
Numerical Methods II, Courant Institute, Spring 2020

http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2020/NumericalMethodsII2020.html

Always check the classes message board before doing any work on the assignment.

Assignment 4, due end of finals week

Corrections: [none yet.]

1. Consider the usual tridiagonal matrix A so that Au = f is the standard
discretization of the differential equation

∂2xu = f , 0 < x < 1

u(0) = 0 , u(1) = 0 .

Suppose the problem is discretized with n− 1 interior points and uniform
grid spacing ∆x = 1

n . Write a code to implement the basic conjugate
gradient algorithm to solve the discrete problem and plot the 2−norm of
the error (or the residual, or both) as a function of iteration number k.
Start with initial condition u0 6= 0. Take f = 0, so the solution is u = 0.
The plot should say n in the title, in a form something like “n is · · · ”,
and contain whatever other information is necessary to understand the
plot (e.g., which u0). Consider log-log plots to look for power laws and
regular (linear-linear) plots to visualize initial transients. Experiment with
initial conditions smooth and rough. Some possibilities to choose from and
expand on are: u0(x) = x(1−x), or u0 = δ(x−x0) (a function that differs
from 0 at a single grid point), or the values of u0 being independent mean
zero random numbers. Take the time to write a code that is so automated
that it is easy to do sophisticated numerical experiments quickly.

(a) The 2−norm condition number satisfies κ = cond2(A) ∼ Cn2 for
large n. Find a formula for C.

Hint: Early in the semester we showed that the eigenvectors of A
have the form vj = sin(ξj).

(b) Compare the computed error to theoretical the theoretical error bound
involving κ. Investigate how the discrepancy depends on n, on k, and
on the initial condition. State some conclusions or conjectures based
on your observations.

(c) Experiment with the problem in 3D. Let n be the size of the vector
u, which is n = (∆x−1 − 1)3, assuming ∆x = ∆y = ∆z and each
continuous space variable goes from 0 to 1. How does κ depend
on n (power and constant)? Compare the upper bound to actual
performance.

2. This exercise asks you to solve a Laplace equation to solve a simple model
of fluid flow – irrotational, incompressible, constant density, steady flow
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in two dimensions. The flow happens in a contrived geometry. A more
realistic geometry would involve issues of meshing that would make it
hard to do much meaningful computation is a the time available for a
homework exercise. This problem does illustrate many features of more
serious problems.

Consider a two dimensional steady fluid flow, with fluid velocity vector
field u(x, y) = (ux(x, y), uy(x, y)). A stream function is a single function
ψ(x, y) that determines the velocity by

ux(x, y) = ∂yψ(x, y) , uy(x, y) = −∂xψ(x, y) .

From vector calculus, we know that there is a stream function if the di-
vergence of the velocity vector field is zero.

0 = div(u)(x, y) = ∂xux(x, y) + ∂yuy(x, y) .

See below for some explanation. The vorticity, denoted by ω(x, y), is the
curl of the velocity field:

ω(x, y) = curl(u)(x, y) = ∂xuy(x, y)− ∂yux(x, y) .

In simple models of flow, if the vorticity starts off being zero, it remains
zero. A fluid with ω(x, y) ≡ 0 is irrotational. A calculation (do it) shows
that if a flow is both irrotational and incompressible (divergence free,
div(u) ≡ 0), then 4ψ = ∂2xψ + ∂2yψ = 0.

The stream function determines how much fluid is flowing between points
(x0, y0) and (x1, y1). Let Γ be a curve in the plane that goes from one
of the two points to the other. More precisely, Γ is the curve (x(s), y(s))
with (x(0), y(0)) = (x0, y0) and (x(1), y(1)) = (x1, y1). The rate of fluid
flow across Γ is

rate =

∫ s=1

s=0

(uxdy − uydx) .

Using vector calculus (google “Green’s theorem”) we can see that

rate = ψ(x1, y1)− ψ(x0, y0) .

In particular, any curve that goes from (x0, y0) to (x1, y1) has the same
flow rate.

A theorem of fluid mechanics called Bernoulli’s law (really, a theorem of
vector calculus with hypotheses related to fluid models) states that the
pressure field is given by

p(x, y) = p0 − 1
2 ‖u(x, y)‖2 = p0 − 1

2 ‖∇ψ(x, y)‖2 .

If you haven’t studied fluid mechanics, you might be surprised at the
consequence that the pressure is lower with the flow speed is higher. That
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was the original motivation for the shape of airplane wings – flat on the
bottom and curved on top to make the air on top go faster.

Imagine a 2D fluid flowing in a region inside the unit square but outside a
smaller square inside. The unit square (the “big” square) is [0, 1]× [0, 1].
The smaller square is [a, b]×[a, b], a square with corners at (a, a) and (b, b),
with 0 < a < b < 1. The small square is aligned with the big square. The
computational domain is

Ω = {(x, y) | (x, y) ∈ [0, 1]× [0, 1] , (x, y) /∈ [a, b]× [a, b]} .

The boundary of Ω consists of two boundary components, the outer bound-
ary and the inner boundary

Γo = {x = 0 or x = 1 or y = 0 or y = 1}
Γi = {x = a or x = b or y = a or y = b } .

Assume that no fluid crosses either boundary component. This implies
that the stream function takes one constant value on the outer boundary
and a different constant value on the inner boundary. Since this problem
is linear (fluid mechanics problems are almost never linear), it does not
matter what the two boundary stream function values are, as long as they
are different. Therefore, take ψ(x, y) = 0 on the outer boundary and
ψ(x, y) = 1 on the inner boundary.

Write a code to compute the stream function and the pressure using the
standard five point discretization of the Laplace operator. Choose a = .25,
b = .5 and other values you are interested in. Choose ∆x = ∆y and pick
them so that there are mesh points on the inner and outer boundary.
Make contour plots of the stream function and the pressure. Make sure
to include information about the run in the plot title. Automate your
code so that it is easy to experiment with. Solve the discrete equations
using conjugate gradients. If you have time and interest, experiment with
SSOR preconditioned conjugate gradients (not very complicated to code)
or fancier methods (which take longer to code).

Most big computations have a quantity of interest, which is some function
of the solution you are interested in. The quantity of interest for this
calculation is the total pressure force on the bottom of the inner square

Q =

∫ b

a

p(x, a) dx .

To calculate this, you have to post-process the computed stream function
to evaluate the pressure (Bernoulli’s law, discretized in a sensible way)
and approximate the integral (midpoint rule, trapezoid rule or whatever).
Solve the discrete ψ equations accurately enough that more conjugate
gradient iterations would not have a significant impact on the Q you get.

Comment on the results. Pay attention to these points
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(a) What is the order of accuracy of Q as a function of ∆x?

(b) Are the computed stream function and pressure fields smooth, or do
they have singularities that could effect the accuracy of Q?

(c) How many conjugate gradient iterations does it take to evaluate Q?
How badly would you like a solution strategy that takes fewer itera-
tions?

A note on incompressibility and the material derivative

A velocity field with zero divergence is called incompressible. This comes
from the density equation

∂tρ+ ∂x(ρux) + ∂y(ρuy) .

The rate of change of the density of a piece of fluid carries with the velocity
field is called the material derivative and written Dt. For any quantity
q(x, y, t), the material derivative is the rate of change of q if you “move
with the fluid” which is the last two differential equations in:

Dtq =
d

dt
q(x(t), y(t), t) ,

dx

dt
= ux(x, y, t) ,

dy

dt
= uy(x, y, t) .

The chain rule gives the material derivative of ρ as

Dtρ = ∂tρ+ ux∂xρ+ uy∂yρ .

Given the mass conservation equation above, if the material derivative
of the density is zero, then the divergence of the velocity is zero (check
this). Compressing a fluid means increasing its density, and decompressing
means decreasing the density. A flow can be incompressible without having
constant density. This could happen if some air is hotter (less dense) than
other air, for example. In this situation, the density at a specific point can
change in time, which is ∂tρ(x, y, t) 6= 0. This can happen, for example,
if the wind blows hot air to where the air used to be cold. The fluid does
not have to be compressed for this to happen.
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