or a different integrand by changing a few lines of code.

Step 2: Verify the correctness of this procedure by checking that it gives
the right answer for small z. We can estimate f(x) for small z using
a few terms of its Taylor series. This series can be computed by
integrating the Taylor series for cos(xt?) term by term. This will
require you to write a “driver” that calls the integration procedure
with some reasonable but not huge values of n and compares the
returned values with the Taylor series approximation.

Step 3: With x = 1, do a convergence study to verify the second or-
der accuracy of the trapezoid rule and the fourth order accuracy of
Simpson’s rule. This requires you to write a different driver to call

CHAPTER 3. NUMERICALANALYSIS

the integration procedure with several values of n and compare the
answers in the manner of a convergence study. Once you have done
this for the trapezoid rule, it should take less than a minute to redo
it for Simpson’s rule. This is how you can tell whether you have done
Step 1 well.

Step 4: Write a procedure that uses the basic integration procedure from
Step 1, together with Richardson error estimation to find an n that
gives f(x) to within a specified error tolerance. The procedure should
work by repeatedly doubling n until the estimated error, based on
comparing approximations, is less than the tolerence given. This rou-
tine should be robust enough to quit and report failure if it is unable
to achieve the requested accuracy. The input should be z and the
desired error bound. The output should be the estimated value of f,
the number of points used, and an error flag to report failure. Before
applying this procedure to the panel integration procedure, apply
it to the fake procedure fakeInt.c or fakeInt.C. Note that these
testers have options to make the Richardson program fail or succeed.
You should try it both ways, to make sure the robustness feature
of your Richardson procedure works. Include with your homework,
output illustrating the behavior of your Richardson procedure when
it fails.

Step 5: Here is the “science” part of the problem, what you have been
doing all this coding for. We want to test an approximation to f that
is supposed to be valid for large x. The supposed approximation is:

flz) ~ \/8%4_ % sin(x) — 161332 cos(x) + -+ . (3.4)

Make a few plots showing f and its approximations using one, two
and all three terms on the right side of (2) for z in the range 1 <z <
1000. In all cases we want to evaluate f so accurately that the error
in our f value is much less than the error of the approximation (2).
Note that even for a fixed level of accuracy, more points are needed
for large . Why?

