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Assignment 5, Fourier stability analysis,
boundary layers

This assignment concerns a linear advection diffusion equation in one space
dimension and time

∂tu+ a∂xu = µ∂2xu+ S(x) . (1)

The source function S(x) is specified and the goal is to find the corresponding
solution u(x, t). In computational examples, take

S(x) = 1 , 0 < x < L .

We normalize the advection velocity to be one (by non-dimensionalizion if nec-
essary):

a = 1 .

Use Dirichlet boundary conditions

u(0, t) = 0 , u(L, t) = 0 .

Initial data are that u starts out being identically zero

u(x, 0) = 0 , 0 < x < L .

You may take L = 1 in computational examples, again by non-dimensionalization
if necessary. The diffusion coefficient µ will vary. We are particularly interested
in the solution when µ is small.

Take a uniform mesh with n internal grid points xj = j∆x and

∆x =
L

n+ 1
.

Suppose V is a grid function with values Vj for 1 ≤ j ≤ n. The formulas below
implicitly use the ghost cell values V0 = 0 and Vn+1 = 0. We define the centered
first and second order difference operators as

(D0V )j =
1

2∆x
(Vj+1 − Vj−1 )

(D+D−V )j =
1

∆x2
(Vj+1 − 2Vj + Vj−1 )

A Fourier mode is a grid function Vj(θ) = eiθj . Be aware that Fourier modes
do not satisfy the given Dirichlet boundary conditions. If M is any translation
invariant operator, the corresponding symbol m(θ) is defined by

MV (θ) = m(θ)V (θ) .
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A semi-discrete approximation to (1) involves a time-dependent grid function
Uj(t)

U̇ = −D0U + µD+D−U + S . (2)

Exercise 1. Suppose that S is the grid function Sj = S(xj) and u(x, t) is a
smooth function of1 x and t, and Uj(0) = u(xj , 0). Compute the symbol of
the right side of (2). In other words, define the translation invariant operator
M = −D0 + µD+D− and compute m(θ). Use the result to show the semi-
discrete scheme is von-Neumann stable. Show that the computed solution is
second order accurate in the sense that, for any fixed t,

∆x

n∑
j=1

[u(xj , t) = Uj(t) ]
2

= O(∆x2) .

Use forward Euler to make a fully discrete scheme. Define the time k grid

vector U
(k)
j ≈ Uj(tk), with tk = k∆t. The scheme is

U (k+1) = U (k) + ∆t
[
MU (k) + S

]
. (3)

Without the advection term, the scheme would be stable under the CFL condi-
tion

µ
∆t

∆x2
≤ 1

2
. (4)

Exercise 2. Code the forward Euler scheme (3). Suppose µ is small (say µ = .1
or µ = .01). Do numerical experiments (plot the numerical solution) on a va-
riety of meshes up to time t = 1

2 and several values of ∆x to see whether the
put diffusion CFL condition (4) determines the stability. Make plots of |m(θ)|
for 0 ≤ θ ≤ 2π to see whether the numerical stability/instability you see in the
code agrees with the stability prediction based on max |m(θ)|.

Exercise 3. Use good ∆x and ∆t values from Exercise 2 to make a movie of an
accurate simulation of (1) up to the time the solution seems to have settled into
a steady state. Describe the time dependent and steady state behavior when µ
is small. There will be a boundary layer either near x = 0 or near x = L. Most
of the behavior may be explained using the simplification µ = 0, but not the
boundary layer.

Exercise 4. Consider the partly implicit scheme

U (k+1) = U (k) + ∆t
[
D0U

(k) + µD+D−U
(k+1)

]
. (5)

Show that the scheme is first order accurate if ∆t = ∆x and µ = 1. This means
showing the residual has the appropriate size and the scheme is stable.

1This is easy to show, assuming the source function is smooth and has the right boundary
behavior, using techniques from PDE. If you haven’t taken a PDE theory class, you can infer
this smoothness from computations below.
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Exercise 5. Code a tri-diagonal solver to find V that satisfies

(I − cD+D−)V = F .

Use this to implement the partly implicit scheme (5). See whether you can do the
computation of Exercise 3 faster, first for µ = 1 and then for smaller values of µ.

Exercise 6. Try to find time stepping scheme using D0 and D+D− that is
second order accurate and stable with an “advective” time step ∆t = λ∆x.
One possibility is a split scheme that does the advective part using an explicit
four state Runge Kutta method and the diffusive part using Crank Nicholson.
Does this work (is it stable and second order)?
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